Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 107031 dokumen yang sesuai dengan query
cover
Farhan Ryan Pratama
"ABSTRACT
Tujuan dari penelitian ini adalah untuk mengembangkan model dua dimensi axisimmetri untuk reaksi hidrogenasi FAME menjadi H-FAME, dan untuk mendapatkan hubungan antara parameter proses dan geometri dengan kinetika reaksi dari reaksi hidrogenasi dalam reactor slurry bubble column. Penelitian ini diawali dengan studi literatur dari biodiesel, kinetika hidrogenasi, reaktor slurry bubble column dan pemodelan. Model ditentukan dan dikembangkan untuk melakukan simulasi. Model ini akan diverifikasi untuk memeriksa konvergensi model, hasil dari simulasi ini kemudian dianalisa. Model matematis yang dipertimbangkan adalah neraca momentum, neraca massa fasa cair, fasa gas dan fasa padat dan neraca energi. Hasil yang diperoleh adalah suatu model slurry bubble column reactor berbentuk silinder tegak dengan ukuran diameter 2.68 m dan tinggi 7.14 m, dengan kondisi operasi: tekanan gas masuk 5 atm, suhu umpan 400 K, kecepatan superfisial 0.01 m/s dan loading katalis 0.2 kg/m3. Dari hasil simulasi kasus dasar, ditemukan bahwa konversi cis-metil oleat mencapai 86,3, hasil perolehan metil stearat mencapai 89,4, dan kemurnian metil stearat mencapai 45,8.

ABSTRACT
The purpose of this research is to develop a two dimensional axisymmetric model for the hydrogenation reaction of FAME into H FAME and to obtain the relations between process and geometric parameters with reaction kinetics of hydrogenation reaction inside slurry bubble column reactor. The research begins with literature study of biodiesel, hydrogenation kinetics, slurry bubble column reactor and modelling. The model is then determined and developed to perform simulation. Model will be verified to check the model convergence, the simulation result is then analyzed. Mathematical models considered are momentum balance, mass balance liquid phase, gas phase and solid phase and energy balance. The result obtained is a vertical slurry bubble column reactor model with a diameter of 2.68 m and height of 7.14 m, with operating conditions inlet gas pressure 5 atm, feed temperature 400 K, superficial velocity 0.01 m and loading catalyst 0.2 kg m3. From the base case simulation results, it was found that the conversion of cis methyl oleate reached 86.3, yield of methyl stearate reached 89.4, and purity of methyl stearate reached 45.8."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Niken Atmi Sutrisniningrum
"Kurangnya stabilitas oksidasi biodiesel menyebabkan banyak kendala dalam pemanfaatannya. Untuk mengatasi hal ini, stabilitas oksidasi biodiesel perlu ditingkatkan melalui proses hidrogenasi parsial yang dapat dilakukan dalam reaktor multifasa. Reaktor Slurry Bubble Column, salah satu jenis reaktor multifasa, yang telah banyak digunakan dalam proses hydrotreating, berpotensi untuk menyelenggarakan proses ini dalam sistem kontinyu. Akan tetapi, belum ada penelitian yang mempelajari penggunaan reaktor Slurry Bubble Column untuk mengubah biodiesel menjadi H-FAME melalui proses hidrogenasi parsial. Oleh karena itu, tujuan penelitian adalah untuk mengembangkan model matematis reaktor Slurry Bubble Column 2 dimensi axis-symmetric untuk proses hidrogenasi parsial. Model yang akan dibangun didasarkan pada persamaan kontinuitas untuk transport massa dan transport energi dengan modifikasi koefisien dispersi, juga penurunan tekanan dan distribusi katalis di sepanjang sumbu reaktor dan disimulasikan pada COMSOL MultiPhysic 5.4. Dalam penelitian ini, digunakan model kasus dasar reaktor kolom berbentuk silinder vertikal dua dimensi. Reaktor ini beroperasi pada 500 kPa, suhu saluran masuk 150 ° C. Umpan terdiri dari metil linoleat murni yang mewakili biodiesel dan hidrogen murni. Kecepatan gas masuk adalah 0,02 m/s, dan kecepatan cairan masuk adalah 0,00025 m/s. Hasil simulasi menunjukkan bahwa konversi metil-linoleat adalah 76,98%, hasil H-FAME adalah 54,8% berat, dengan kemurnian 54,45% berat.

