Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 116994 dokumen yang sesuai dengan query
cover
Pray Somaldo
"ABSTRAK
Diabetik Retinopati adalah kelainan retina akibat komplikasi diabetes yang menyebabkan kebutaan. Seiring berkembangnya teknologi pengolahan citra, pendeteksian Diabetik Retinopati DR dimungkinkan melalui gambar retina yang disebut citra fundus dengan menggunakan ekstraksi ?tur. Dalam penelitian ini, diusulkan metode ekstraksi ?tur menggunakan Gray Level Co-occurrence Matrix GLCM . Penelitian ini mengusulkan sebuah metode dengan enam ?tur tekstur GLCM dengan klasi?kasi Naive Bayes. Dengan menggunakan tiga metode pengujian dan offset GLCM untuk dibandingkan, offset GLCM menghasilkan hasil yang lebih baik dengan accuracy 82.05 pada metode pengujian 70 train 30 test, accuracy 80 pada metode pengujian 5-Fold Cross Validation, accuracy 80.77 pada metode pengujian 10-Fold Cross Validation. Hasil ini akan menjelaskan seberapa akurat Naive Bayes untuk mengklasi?kasikan citra fundus normal atau citra DR.

ABSTRAK
Diabetic Retinopathy is retinal disorders resulting from diabetes complications that lead to blindness. As the development of technology in image processing, detection of Diabetic Retinopathy DR was possible through retinal images called fundus image using feature extraction. In this paper, a feature extraction method using Gray Level Co occurrence Matrix GLCM is proposed. This paper proposed a method with six textural features of GLCM with Naive Bayes classifier. Using three testing methods and offset of GLCM to compare with, the offset of GLCM achieves a better result with an Accuracy of 82.05 for 70 training data and 30 testing data method, Accuracy of 80.00 for 5 fold Cross Validation method, Accuracy of 80.77 for 10 fold Cross Validation method. These results will explain how accurate Naive Bayes to classify normal fundus image or DR fundus image."
2017
S69377
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabilla Ayu Fauziyyah
"ABSTRACT
Dewasa ini, sudah banyak rumah sakit modern yang dilengkapi dengan peralatan monitoring yang lengkap, yang menyebabkan makin banyaknya data medis yang tersimpan. Data medis ini memiliki karakteristik khusus, dan biasanya metode statistika biasa tidak dapat diterapkan begitu saja. Dari sinilah kemudian muncul gagasan mengenai Medical Data Mining (MDM) yang sudah terbukti cocok untuk diterapkan dalam analisis data medis. Naive Bayes Classifier (NBC) merupakan salah satu implementasi dari MDM. Kendati terbukti memiliki hasil yang akurat dan memuaskan dalam proses diagnosis medis, metode-metode dalam MDM belum sepenuhnya diterima dalam praktek medis untuk diterapkan. Alasan utama mengapa metode ini belum dapat diterima adalah karena terdapatnya resistansi dari tenaga medis terhadap metode diagnosis yang baru. Tujuan dari penelitian ini adalah untuk menerapkan dan mengevaluasi performa NBC  pada data rekam medis pasien kanker payudara di salah satu rumah sakit di Jakarta dalam masalah klasifikasi subtipe molekular kanker payudara, serta membandingkan hasil klasifikasi NBC dengan metode MDM lain, yaitu Decision Tree (DT). Hasil analisis menunjukkan bahwa NBC mengungguli DT dengan tingkat akurasi sebesar 92,8%. Selain itu, dapat juga ditunjukkan secara empiris bahwa NBC mampu menangani missing value dengan cukup baik dan tidak membutuhkan data dalam jumlah banyak untuk tetap dapat mengklasifikasikan sebagian besar pasien dengan benar.

