Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 76989 dokumen yang sesuai dengan query
cover
Kuspriyanto
"Control concurrency on RTDBS more complex than in conventional database system, Basides guarantee database consistency, on RTDBS control concurency can support transaction deadlines. Mean while validities and value of data item change depend on time. Conventional control concurrency algorithm can be devided to two groups: Pessimistic concurrency control (PCC) and Optimistic Concurrency Control (OCC). PCC prevent conflict between transactions executed while OCC overcome between transactions after that transaction executed that restarted in conflict happened. These algorithms have weakness if applied in RTDBS that gives tight time on transaction execution bacause as a parameter is number of transactions done before deadlines, not only number of concurrency maximum and throughput. To overcome those two algorithms weakness some researches done. Between results modifications is speculative concurrency control and Hybrid concurrency control for the Nested model. But between alternatives there are some weaknesses, so it needs development for better control concurrency for RTDBS. "
Penelitian Akademik Sekolah Tinggi Manajemen Informatika & Teknik Komputer Surabaya, 2007
001 GJMI 9:1 (2007)
Artikel Jurnal  Universitas Indonesia Library
cover
Auslander, David M.
Englewood Cliffs, NJ: Prentice-Hall, 1990
629.895 AUS r
Buku Teks  Universitas Indonesia Library
cover
Badavas, Paul C.
Englewood Cliffs, NJ: Prentice-Hall, [Date of publication not identified]
658.562 BAD r
Buku Teks SO  Universitas Indonesia Library
cover
Bennett, Stuart
England: Prentice-Hall, 1994
629.89 BEN r
Buku Teks  Universitas Indonesia Library
cover
Muhammad Alif Saddid
"Aplikasi kolaboratif berbasis real-time menjadi bagian dari kehidupan sehari-hari manusia, terutama di masa pandemi ketika setiap orang sulit untuk bertemu secara langsung. Salah satu aplikasi tersebut adalah aplikasi collaborative whiteboard, yang bisa digunakan untuk menggambar secara bebas. Salah satu implementasi dari sistem collaborative whiteboard adalah Tldraw. Tldraw yang semula dikembangkan menggunakan arsitektur client-server kemudian diimprovisasi menggunakan arsitektur peer-to-peer yang memanfaatkan teknologi WebRTC, menghasilkan aplikasi Tldraw yang rendah latensi. Namun, aplikasi Tldraw tersebut dinilai tidak bersifat scalable, karena arsitektur peer-to-peer tersebut menggunakan topologi full-mesh. Dilatarbelakangi oleh hal tersebut, penelitian ini mengusulkan optimasi aplikasi Tldraw menggunakan topologi random peer sampling. Usulan optimasi tersebut dinilai memiliki pertumbuhan penggunaan sumber daya yang lebih landai apabila dibandingkan dengan Tldraw P2p, meskipun memiliki sedikit overhead.

A real-time based collaborative applications are taking part in human daily life, especially in the pandemic era when it is prohibited to directly meet other people. One example of those kind of application is collaborative whiteboard application, which can be use to draw things freely. Tldraw previously developed using client-server architecture, which later improved using peer-to-peer architecture using WebRTC technology, resulting a low-latency Tldraw application. Nevertheless, those improvisations seem to be not scalable, since the peer-to-peer architecture use full-mesh network topology. Motivated by that, this research propose optimization for Tldraw application using random peer sampling topology. Those optimizations resulting in lower growth of cpu, memory, and bandwidth usage with little overhead.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
New York: Van Nostrand Reinhold, 1987
004.36 CON
Buku Teks SO  Universitas Indonesia Library
cover
New York: Van Nostrand Reinhold, 1987
004.36 CON
Buku Teks SO  Universitas Indonesia Library
cover
Rian Pramudia Salasa
"Solar filament adalah objek pada kromosfer atau korona matahari yang dapat menjadi indikator terjadinya aktivitas-aktivitas cuaca antariksa (space weather). Aktivitas-aktivitas tersebut dapat menimbulkan efek pada kehidupan di bumi seperti gangguan pada pembangkit listrik, kerusakan pada komponen satelit dan wahana luar angkasa, membahayakan aktivitas manusia di luar angkasa, mengakibatkan gangguan pada sistem berbasis komunikasi radio, dan lain-lain. Deteksi filament merupakan bagian penting dari aktivitas peramalan dan peringatan dini serta riset terhadap cuaca antariksa. Pengamatan filament dilakukan menggunakan teleskop dengan fiter Hydrogen-Alpha (H-Alpha). Hingga saat ini telah teradapat beberapa metode yang dikembangkan untuk melakukan deteksi filament pada citra H-Alpha secara otomatis. Namun metode-metode tersebut masih menggunakan algoritma tradisional yang berbasis intensity thresholding, yang mana sangat bergantung pada banyak langkah preprocessing untuk melakukan binerisasi citra H-Alpha. Penelitian ini memanfaatkan deep learning berbasis CNN yaitu Mask R-CNN untuk melakukan deteksi dan ekstraksi fitur-fitur matahari pada citra H-Alpha secara otomatis dan real-time. Hasil dari deteksi dan ekstraksi fitur ini kemudian disimpan ke dalam basis data hingga dapat digunakan dalam memenuhi kebutuhan data untuk aktivitas riset, peramalan, dan sistem peringatan dini. Citra yang digunakan dalam penelitian adalah citra H-Alpha milik Lembaga Penerbangan dan Antariksa Nasional (LAPAN), yang diambil pada bulan Oktober 2017 – Agustus 2018. Sistem yang dirancang dapat mendeteksi filament dan fitur-fitur matahari lainnya dalam waktu 0.3 detik dengan skor ketelitian hingga 0.95.