Biodiesel`s lacks of oxidation stability presents many constraints in its utilization. To enhance this property, biodiesel needs to be upgraded through partial hydrogenation process which can be carried out in a multiphase reactor. Slurry bubble column, a type of multiphase reactor, which has been widely used in hydro-treating process, has potential to perform this process in a continuous system. However, no previous studies had shown the usage of slurry bubble column for upgrading biodiesel to H-FAME via partial hydrogenation process. Therefore, this study purpose was to develop a two-dimensional axis-symmetric reactor model for this process. The model was based on equation of continuity on mass transport and energy transport with dispersion coefficient, also pressure drop and catalyst distribution along the reactor axis and simulated on COMSOL MultiPhysic 5.4. In this study, a base case model, two-dimensional, axis-symmetry, vertical cylinder-shape slurry bubble column reactor was used. This reactor operated in 500 kPa, inlet temperature of 150 °C. The feed consisted of pure methyl-linoleate as biodiesel representation and pure hydrogen. The inlet gas velocity was 0.02 m/s, and the inlet liquid velocity was 0.00025 m/s. Simulation results show that the conversion of methyl-linoleate was 76,98%, H-FAME yield was 54.8% wt, with 54.45% wt purity. Keywords: Biodiesel, Partial Hydrogenation, H-FAME, Slurry Bubble Column Reactor, dispersion model, COMSOL, multiphase, Methyl Linoleate."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52941
UI - Tesis Membership  Universitas Indonesia Library
cover
Taqi Aufa
"ABSTRACT
Tujuan dari penelitian ini adalah untuk mengembangkan model dua dimensi axisimmetri untuk reaksi hidrogenasi parsial FAME menjadi H-FAME, dan mengetahui pengaruh dari parameter proses dan parameter geometri terhadap performa reaktor. Penelitian ini terdiri dari studi literatur, kinetika reaksi, pemodelan reaktor, dan analisis dan pembahasan. Model matematis dikembangkan dari persamaan-persamaan neraca massa fasa cair, fasa gas, dan fasa padat, neraca momentum hukum darcy dan neraca energi. Model selanjutnya diselesaikan menggunakan metode computational fluid dynamic CFD yang disolusikan menggunakan software COMSOL multiphysic 5.3. Reaktor yang dimodelkan berbentuk silinder dengan diameter 0.8 m, tinggi 16 m dan memiliki pola aliran searah kebawah. Parameter operasi reaktor adalah: tekanan umpan 611 kPa, temperatur umpan 433 K, laju alir fasa cair 0,1921 m3/s, laju alir fasa gas 0,8339 m3/s, dan diameter katalis 1 mm. Berdasarkan hasil simulasi didapatkan konversi 79,56, yield asam stearat 28,3, dan jatuh tekenan 6,9 kPa/m.

