Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123084 dokumen yang sesuai dengan query
cover
Ahmad Hani Mustafa
"Kegagalan bayar kartu kredit merupakan risiko yang perlu dikelola, sehinggaperbankan perlu menerapkan credit scoring untuk memprediksi pemegang kartuyang berisiko default. Seiring dengan perkembangan teknologi, terdapat berbagaimetode credit scoring, sehingga perlu adanya telaah mengenai efektivitas metodemetodecredit scoring. Penelitian ini memiliki tujuan untuk memprediksi defaultberdasarkan data demografi, payment, dan savings nasabah, dan membandingkanefektivitas dari beberapa metode credit scoring yang berkembang, dan mengetahuivariabel apa saja yang mempengaruhi dalam hasil permodelan. Sehingga,perusahaan dapat memitigasi resiko lebih awal dan dapat mengoptimalkan revenuedari nasabah tidak beresiko lainnya. Selain itu ditemukan pula hubungan ketikasebuah cut off point dengan akurasi dan sensitivity. Dari variabel-variabel yangdigunakan dalam model, utilisasi dan pembayaran kartu kredit menjadi variabelyang sangat berpengaruh dalam permodelan, selain itu jenis kelamin, profesi,jumlah penghasilan, status kepemilikan tempat tinggal dan tingkat pendidikan akhirmenjadi variabel yang penting dalam memprediksi default. Dalam hasil permodelanrandom forest menghasilkan hasil yang paling baik secara keseluruhan, dan modellogistic regression merupakan permodelan yang memiliki defiasi lebih sedikit stabil dibandingkan hasil permodelan lainnya.

Failure to pay for credit cards is a risk that needs to be managed, so banks need toapply credit scoring to predict cardholders who are at risk of default. Along withtechnological developments, there are various methods of credit scoring, so there isa need for a review of the effectiveness of credit scoring methods. This study aimsto predict default from demographic, payments, and savings data from credit cardholder and compare the effectiveness of some of the growing credit scoringmethods, and to know what factors influence in the modeling results. Thus,companies can mitigate risks early and can optimize revenue from other risklesscustomers. In this research, the result shows that random forest modeling withoutfeature selections has the best overall result, and logistic regression model is amodel that has less defiation than other modeling result. In addition there is also arelationship when a cut off point with accuracy and sensitivity. From the variabelsused in the model, utilization and credit card payment to be highly influentialvariabel in modeling, besides gender, profession, income, residence status andeducation level become an important variabel in this research."
Depok: Universitas Indonesia, 2017
T50724
UI - Tesis Membership  Universitas Indonesia Library
cover
Ibnu Rais Syukran
"Paduan super merupakan jenis paduan yang dapat mempertahankan kekuatan mekanis dan kestabilan permukaannya pada temperatur yang sangat tinggi sehingga cocok diaplikasikan pada bidang kedirgantaraan, khususnya turbin gas. Jenis paduan super yang paling banyak digunakan adalah paduan super berbasis nikel karena memiliki struktur kristal FCC yang stabil di segala temperatur. Agar dapat digunakan dalam jangka waktu yang lama, kegagalan pada paduan super berbasis nikel dapat dicegah dengan mengetahui kekuatan tarik dari paduannya. Selain itu untuk mencegah terjadinya keausan pada komponen mesin, kekerasan pada paduan super berbasis nikel juga harus diketahui. Adapun titik leleh dari paduan super berbasis nikel juga harus dapat diketahui untuk mencegah terjadinya pelunakan paduan super pada temperatur yang sangat tinggi. Biaya produksi paduan super berbasis nikel tergolong mahal, karena dibuat berdasarkan pendekatan trial and error yang memakan waktu. Pada penelitian ini, dilakukan pembuatan sebuah program yang dapat memprediksi sifat mekanis paduan super berbasis nikel menggunakan pembelajaran mesin dengan metode deep learning. Melalui pembelajaran mesin, biaya produksi paduan super berbasis nikel dapat ditekan serta mempersingkat siklus perkembangan material. Penelitian ini menghasilkan suatu program deep learning dengan jenis model regresi yang dapat memprediksi kekuatan tarik, kekerasan, dan titik leleh paduan super berbasis nikel dengan keakurasian model menurut metrik R2 sebesar 98,77% berdasarkan variasi hyperparameter yang ditetapkan sebanyak tiga hidden layer dengan dense 256, 128, 64, test size sebesar 25%, random state dengan nilai 75, batch size sebesar 32, epoch sebanyak 300, dan learning rate sebesar 0,001.