Solar filament is an object in the Sun’s chromosphere, in which its appearance used as indicator of Sun’s activites in term of space weather. The Sun’s activities itself affect human life in any ways, such as disturbance on power grids, errors on satellites and spacecrafts, anomalies on radio waves based systems, etc. Thus, solar filament detection is an important task on forecasting, early warning, and other research activities regerding the Sun on solar physics topic. Filament observation carried out using solar telescope equipped with Hydrogen-Alpha (H-Alpha) filter, and captured in an image using a capture device. There are some methods has developed to detect filament on H-Alpha images automatically. Most of them uses traditional algorithm based on intensity thresholding, which is very dependent on many preprocessing steps in the binarizing process. This study utilize CNN based deep learning named Mask R-CNN to perform real-time, automatic detection and ectraction of filaments and other solar features on H-Alpha images. The detection and extraction results then recorded in a database to satisfy data availability on solar activity related tasks. This study uses H-Alpha images obtained from Lembaga Penerbangan dan Antariksa Nasional (LAPAN), captured between October 2017 - August 2018. This study shows that the implemented Mask R-CNN based system detects filament and other solar features in approximately 0.3 seconds with 0.95 precision score."
Depok: Fakultas Ilmu Komputer Universita Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Agus Widyianto
"Sistem perpipaan merupakan salah satu yang sering digunakan diindustri seperti industri petrokimia untuk mentransmisikan bahan dasar berupa minyak, air maupun gas. Jenis pengelasan yang cocok untuk sistem perpipaan adalah pengelasan pipa orbital. Dalam penelitian ini dilakukan pengelasan pipa orbital dengan pengelasan Gas Tungsten Arc Welding (GTAW) tanpa logam pengisi (autogenous) pada pipa baja tahan karat tipe SS316L. Dimensi dari material uji adalah diameter luar 114 mm dan ketebalan 3 mm. Empat metode pengelasan diterapkan untuk mencari metode yang terbaik untuk menghasilkan kualitas lasan. Metode pengelasan diantaranya metode konvensional, arus pulsa, urutan pengelasan dan kontrol artificial neural network (ANN). Keempat metode ini dilakukan dengan alat pengelasan pipa orbital secara fully mechanized yang dijalankan oleh operator las. Kualitas hasil lasan meliputi geometri las (lebar manik dan kedalaman penetrasi), distorsi pada pipa, struktur makro, struktur mikro dan sifat mekanik (kekuatan tarik dan kekerasan mikro). Tahap pertama membandingkan pengelasan dengan metode konvensional dan kontrol ANN terhadap kualitas hasil lasan. Kemudian tahap kedua adalah membandingkan pengelasan dengan metode arus pulsa, urutan pengelasan dan kontrol ANN. Terakhir adalah mencari metode pengelasan serta parameter pengelasan yang optimal untuk menghasilkan kualitas lasan yang optimal.
Hasil penelitian ini menunjukkan bahwa pengelasan dengan metode kontrol ANN lebih baik daripada metode konvensional. Dilihat dari segi lebar manik lebih stabil dengan metode kontrol ANN yaitu 10±0,6 mm. Tetapi untuk kedalaman penetrasi lebih baik menggunakan metode konvensional. Kemudian untuk distorsi yang terjadi lebih kecil menggunakan metode kontrol ANN yang kurang dari 200 µm. Struktur mikro yang terbentuk untuk kedua metode ini hampir sama untuk daerah tengah lasan. Kekuatan tarik maksimal untuk setiap posisi pipa lebih stabil menggunakan metode kontrol ANN. Sedangkan kekerasan mikro lebih kecil jika menggunakan metode kontrol ANN.