ABSTRACT
The purpose of this research is to develop two dimention axisymetry model for partial hydrogenation of FAME to H FAME and to understand the effect of process and geometry parameter to its performance. This research consist of literature study, reaction kinetic, reactor modelling, and analysis. Mathematical model is develop from mass gas, liquid, solid, momentum darcy law and energy balance equations. The model is solved by using computational fluid dynamic method CFD by using COMSOL multiphysic 5.3. The reactor modelled has 0.8 m diameter and 16 m height with cocurrent downfall fluid pattern. The reactor modeled at inlet temperature 433 K, inlet pressure 611 kPa, liquid flow rate 0.1921 m3 s, gas flowrate 0.8339 m3 s and catalyst diameter 1 mm. The simulated reactor able to achieve 79.56 conversion, stearic acid yield of 28.3, and pressure drop of 6.9 kPa m."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nafisa Dewi Shafira
"Gamma-valerolakton (GVL) adalah senyawa organik turunan dari asam levulinat yang memiliki banyak manfaat di berbagai sektor. Penelitian ini dilakukan untuk mengetahui pengaruh tekanan dan suhu gas umpan terhadap kinerja reaktor trickle bed untuk produksi GVL dari segi konversi asam levulinat, yield GVL, dan selektivitas GVL. Mekanisme yang terjadi adalah asam levulinat yang sudah dilarutkan dengan air deionisasi akan melalui proses hidrogenasi menghasilkan senyawa intermediet yaitu 4-HPA. Kemudian, terjadi proses esterifikasi intermolekul untuk menghasilkan GVL. Katalis yang digunakan adalah Ru/C dengan muatan Ru sebesar 5 wt%. Eksperimen diawali dengan persiapan bahan baku, lalu dilakukan karakterisasi katalis. Kemudian digunakan reaktor berdiameter 2,01 cm den gan unggun katalis setinggi 24 cm. Reaktan cair (asam levulinat) dan gas hidrogen direaksikan dengan kondisi operasi temperatur 90 °C – 150 °C, dan tekanan 5 dan 10 bar. Penelitian pada tekanan rendah dilakukan untuk mengurangi penggunaan hidrogen berlebih sehingga proses menjadi lebih ekonomis. Setelah reaksi berlangsung, asam levulinat sebagai bahan baku terkonversi menjadi dua senyawa yaitu 4-HPA dan GVL. Produk kemudian dianalisis dengan High-Performance Liquid Chromatography. Setelah berlangsungnya reaksi, asam levulinat sebagai bahan baku terkonversi menjadi dua jenis produk, yaitu senyawa intermediate 4-HPA dan produk utama GVL. Pada penelitian ini, kondisi terbaik untuk memproduksi GVL adalah pada tekanan 10 bar dan suhu 150 °C dengan yield GVL 72%, selektivitas GVL 73%, dan konversi asam levulinat 97%. Berdasarkan tren yang diamati, semakin meningkatnya tekanan dan suhu yang digunakan, maka hasil yang diperoleh semakin optimal.

Gamma-valerolactone (GVL) is an organic compound derived from levulinic acid which has many benefits in various sectors. This research was conducted to determine the effect of feed gas pressure and temperature on the performance of trickle bed reactors for GVL production in terms of levulinic acid conversion, GVL yield, and GVL selectivity. The mechanism that occurs is that levulinic acid which has been dissolved in deionized water will go through a hydrogenation process to produce an intermediate compound, namely 4-HPA. Then, an intermolecular esterification process occurs to produce GVL. The catalyst used was Ru/C with a 5 wt% Ru. The experiment started with raw material preparation, and catalyst characterization, then a 2.01 cm diameter reactor with a 24 cm high catalyst bed was used. Liquid reactants (levulinic acid) and hydrogen gas were reacted under operating conditions of temperature 90 °C – 150 °C, and pressures of 5 and 10 bar. Research at low pressure is carried out to reduce the use of excess hydrogen so that the process becomes more economical. After the reaction takes place, levulinic acid as a raw material is converted into several compounds including levulinic acid, 4-HPA, and GVL. Products were analyzed with High-Performance Liquid Chromatography. After the reaction takes place, levulinic acid as a raw material is converted into two types of products, namely the intermediate compound 4-HPA and the main product GVL. In this study, the best conditions for producing GVL were at a pressure of 10 bar and a temperature of 150 °C with a yield of 72% GVL, 73% selectivity of GVL, and 97% conversion of levulinic acid. Based on the observed trend, the higher the pressure and temperature used, the more optimal the results obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuswan Muharam
"ABSTRAK
Konversi CO2 menjadi metanol dapat ditingkatkan dengan menggunakan katalis dalam reaksinya. Katalis yang biasa dipakai untuk hidrogenasi CO2 menjadi metanol adalah katalis log am kompleks CuO/ZnO/AI203. Akan tetapi, katalis ini masih memiliki kekurangan yaitu kinerja yang masih rendah dan stabilitas yang kurang baik. Hal ini disebabkan H2 yang harus diabsorpsi oleh katalis untuk reaksi hidrogenasi CO2 Iebih tinggi dibanding reaksi pembuatan metanol dengan umpan CO dan H2. Untuk itu diperlukan tambahan oksida logam PdO yang memiliki kemampuan adsorpsi H2 tinggi.