A superalloy is a type of alloy that can maintain its mechanical strength and surface stability at very high temperatures so that it is suitable for application in the aerospace field, especially in gas turbines. The most widely used type of superalloy is Ni-based superalloy because it has a stable FCC crystal structure at all temperatures. The failure of Ni-based superalloys can be prevented by knowing the tensile strength of the alloy for a longer-term used. In addition, to prevent wear on the engine components, the hardness of Ni-based superalloys must also be known. The melting point of Ni-based superalloys must also be known to prevent softening of the superalloy at very high temperatures. The production cost of Ni-based superalloys is quite expensive because they are made based on a time-consuming trial and error approach. In this research, a program is developed that can predict the mechanical properties of Ni-based superalloys using machine learning with deep learning methods. Through machine learning, the production cost of Ni-based superalloys can be reduced, and the material development cycle can be shortened. The result of this research is a deep learning program with a regression model which can predict the tensile strength, hardness, and melting point of Ni-based superalloys with a model accuracy of 98.77% according to the R2 metric based on the hyperparameter variations set as three hidden layers wi"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Aminah
"ABSTRAK
<

Diabetes merupakan penyakit kronis yang terjadi ketika terdapat peningkatan kadar glukosa dalam darah karena tubuh tidak dapat atau tidak cukup menghasilkan hormon insulin atau tidak dapat menggunakan insulin secara efektif. Umumnya untuk mendeteksi penyakit diabetes adalah dengan tes kadar gula darah atau hemoglobin HbA1c yang dilakukan oleh praktisi medis. Pada penelitian ini, dibangun sistem prediksi penyakit diabetes berbasis iridologi atau melalui citra mata, menggunakan machine learning. Sistem yang dikembangkan terdiri dari instrumen akuisisi citra mata dan algoritma pengolahan citra. Metode GLCM (Gray Level Co-Occurence Matrix) digunakan untuk proses ekstraksi ciri, dengan tujuan untuk mendapatkan ciri tekstur pada citra. Metode SVM (Support Vector Machine) dan kNN (k Nearest Neighbor) digunakan untuk proses klasifikasi kelas diabetes dan non-diabetes. Hasil klasifikasi kemudian dilakukan proses validasi dengan menggunakan metode k-fold cross validation. Hasil yang diperoleh menunjukkan bahwa metode kNN memiliki performa yang lebih baik dibandingkan dengan metode SVM. Performa terbaik didapatkan saat variasi kombinasi ukuran area segmentasi 30×360 dengan jarak antar tetangga 30 pixel. Tingkat akurasi yang diapatkan dari pengujian sebesar 79,6%, dengan nilai misclassification rate (MR) 20,4%, false positive rate (FPR) 20,6%, false negative rate (FNR) 20%, sensitivity 87,1%, dan specificity 70,0%.

 


ABSTRACT

Diabetes is a chronic disease that occurs when there is an increase in glucose levels in the blood because the body cannot produce enough of the hormone insulin or cannot use insulin effectively. Generally, to detect diabetes is by pengujian blood sugar levels or hemoglobin HbA1c carried out by medical practitioners. In this study, a diabetes prediction system based on iridology or through eye images was constructed using machine learning. The developed system consists of eye image acquisition instruments and image processing algorithms. The GLCM (Gray Level Co-Occurence Matrix) method is used for feature extraction processes, with the aim of obtaining texture characteristics in the image. The SVM (Support Vector Machine) and kNN (k Nearest Neighbor) methods are used to classify diabetic and non-diabetic classes. The classification results are then validated by using the k-fold cross validation method. The results show that kNN method has better performance compared to the SVM method. The best performance is when size of the segmentation area 30×360 pixel with the distance between neighbors 20 pixel. The results show that the accuracy from pengujian is 79.6%, misclassification rate (MR) 20.4%, false positive rate (FPR) 20.6%, false negative rate (FNR) 20.0%, sensitivity 87.1%, and specificity 70.0%.