Perbandingan kualitas hasil lasan dengan metode arus pulsa, urutan pengelasan dan kontrol ANN menunjukkan bahwa metode kontrol ANN lebih baik dalam beberapa aspek. Aspek lebar manik menunjukkan metode kontrol ANN menghasilkan lebar manik yang lebih seragam yaitu 10±0,6 mm. Namun untuk kedalaman penetrasi lebih baik dengan metode arus pulsa. Distorsi pipa dengan metode kontrol ANN juah lebih kecil dibandingkan dengan kedua metode lainnya. Selanjutnya untuk struktur mikro yang teramati tidak jauh berbeda antara ketiga metode pengelasan. Kekuatan tarik maksimal untuk metode kontrol ANN lebih stabil untuk setiap posisi pipa dan kekerasan mikro terendah terjadi di daerah lasan dengan metode kontrol ANN.
Metode optimasi yang diterapkan adalah response surface method (RSM) dan Taguchi method. Selain itu digunakan juga analysis of variance (ANOVA) untuk mengetahui tingkat signifikasi parameter pengelasan. Respon dari optimasi adalah kekuatan tarik yang maksimum, distorsi pipa yang minimum dan lebar manik yang ditargetkan 10 mm. Hasil metode optimasi menunjukkan bahwa metode kontrol ANN menghasilkan kualitas lasan yang paling baik diantara metode pengelasan lainnya. Metode kontrol ANN dengan parameter arus pengelasan 106 A dan kecepatan awal pengelasan 1,5 mm/d dapat menghasilkan kekuatan tarik maksimum sebesar 670 MPa, distorsi melintang, distorsi aksial, keovalan dan tapers masing-masing adalah 126 µm, 252 µm, 94 µm dan 168 µm serta lebar manik sebesar 9,97 mm.

The piping system is one that is often used in industries such as the petrochemical industry to transmit basic materials in the form of oil, water and gas. The type of welding suitable for piping systems is orbital pipe welding. In this study, welding of orbital pipes with Gas Tungsten Arc Welding (GTAW) welding without filler metal (autogenous) was carried out on stainless steel pipes of type SS316L. The dimensions of the test material are 114 mm outside diameter and 3 mm thickness. Four welding methods were applied to find the best method to produce quality welds. Welding methods include conventional methods, pulse current, welding sequences and artificial neural network (ANN) control. These four methods are carried out with an fully mechanized orbital pipe welding device operated by a welding operator. The quality of the welds includes weld geometry (bead width and penetration depth), pipe distortion, macrostructure, microstructure and mechanical properties (tensile strength and microhardness). In the first stage, comparing welding with conventional methods and ANN control on the quality of the welds. Then the second stage is to compare welding with pulse current method, welding sequence and ANN control. The last is to find the optimal welding method and welding parameters to produce optimal weld quality.
The results of this study indicate that the welding with the ANN control method is better than the conventional method. In terms of bead width, it is more stable with the ANN control method, which is 10±0.6 mm. But for the depth of penetration it is better to use conventional methods. Then for smaller distortion, use the ANN control method which is less than 200 m. The microstructure formed for both methods is almost the same for the center of the weld. The maximum tensile strength for each pipe position is more stable using the ANN control method. While the micro hardness is smaller when using the ANN control method.
Comparison of weld quality with pulse current, welding sequence and ANN control method shows that the ANN control method is better in several aspects. The bead width aspect shows that the ANN control method produces a more uniform bead width of 10±0.6 mm. However, the penetration depth is better with the pulse current method. The pipe distortion with the ANN control method is much smaller than the other two methods. Furthermore, the observed microstructure is not much different between the three welding methods. The maximum tensile strength for the ANN control method is more stable for each pipe position and the lowest microhardness occurs in the weld area with the ANN control method.
The optimization methods applied are the response surface method (RSM) and the Taguchi method. In addition, analysis of variance (ANOVA) is also used to determine the level of significance of welding parameters. The response of the optimization is maximum tensile strength, minimum pipe distortion and a targeted bead width of 10 mm. The results of the optimization method show that the ANN control method produces the best weld quality among other welding methods. The ANN control method with a welding current parameter of 106 A and an initial welding speed of 1.5 mm/s can produce a maximum tensile strength of 670 MPa, transverse distortion, axial distortion, ovality and tapers respectively 126 m, 252 m, 94 m and 168 m and a bead width of 9.97 mm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>