Untuk pengembangan proses hidrogenasi CO2 menjadi metanol perlu dilakukan studi kinetika reaksi dengan tujuan memperoleh persamaan laju reaksi kimia yang berlaku pada rentang kondisi operasi tertentu. Persamaan laju reaksi ini diperlukan dalam perancangan reaktor yang akan digunakan pada skala industri. Pada penelitian ini katalis yang digunakan adalah CuO/ZnO/AI2O3/PdO dengan luas permukaan katalis sebesar 108,6 m2 /gr.
Untuk mendapatkan persamaan laju reaksi yang berlaku umum, harus diusahakan agar reaksi secara keseluruhan hanya dikendalikan oleh kejadian-kejadian kimia saja (tidak termasuk adsorpsi eksternal dan internal).
Pada studi kinetika makro, model kinetika untuk laju konversi CO2 yang cukup representatif adalah model kinetika hukum pangkat sederhana dengan pendekatan model Cherif, dengan kesalahan absolut rata-rata sebesar 7,31 % dan koefisien korelasi R2 sebesar 89,69 %.
Model kinetika untuk laju pembentukan CH3OH yang secara statistik cukup representatif adalah model kinetika hukum pangkat sederhana dengan kesalahan absolut rata-rata sebesar 8,05 % dan koefisien korelasi R2 sebesar 97,54."
Depok: Fakultas Teknik Universitas Indonesia, 1999
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Alif Putra Banyuaji
"Dalam penelitian ini dilakukan pembahasan mengenai reaksi semihidrogenasi fenilasetilena menggunakan katalis Ni-NP yang disupport oleh silika makro/mesopori. Pembuatan support silika menggunakan metode co-micelle emulsion templating (co-MET) yang memanfaatkan misel untuk membentuk cetakan berbentuk khas yang dapat memperluas permukaan silika yang terbentuk dari tetraetilortosilikat (TEOS) terhidrolisis. SiO2 yang dihasilkan dikarakterisasi menggunakan SEM, TEM, EDX, SAA, dan FTIR dan dibuktikan terbentuknya SiO2 dengan struktur mesopori berdiameter rata-rata 12,547 nm, luas permukaan BET 357,232 m2/g dan volume pori 0,726 cm3/g. Katalis Ni-NP/SiO2 disintesis dengan mencampur D-fruktosa dengan nikel (II) asetat tetrahidrat dan silika berpori yang terbentuk dan kemudian dipirolisis untuk mendapat produk akhir dengan luas permukaan yang tinggi dan nikel yang terdistribusi dengan baik. Terakhir, katalis diujicoba dalam mengkatalisis reaksi semihidrogenasi fenilasetilena menjadi stirena dan didapat hasil konversi dan selektivitas yang cukup baik yang bergantung pada sumber hidrogen reaksi.