 

"
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Amrializzia
"Pipa transmisi adalah cara teraman dan paling efektif untuk mengangkut gas alam dalam jumlah besar dalam jarak jauh. Meskipun transportasi menggunakan pipa adalah yang paling aman, kegagalan pipa transmisi dapat menyebabkan kerusakan, kerugian finansial, dan cedera. Kegagalan pipa perlu diprediksi untuk untuk menentukan prioritas pemeliharaan pipa sebagai salah satu strategi membuat jadwal pemeliharaan prefentif yang tepat sasaran dan efisien agar pipa dapat diperbarui atau direhabilitasi pipa sebelum terjadi kegagalan. Metode yang ditawarkan pada studi ini adalah machine learning, dimana metode merupakan bagian dari insiatif transformasi digital (Hajisadeh, 2019). Model dikembangkan berdasarkan data kegagalan historis dari jaringan pipa transmisi gas darat sekitar 2010-2020 yang dirilis oleh Departemen Transportasi AS dengan karakteristik data yang tidak terstruktur dan kompleks. Proses pembelajaran mesin dapat dibagi menjadi beberapa langkah: pra-pemrosesan data, pelatihan model, pengujian model, pengukuran kinerja, dan prediksi kegagalan. Pengembangan model pada studi ini dilakukan menggunakan dua algoritma yaitu regresi logistik dan random forest. Pola perilaku dari faktor-faktor yang paling berpengaruh adalah usia dan panjang segmen pipa meiliki korelasi positif terhadap kegagalan pipa. Kedalaman pipa, ketebalan, dan diameter pipa memiliki korelasi negatif. Kegagalan pipa paling sering terjadi pada pipa dengan class location 1 dan class location 4, pipa yang ditempatkan di bawah tanah, serta pipa dengan tipe pelapis coal tar. Hasil pengembangan model menggunakan machine learning menunjukan hasil performa model akurasi prediksi 0.949 dan AUC 0.950 untuk model dengan algoritma regresi logistik. Sedangkan akurasi prediksi 0.913 dan AUC 0.916 untuk model dengan algoritma random forest. Berdasrkan hasil uji performa kita dapat menyimpulkan bahwa machine learning adalah metode yang efektif untuk memprediksi kegagalan pipa. Berdasarkan model yang dilatih pada dataset nyata pipa transmisi gas, hasil prediksi pada studi kasus dapat menghindari 29% dari kegagalan pipa pada 2025, 53% kegagalan pipa pada tahun 2030, dan 64% pada tahun 2035.

Transmission pipe is the safest and most effective way to transport large amounts of natural gas over long distances. Although transportation using pipelines is the safest, transmission pipeline failures can cause damage, financial losses, and injuries. Pipeline failures need to be predicted to determine the priority of pipeline maintenance as one of the strategies to create a schedule of maintenance targets that is right on target and efficient so that the pipeline can be rehabilitated before a failure occur. The method offered in this study is machine learning, where the method is part of the digital transformation initiative (Hajisadeh, 2019). The model was developed based on historical failure data from the onshore gas transmission pipeline around 2010-2020 released by the US Department of Transportation with unstructured and complex data characteristics. The machine learning process can be divided into several steps: data pre-processing, model training, model testing, performance measurement, and failure prediction. The development of the model in this study was carried out using two algorithms namely logistic regression and random forest. The correaltion of the factors that most influence the failure of an onshore gas transmission pipeline is the age and length of the pipe segment has a positive correlation with pipe failure. Depth of cover, thickness, and diameter of pipes have a negative correlation with pipe failures. Pipe failures most often occur in pipes with class location 1 and class location 4, undersoil, and pipes with coal tar coating types. The results of the development of the model using machine learning showed the results of the model performance prediction accuracy is 0.949 and AUC is 0.950 for models with logistic regression algorithms. Whereas the accuracy of prediction is 0.913 and AUC is 0.916 for models using the random forest algorithm. Based on the results of performance tests we can conclude that machine learning is an effective method for predicting pipe failures. Based on the model trained on a real dataset of gas transmission pipelines, the prediction results in case studies can avoid 29% of pipe failures in 2025, 53% of pipe failures in 2030, and 64% in 2035. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Putu Adika Reswara
"