ABSTRACT
Nowadays, modern hospitals are well equipped with data monitoring devices, which resulted in an abundant amount of medical data. These medical data possess specific characteristics and usually, statistical methods could not be applied directly. This is what started the notion of Medical Data Mining (MDM), which has proven to be effective in analysing medical data. Naive Bayes Classifier (NBC) is an implementation of MDM. Even though MDM methods produce a sufficiently accurate and satisfying results in diagnosis problems, these methods are still not well accepted in the medical practice. One of the main reasons is because there is a resistance of physicians to a new diagnosis method. The main goal of this study is to apply and evaluate the performance of NBC in classifying breast cancer patients in a private hospital in Indonesia into five classes of molecular subtypes and compare its performance with another popular MDM method, Decision Tree (DT). Results showed that NBC outperformed DT by reaching an accuracy rate of 92.8%. This study could also show empirically that NBC does not need a big dataset to be able to achieve a high accuracy rate and that NBC could handle the problem of missing values just fine."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sigit Suryono
"ABSTRAK
Klasifikasi sentimen merupakan salah satu cabang dari text mining. Klasifikasi sentimen dapat menjadi sesuatu yang penting dalam proses evaluasi terhadap sebuah topik permasalahan. Tujuan utama dari klasifikasi sentimen adalah untuk mencari tahu polaritas dari sentimen positif, negatif dan netral. Klasifikasi sentimen salah satunya dapat diperoleh melalui tweet yang ada pada Twitter. Dalam tulisan ini, tweet yang berhubungan dengan kata kunci yang dicari dihimpun dengan menggunakan tools yaitu API Twitter. Data yang didapat dari proses penghimpunan akan diolah dengan menggunakan Natural Language Toolkit yang berjalan diatas bahasa pemrograman Python. Data selanjutnya akan dilakukan klasifikasi sentimen dengan menggunakan Naive Bayes untuk melihat sentimen yang dihasilkan. Dari proses klasifikasi yang telah dilakukan akan diukur tingkat akurasi. Dari hasil uji coba sebanyak 3 kali, didapatkan tingkat akurasi pada percobaan pertama 64.95%, kedua 66.36% dan ketiga 66.79% Hasil lain yang didapatkan dari proses klasifikasi yaitu sentimen positif 28% sentimen negatif 20% dan sentimen netral 52%. Berdasarkan hasil persentase kelas sentimen, sentimen neutral merupakan sentimen yang paling banyak apabila dikaitkan dengan topik Presiden Joko Widodo dan pemerintahannya."
Yogyakarta: Pusat Penelitian dan Pengabdian Pada Masyarakat (P3M) STTA, 2018
600 JIA X:1 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
Syifa Nurhayati
"Tuberkulosis (TB) adalah penyakit menular dan dapat berakibat fatal, terutama di negara berkembang. WHO merekomendasikan penggunaan screening yang sistematis dan luas, salah satunya menggunakan citra X-ray dada. Sayangnya, jumlah ahli radiologi masih kurang dan belum terdistribusi dengan baik di negara berkembang seperti Indonesia. Oleh karena itu, penelitian ini mengembangkan sistem Computer-Aided Detection (CAD) untuk membantu mendeteksi TB menggunakan analisis tekstur. Terdapat tiga tahap pada sistem, yaitu segmentasi otomatis, koreksi segmentasi manual, dan deteksi lesi TB. Hasil akhir sistem memberikan visualisasi heatmap berdasarkan probabilitas lesi TB pada citra X-ray dada.
Penelitian ini fokus pada tahap deteksi lesi TB. Analisis tekstur diimplementasi menggunakan berbagai kombinasi dari fitur tekstur Hogeweg, Gray-Level Co-occurrence matrix (GLCM), dan Gabor. Selain itu, metode reduksi dimensi juga diimplementasikan untuk mendapatkan representasi optimal. Analisis tekstur ini digunakan pada area lokal patch melalui perhitungan probabilitas untuk klasifikasi patch lesi TB dan patch normal. Klasifikasi ini dilatih menggunakan Logistic Regression, Support Vector Machine (SVM), dan Multilayer Perceptron (MLP).
Hasil terbaik dicapai oleh Logistic Regression dengan kombinasi fitur Hogeweg, GLCM, dan Gabor yang diimplementasikan PCA yang mampu mencapai nilai 0.734 sensitivity. Dokter spesialis radiologi menilai bahwa beberapa visualisasi model ini cukup baik dalam mengenali lesi TB, namun masih ada beberapa kesalahan dalam mendeteksi area normal sebagai lesi TB.