In this research we discuss about semihydrogenation of phenylacetylene utilizing Ni-NP catalyst mounted on macro/mesoporous silica. The synthesis of silica support utilizes co-micelle emulsion templating (co-MET) method which uses micelles as templating agent to increase produced silica surface area made by hydrolizes tetraethylorthosilicate (TEOS). The produced silica is then characterized using SEM, TEM, EDX, SAA, dan FTIR and it is found that the formed product is indeed SiO2 with average mesopore diameter of 12,547 nm, BET surface area of 357,232 m2/g and pore volume of 0,726 cm3/g. Ni-NP/SiO2 catalyst was synthesized by mixing D-fructose with nickel (II) acetate tetrahydrate and porous silica and then pyrolized to form the final product. The formed catalyst exhibits high surface area and well-distributed nickel nanoparticles. Finally, the formed catalyst is then used to catalyze the semihydrogenation reaction of phenylacetylene to styrene. The reaction exhibits good conversion and selectivity rates, which depends on the hydrogen source."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Putri Syaharani
"Hidrogenasi selektif alkuna menjadi alkena adalah jenis penting dari transformasi organik dengan aplikasi industri skala besar. Transformasi ini membutuhkan katalis yang efisien dengan kontrol yang tepat. Katalis bimetalik seperti Ni digunakan secara luas dalam reaksi hidrogenasi alkuna karena sifatnya yang aktif dan selektif. Menemukan katalis yang ekonomis, aktif dan selektif untuk produksi alkena melalui hidrogenasi parsial alkuna merupakan sebuah tantangan bagi ilmu penelitian. Pada penelitian ini dilakukan hidogenasi selektif pada alkuna terminal menggunakan katalis Ni yang terenkapsulasi dengan fruktosa pada silika. Selain itu digunakan NaBH4 sebagai sumber hidrogen serta reduktor pada reaksi. Penelitian ini dimulai dengan mensintesis katalis Ni menggunakan Ni(acac)2 sebagai prekursor. Katalis Ni kemudian disintesis dengan teknik impregnasi menggunakan monosakarida untuk pembuatan nanopartikel nikel baru, yang merupakan katalis hidrogenasi selektif. Dilakukan imobilisasi fruktosa dan Ni(acac)2 pada silika dan menggunakan fruktosa sebagai sumber karbon yang mengenkapsulasi Ni dengan ukuran dan distribusi yang seragam. Proses impregnasi Ni disertakan fruktosa sebagai sumber karbon. Katalis Ni-fruktosa/SiO2 kemudian di karakterisasi menggunakan FT-IR, XRD, SEM-EDX, dan SAA untuk mengetahui keberhasilan sintesis. Katalis Ni-fruktosa/SiO2 kemudian digunakan untuk reaksi hidrogenasi alkuna terminal menggunakan substrat fenilasetilena dengan NaBH4. Produk yang dihasilkan dari reaksi hidrogenasi alkuna terminal akan dikarakterisasi menggunakan instrumentasi GC-MS untuk mengamati aktivitas katalis serta selektivitas produknya. Analisis campuran produk dengan GCMS menunjukkan bahwa katalis dengan variasi atom Ni:fruktosa sebesar 2:1 memberikan hasil paling baik dengan persen konversi alkuna sebesar 35,4% dengan persen selektivitas terbesar sebesar 61,7%.