Di antara sebagian besar sektor industri lainnya, industri kimia sedang mengalami pergolakan signifikan yang didorong oleh konsep yang secara kolektif dikenal sebagai Industri 4.0. Data sains adalah komponen penting dari Industri 4.0 karena memungkinkan ekstraksi informasi kontekstual dari berbagai sumber data. Ketika sistem menjadi lebih kompleks, kebutuhan para insinyur untuk mengekstrak sinyal dari data dengan tepat berkembang secara dramatis, menuntut literasi data dan keahlian analitik pada generasi berikutnya dari lulusan teknik kimia. Salah satu dari banyak kasus di mana data sains dan machine learning dapat diterapkan adalah untuk prediksi. Prediksi berbasis machine learning dapat diterapkan pada banyak aspek teknik kimia contohnya pada Chemical Engineering Plant Cost Index (CEPCI). CEPCI sangat penting untuk perhitungan desain pabrik dan dipengaruhi oleh banyak variabel. Pendekatan machine learning diperlukan untuk memperhitungkan semua variabel tersebut dan mendapatkan hasil yang tepat untuk variabel yang ditargetkan. Dengan demikian, tujuan dari tugas akhir ini adalah merancang program yang mampu memprediksi CEPCI. Alhasil, model regresi yang telah dibuat mampu memprediksi Composite CE Index dengan error rata-rata 3.75% dari index aslinya.


Among most other industrial sectors, the chemical industry is undergoing a significant upheaval driven by concepts known collectively as Industry 4.0. Data science is an important component of Industry 4.0 since it enables the extraction of contextualized information from a variety of data sources. As systems become more complex, the necessity for engineers to appropriately extract signal from data develops dramatically, demanding data literacy and analytics expertise in the next generation of chemical engineering graduates. One of the many cases where data science and machine learning can be applied to is for prediction. Machine Learning based prediction can be applied to many chemical engineering aspects, in this case the Chemical Engineering Plant Cost Index (CEPCI). CEPCI is essential for plant design calculations and is greatly affected by numerous variables. Machine learning approach is needed to account for all said variables and obtain valid result for target variables. Thus, the purpose of this thesis is to design programs that are able to predict CEPCI. As a result, the regression model created was able to predict the Composite CE Index with average error of 3.75% from the real index.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Livia Meristya Fitriani
"Diabetes melitus merupakan peningkatan kadar gula darah disertai dengan gangguan metabolisme karbohidrat, lipid, dan protein sebagai akibat fungsi insulin yang tidak mencukupi. Pada tahun 2021 jumlah kematian akibat diabetes melitus di Indonesia mencapai 236.711 orang, menempati urutan keenam dunia dan pertama di Asia Tenggara. Di Indonesia penyakit ini meningkat sebesar 8,5% di tahun 2014 pada orang berusia di atas 18 tahun. Banyak faktor yang menjadi pemicu antara lain umur, jenis kelamin, serta diagnosa dokter terhadap penyakit bawaan. Meningkatnya jumlah kasus kematian akibat diabetes melitus setiap tahunnya membuat perusahaan asuransi harus mengantisipasi keadaan tersebut, termasuk menghitung cadangan klaim. Tulisan ini bertujuan untuk menghitung prediksi klaim yang dapat disiapkan dengan menggunakan batasan variabel umur, jenis kelamin, dan diagnosa dokter terhadap penyakit bawaan lainnya dengan melakukan klasifikasi menggunakan K-Modes clustering dan Metode Heuristik. Setelah mengklasifikasikan data, dilanjutkan dengan menghitung prediksi klaim menggunakan algoritma Random Forest, Naïve Bayes, dan Support Vector Machine. Hasil penelitian ini menunjukkan bahwa prediksi model terbaik diperoleh dengan menggunakan algoritma Naive Bayes, sedangkan kelompok klasifikasi terbaik menggunakan model Heuristik. Hasil penelitian ini diharapkan dapat menjadi pedoman bagi perusahaan asuransi dalam menentukan estimasi jumlah klaim yang mungkin terjadi.