Tuberculosis (TB) is an infectious disease and can be fatal, especially in developing countries. WHO recommends the use of systematic and broad screening, one of which is using chest X-ray images. Unfortunately, the number of radiologists is still lacking and not well distributed in developing countries such as Indonesia. Therefore, this study developed a Computer-Aided Detection (CAD) system to help detect TB using texture analysis. There are three stages in the system, they are automatic segmentation, manual segmentation correction, and TB lesion detection. The final result of the system provides a heatmap visualization based on the probability of TB lesions on a chest X-ray image.
This study focused on the stage of TB lesion detection. Texture analysis was implemented using various combinations of Hogeweg texture features, Gray-Level Co- occurrence matrix (GLCM), and Gabor. In addition, the dimensional reduction method is also implemented to obtain the optimal representation. This texture analysis is applied to the local area of the patch by calculating the probability for the classification of the TB lesion patch and the normal patch. This classification is trained using Logistic Regression, Support Vector Machine (SVM), and Multilayer Perceptron (MLP).
The best result was achieved by Logistic Regression with a combination of Hogeweg, GLCM, and Gabor features implemented by PCA which was able to reach a value of 0.734 sensitivity. Radiology specialists considered that some of the visualizations of this model were quite good in recognizing TB lesions, but there were still some errors in detecting normal areas as TB lesions.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahmat Arasy
"Tekanan darah tinggi pada retina Hypertensive Retinopathy merupakan penyakit yang timbul akibat tingginya tekanan darah yang mengalir pada pembuluh darah retina, mengakibatkan penebalan dinding pembuluh darah, sehingga debit aliran darah pada retina berkurang. Komplikasi yang timbul dari penyakit ini beragam dan membahayakan, mulai dari oklusi pembuluh darah retina, kerusakan saraf mata, bahkan kebutaan. Skripsi ini membahas tentang pendeteksian tekanan darah tinggi pada retina, sehingga dapat digunakan sebagai media untuk membantu diagnosis dan pencegahan penyakit tekanan darah tinggi pada retina Hypertensive Retinopathy . Pendeteksian dilakukan dengan menganalisa gambar retina Fundus Image pasien dengan metode Principal Component Analysis PCA dan Backpropagation Neural Network BNN , sehingga outputnya berupa klasifikasi citra ke salah satu dari dua golongan; yaitu retina normal dan retina dengan tekanan darah tinggi. Dari hasil perancangan diperoleh tingkat akurasi pengujian dan pengujian neural network hingga 85,5 dan 63,6 .

Hypertensive Retinopathy is a disease caused by high blood pressure flowing in the retinal blood vessels, resulting in thickening of blood vessel walls and reduced blood flow in the retina. Complications arising from these diseases are diverse and dangerous, ranging from retinal vein occlusion, nerve eye damage, even blindness. This paper discusses the detection of high blood pressure in the retina, so it can be used as a medium to help diagnosis and prevention of Hypertensive Retinopathy disease. Detection is done by analyzing the patient 39 s retinal image Fundus Image with Principal Component Analysis PCA method and Backpropagation Neural Network BNN , so that the output is image classification to one of two classes namely the normal retina and retina with high blood pressure. The result shows that this proposed model have leaning and testing accuracy up to 85,5 and 63,6 ."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gitalisa Andayani
"Retinopati diabetik (DR) merupakan komplikasi mikrovaskular diabetes melitus (DM). Fenofibrat oral dapat mencegah progresivitas DR dengan mekanisme pengaturan kadar lipid lipid-related dan mekanisme lain nonlipid-related, antara lain dengan mencegah disfungsi endotel, mengurangi inflamasi, dan angiogenesis. Penelitian ini bertujuan mengetahui efek fenofibrat oral terhadap ketebalan makula sentral (CMT) dan volume makula, serta pengaruhnya pada kadar penanda biologis serum disfungsi endotel eNOS, inflamasi (VCAM-1), dan angiogenesis (VEGF) pada penyandang DR dengan dislipidemia.