Selective hydrogenation of alkynes to alkenes is an important type of organic transformation with large-scale industrial applications. This transformation requires an efficient catalyst with precise control. Bimetallic catalysts such as Ni are widely used in the hydrogenation reactions of alkynes because of their active and selective nature. Finding an economical, active and selective one for alkene production through partial hydrogenation of alkynes is a challenge for science. In this study, selective hydrogenation of terminal alkynes will be carried out using a Ni catalyst which is encapsulated with fructose on silica. In addition, NaBH4 is used as a hydrogen source and reducing agent in the reaction. This research was started by synthesizing Ni catalyst using Ni(acac)2 as a precursor. The Ni catalyst was then synthesized by impregnation technique using monosaccharides for the manufacture of new nickel nanoparticles, which were selected hydrogenation catalysts. Immobilizing fructose and Ni(acac)2 on silica and using fructose as a carbon source that encapsulates Ni with uniform size and distribution. The Ni impregnation process included fructose as a carbon source. The Ni-fructose/SiO2 catalyst was then characterized using FT-IR, XRD, SEM-EDX, and SAA to determine the success of the synthesis. The Ni-fructose/SiO2 catalyst was then used for the terminal hydrogenation reaction of the alkyne using phenylacetylene as a substrate with NaBH4. The product resulting from the terminal alkyne hydrogenation reaction will be characterized using GC-MS instrumentation to observe the catalyst activity and product selectivity. Analysis of the product mixture with GCMS showed that the catalyst with atomic variation of Ni:fructose of 1:5 gave the best results with an alkyne conversion percentage of 35,4% with selectivity percentage 61,7%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Slamet
"ABSTRAK
Penelitian ini bertujuan untuk melakukan studi kinetika reaksi hidrogenasi CO2 menjadi metanol menggunakan katalis CuO/ZnO/Al2O3/Cr2O3 , dengan pendekatan analisis kinetika makro (`hukum pangkat sederhana' dan `hukum pangkat kompleks') dan analisis kinetika mikro (kinetika mekanistis). Analisis kinetika makro menghasilkan model kinetika `hukum pangkat sederhana' (SPL) dan `hukum pangkat kompleks' (CPL) seperti pada persamaan-persamaan berikut: (lihat file Pdf)
Hasil studi kinetika makro menunjukkan bahwa model kinetika `hukum pangkat kompleks' dapat memperbaiki model kinetika `hukum pangkat sederhana'. Secara statistik model CPL lebih baik (akurat) dari pada model SPL, dan secara kinetika model CPL dapat memberikan informasi kinetika yang lebih lengkap dibandingkan dengan model SPL.
Hasil analisis kinetika mikro menunjukkan bahwa model kinetika yang terbaik secara statistik adalah model yang diturunkan dari mekanisme Langmuir. Namun secara kinetika belum ada model yang cocok dengan data kinetika yang diperoleh pada penelitian ini. Oleh karena itu maka perlu dilakukan simulasi lebih lanjut dengan model kinetika yang lain atau dengan data kinetika lain yang dicari dengan peralatan reaktor yang mendukung untuk studi kinetika mikro."
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Ariyann Raidah
"Reaksi hidrogenasi minyak jarak tidak akan berjalan dengan baik tanpa adanya katalis, yang dipengaruhi oleh larutan garam prekursor pembentuk inti aktifnya. Pada penelitian ini dilakukan preparasi katalis CuO/γ-Al2O3 dengan memvariasikan larutan garam prekursor dan loading katalis untuk mengetahui dampaknya terhadap aktivitas katalis pada reaksi hidrogenasi minyak jarak. Garam prekursor yang digunakan adalah tembaga nitrat, tembaga asetat dan tembaga klorida. Preparasi katalis menggunakan metode impregnasi dan hasilnya dikarakterisasi dengan metode BET dan XRD. Aktivitas katalis pada reaksi hidrogenasi minyak jarak diketahui melalui pengukuran penurunan bilangan iod dari minyak jarak tersebut. Katalis yang memberikan aktivitas paling baik diantara tiga prekursor adalah katalis CuO/γ-Al2O3 dengan prekusor tembaga klorida loading 10%.

The castor oil hydrogenation reaction will not go well without the presence of catalyst, which is influenced by the precursor salt solution that formed its active core. The purpose of this research is to discover the impact of varying the precursor salt solution and catalyst loading to catalyst activity of castor oil hydrogenation. The variation of the precursor salt are copper nitrate, copper acetate and copper chloride. The catalysts were prepared with impregnation method, and the results were characterized by BET and XRD method. Catalysts activities of castor oil hydrogenation were determined through the measurement of castor oil iodine value reduction. Catalyst that shows the best activity among three precursors is CuO/γ-Al2O3 from copper chloride precusor with 10% load."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42564
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>