Diabetes mellitus is an increase blood sugar levels accompanied by impaired metabolism of carbohydrates, lipids, and proteins as a result of insufficient insulin function. In 2021 the number of deaths due to diabetes mellitus in Indonesia reached 236,711 people, this is ranked sixth in the world and first in Southeast Asia. This disease increased by 8.5% in 2014 people over 18 years of age. Many factors influence this disease, including age, gender, also the doctor's diagnosis of congenital diseases. The increasing number of death from diabetes mellitus every year causes insurance companies anticipate the situation calculating claim reserves. This paper aims to calculate prediction of claims that can be generated using the variable limits of age, gender, and doctor's diagnosis of other congenital diseases by doing classification using K-Modes clustering and Heuristic Method. After that we calculate claim predictions using Random Forest, Naïve Bayes, and Support Vector Machine algorithms. The results of this study indicate that the best model predictions are using the Naive Bayes algorithm, while the best classification group uses the Heuristic model. The results of this study are expected to be a guideline for insurance companies in determining the estimated amount of claims that may occur."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andri Apriyana SA
"ABSTRAK
Sebagai proses alamiah dalam mencapai titik ekuilibrium, perkembangan ekonomi digital akan selalu diikuti oleh peningkatan risiko keamanan cyber. Penelitian ini membahas analisis big data percakapan media sosial Twitter dengan tipe data yang tidak terstruktur untuk memprediksi risiko cyber berupa keberhasilan serangan exploit terhadap kerentanan sistem informasi yang dipublikasikan pada situs kerentanan global cvedetails.com common vulnerabilities and exposures CVE . Penelitian ini mengeksplorasi aspek kualitatif dan kuantitatif atas data yang bersumber dari twitter dan CVE menggunakan metode pemodelan algoritmik statistical machine learning. Prediksi dilakukan dengan membandingkan beberapa model klasifikasi yang dipilih dari sepuluh algoritma yang paling banyak digunakan dalam data mining berdasarkan survey yang dilakukan oleh IEEE pada International Conference on Data Mining tahun 2006. Hasil prediksi terbaik dihasilkan melalui model algoritma Artificial Neural Networks dengan tingkat akurasi 96,73 . Model prediksi dapat dimanfaatkan oleh perusahaan asuransi dengan produk perlindungan risiko cyber untuk mengurangi potensi penyebaran klaim terjadinya risiko. Model juga dapat dimanfaatkan oleh perusahaan umum untuk melakukan mitigasi risiko cyber secara efektif dan efisien dengan menghindari situasi false-negatives error dalam pengelolaan risiko.

ABSTRACT
As a natural process in achieving equilibrium state, digital economic progress will always be followed by the increase of cyber security risk exposure. This research is focusing on unstructured Twitter social media big data analytics to predict cyber risks event in terms of successful attack on exploit based software vulnerability published in global vulnerability information websites cvedetails.com common vulnerabilities and exposures CVE . This research explores qualitative and quantitative aspect of data extracted from Twitter and CVE using statistical machine learning algorithmic modeling method. Prediction result obtained by comparing and selecting classification model from several statistical machine learning algorithm based on top ten algorithms in data mining survey produced by IEEE in 2006 International Conference on Data Mining. The best prediction results provided through Artificial Neural Networks algorithm with 96,73 accuracy rate. This prediction model offers advantages for insurance company with cyber liability product by reducing claim spread probability over cyber risk loss event. Prediction model can also be beneficial for company in general by providing an effective and efficient way to mitigate cyber risks through false negatives error avoidance in risk management."
2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Diva Tristika Mughni
"Tingkat kemacetan di Jakarta saat ini tergolong tinggi dan memiliki tren yang meningkat setiap tahu. Terdapat berbagai upaya yang dilakukan oleh pihak manajemen kemacetan untuk mengurangi kemacetan. Salah satu komponen yang perlu diperhatikan pada perencanaan upaya dalam mengurangi kemacetan adalah penemuan atribut yang memiliki pengaruh kepada tingkat kemacetan. Pendekatan machine learning (ML) pada beberapa tahun terakhir memberi hasil yang baik berdasarkan nilai metrik performa model. Maka, penelitian ini menggunakan algoritma ML, yaitu support vector machine (SVM), k-nearest neighbors (KNN), dan random forest (RF) untuk membangun model dalam memprediksi kemacetan serta menemukan faktor yang memiliki pengaruh terhadap kemacetan di ruas jalan. Variabel independen yang digunakan pada penelitian ini adalah jam, hari kerja, tanggal merah, curah hujan, ada tidaknya event, jam ganjil genap, volume motor, volume mobil, serta volume bus dan truk. Variabel dependen yang digunakan adalah tingkat kemacetan yang mewakili kecepatan rata-rata kendaraan di ruas jalan. Model dijalankan pada dua data, yakni pada data dengan variabel volume kendaraan dan data tanpa variabel kendaraan. Hasil penelitian menunjukkan model SVM, KNN, dan RF memberikan nilai akurasi, precision, recall, dan F1 score di atas 80% pada kedua data. Adapun faktor yang memiliki pengaruh kuat terhadap tingkat kemacetan terdiri dari jam dan jam ganjil genap pada data tanpa volume kendaraan serta volume motor, volume mobil, volume bus dan truk, jam, dan jam ganjil genap pada data dengan volume kendaraan.

The level of congestion in Jakarta is currently high and has an increasing trend every year. There are various efforts made by congestion management to reduce congestion. One component that needs to be considered in planning efforts to reduce congestion is the discovery of attributes that have an influence on the level of congestion. Machine learning (ML) approaches in recent years have provided good results based on the value of model performance metrics. So, this study uses ML algorithms, namely support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF) to build a model to predict congestion and find factors that have an influence on congestion on road sections. The independent variables used in this study are hours, weekdays, red dates, rainfall, presence or absence of events, even odd hours, motorcycle volume, car volume, and bus and truck volume. The dependent variable used is the level of congestion, which represents the average speed of vehicles on the road. The model was run on two data, namely on data with vehicle volume variables and data without vehicle variables. The results showed that the SVM, KNN, and RF models provided accuracy, precision, recall, and f1 score values above 80% on both data. The factors that have a strong influence on the level of congestion consist of hours and even odd hours on data without vehicle volume and motorcycle volume, car volume, bus and truck volume, hours, and even odd hours on data with vehicle volume."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafy Satria Gusta Basuki
"Stunting adalah salah satu masalah gizi yang mengganggu perkembangan pada anak yang diakibatkan oleh asupan gizi buruk pada masa pertumbuhannya. Indonesia tergolong sebagai negara dengan prevalensi stunting yang tinggi dengan angka sebesar 30.8% untuk anak Balita dan 29.9% untuk anak Baduta berdasarkan hasil Riskesdas 2018. Berdasarkan penelitian yang dilakukan oleh Balitbangkes, stunting terbukti membahayakan garis keturunan. Bayi dengan kondisi stunting membuat pertumbuhan dan perkembangan terhambat dan juga membuka resiko terhadap menderita penyakit tidak menular seperti diabetes mellitus pada saat dewasa. Jika bayi stunting perempuan tumbuh besar sehingga menjadi ibu, maka ibu tersebut akan melahirkan bayi stunting lagi dan mengakibatkan kondisi stunting lintas generasi. Dalam skripsi ini, pemodelan sistem prediksi stunting memanfaatkan metode machine learning berdasarkan data sekunder dari Indonesian Family Life survey (IFLS) tahun 2014-2015. Pemodelan dilakukan menggunakan bahasa pemrograman Python. Dilakukan pre-processing dengan metode yang berbeda-beda, yaitu Principal Component Analysis (PCA) dan 3 jenis Feature Selection: Filter, Wrapper, dan Embedded. Ketidakseimbangan dataset ditangani dengan metode SMOTE. Dilakukan pemisahan data menjadi training set dan testing set dengan pembagian 80:20 masing-masing. Kemudian beberapa algoritma model machine learning diujikan untuk mengetahui kemampuan prediksinya untuk setiap metode pre-processing. Hasil penelitian menunjukan bahwa setidaknya 1 dari 4 model untuk tiap metode pre-processing memiliki kemampuan yang baik dengan menunjukan nilai metrik dan AUC di atas 0,8. PCA dengan Decision Tree Classifier menunjukan akurasi 85% dan AUC 0,849. Feature Selection–Wrapper dengan SVC menunjukan akurasi 98% dan AUC 0,981. Feature Selection-Filter menunjukan akurasi 98% dan AUC 0,979. Feature Selection–menunjukan akurasi 84% dan AUC 0,844. Hal ini menjadikan kombinasi algoritma terbaik dalam penelitian ini adalah metode pre-processing Feature Selection–Wrapper dengan model machine learning SVC.

Stunting is one of the nutritional problems that interfere with development in children caused by poor nutritional intake during their growth period. Indonesia is classified as a country with a high prevalence of stunting with a figure of 30.8% for under-five children and 29.9% for under-two children based on the results of Riskesdas 2018. Based on research conducted by Balitbangkes, stunting has proven to endanger lineage. Babies with stunting conditions would have their growth and development stunted and also open the risk of suffering from non-communicable diseases such as diabetes mellitus in adulthood. If the female stunting baby grows up to become a mother, then the mother will give birth to another stunting baby and results in cross-generational stunting conditions. In this bachelor’s thesis, the stunting prediction system modeling utilizes machine learning methods based on secondary data from the 2014-2015 Indonesian Family Life Survey (IFLS). The modeling is carried out using the Python programming language. Pre-processing is carried out with different methods, namely Principal Component Analysis (PCA) and 3 types of Feature Selections: Filter, Wrapper, and Embedded. Dataset imbalance is handled by the SMOTE method. Separate the data into training sets and testing sets with a distribution of 80:20 each. Then several machine learning model algorithms were tested to determine their predictive ability for each pre-processing method. The results showed that at least 1 of the 4 models for each pre-processing method had a good ability indicated by the metric and AUC values ​​above 0.8. PCA with Decision Tree Classifier shows an accuracy of 85% and AUC 0.849. Feature Selection–Wrapper with SVC showed 98% accuracy and AUC 0.981. Feature Selection–Filter shows 98% accuracy and AUC 0.979. Feature Selection–Embedded shows an accuracy of 84% and AUC 0.844. The result shows that best combination of algorithms in this study is the Feature Selection–Wrapper pre-processing method with the SVC machine learning model."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iryanti Djaja
"Budidaya udang vaname (Litopenaeus vannamei) sangat diminati sehingga permintaan udang ini meningkat setiap tahunnya. Masalah terberat para petambak adalah kegagalan panen yang berakibat kepada keberlangsungan usaha mereka. Perlu adanya usaha perbaikan untuk meningkatkan keberhasilan panen. Penelitian ini bertujuan untuk lebih menggali mengenai penggunaan machine learning dalam prediksi hasil panen dari data kualitas air. Hasil prediksi ini selanjutnya dipakai dan digunakan dalam proses bisnis sehingga dapat meningkatkan produktivitas. Analisis yang digunakan pada penelitian ini adalah analisis kuantitatif dan kualitatif serta perbaikan proses bisnis. Analisis kuantitatif dengan metode big data dan machine learning. Model yang dipakai adalah k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Analisis kualitatif dilakukan dengan observasi dan interview untuk memperbaiki proses bisnis. Proses bisnis diperbaiki mengikuti BPM Lifecycle dengan memasukan hasil analisis kuantitatif. Dari penelitian ini didapatkan bahwa prediksi machine learning dengan model Decision Tree dari variabel rasio bakteri merugikan dan NH4+ memberikan akurasi tertinggi mencapai 96%. Setelah didapatkan model dan variabel dengan akurasi tertinggi, penelitian ini juga melakukan penerapan ke dalam proses bisnis dengan pendekatan BPM Lifecycle sehingga hasil tersebut dapat diimplementasi dan memberikan hasil yang lebih produktif.

Interest in Vaname shrimp (Litopenaeus vannamei) farming is growing every year. The biggest problem for shrimp farming was the unsuccessful harvest that affected their business sustainability. So, there should be an improvement made to increase the chance of a successful harvest and its productivity. Past research mentioned that vaname shrimp harvest result can be predicted by machine learning approach from water quality data. It gave good accuracy and can be used to have faster decision making. The objective of this research is to deep dive into the utilization of machine learning to predict the successful harvest from water quality data. The predicted result will be utilized in the business process to improve productivity. Analysis that used at this research are quantitative and qualitative with business process improvement. Quantitative analysis used big data methode and machine learning. Models that have been applied are k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Data that is used for analysis are pH, salinity, NOx, NH4+, and harmful bacteria index. Qualitative analysis was applied by observation and interview with the focus to improve business process. Business processes will be improved using BPM Lifecycle with the utilization of quantitative result. This research showed that prediction machine learning with Decision Tree model from harmful bacteria index and NH4+ giving the best accuracy until 96%. The next step was utilizing the quantitative result at the business process with BPM Lifecycle approach so the result can be implemented and gave more productive result."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>