Penelitian prospektif ini menggunakan disain uji klinis acak tersamar ganda dengan membagi subjek menjadi kelompok intervensi simvastatin dan fenofibrat dan kontrol simvastatin dan plasebo. Penelitian berlangsung sejak Nopember 2016 hingga Oktober 2017, di Klinik Vitreo-retina, Departemen Medik Mata ndash;RSCM Kirana, melibatkan 60 mata dari 30 pasien penyandang DR non-proliferatif NPDR dengan dislipidemia. Penelitian pada tiap subjek dilakukan selama tiga bulan dengan evaluasi klinis, foto fundus, dan spectral domain optical coherence tomography (SD-OCT) makula tiap bulan. Pengukuran kadar eNOS, VCAM-1, dan VEGF, serta HbA1c dan profil lipid dilakukan sebelum dan setelah tiga bulan pengobatan.Sebelum intervensi, pada kedua kelompok tidak didapatkan perbedaan karakteristik demografik, klinik, dan penanda biologis serum. Tidak didapatkan perbedaan bermakna pada CMT kelompok simvastatin fenofibrat 248,0 40,4 m dibandingkan kelompok simvastatin plasebo 265,8 40,8 m, namun CMT lebih rendah secara bermakna pada bulan ke-1 pada kelompok simvastatin fenofibrat. Pada subjek dengan edema makula diabetik DME pemberian simvastatin fenofibrat setelah tiga bulan menunjukkan CMT lebih rendah secara bermakna. Volume makula setelah tiga bulan pemberian obat 10086 886,4 m3 pada kelompok simvastatin fenofibrat dan 10307 1058,6 m3 pada simvastatin plasebo. Perbedaan tersebut tidak bermakna, namun pada subjek dengan regulasi glukosa darah yang baik HbA1c 7 didapatkan volume makula lebih rendah pada bulan ke-2. Kadar penanda biologis serum setelah tiga bulan pemberian obat menunjukkan rerata kadar eNOS dan median VEGF sebesar 3878,8 873,33 pg/mL dan 242,8 86 - 1123,3 pg/mL pada kelompok simvastatin fenofibrat, dibandingkan 4031,2 742,56 pg/mL dan 370 134,8 - 810,6 pg/mL pada kelompok simvastatin plasebo, yang tidak berbeda bermakna, namun penurunan kadar VCAM-1 serum lebih besar secara bermakna pada kelompok simvastatin fenofibrat 50,7 pg/mL, 32,5 - 223,4 pg/mL vs. 40,4 pg/mL, 27,9 - 94,2 pg/mL . Pada subjek dengan kontrol glukosa darah ketat HbA1c 6,5 kadar VEGF 128,7 114,5 - 145,2 pg/mL, lebih rendah secara bermakna dibandingkan 423 86 - 1233,3 pg/mL pada subjek dengan HbA1c > 6,5 .Disimpulkan pemberian simvastatin fenofibrat selama tiga bulan pada subjek DR dengan dislipidemia secara umum tidak menurunkan CMT dan volume makula, namun menurunkan CMT khusus pada subjek DR dengan DME. Pemberian simvastatin fenofibrat pada subjek DR tidak mencegah penurunan kadar eNOS, peningkatan kadar VCAM-1 dan VEGF, namun pengendalian gula darah yang baik dapat mencegah peningkatan kadar VEGF. Simvastatin fenofibrat dapat dipertimbangkan sebagai terapi ajuvan pada penyandang DR dengan DME yang disertai dislipidemia. Pengontrolan glukosa yang baik merupakan manajemen utama pada DR.

Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) due to structural and biochemical changes. Previous studies showed that oral fenofibrate prevents DR progression through lipid-regulating and nonlipid-related mechanisms, including preventing endothelial dysfunction, reducing inflammation and angiogenesis. This study aims to investigate the effects of oral fenofibrate on central macular thickness CMT and macular volume, and on specific biomarkers of endothelial dysfunction eNOS, inflammation VCAM-1 , and angiogenesis VEGF in DR individuals with dyslipidemia.
This is a prospective, double-blind randomized clinical trial, with subjects divided into intervention group simvastatin fenofibrate and control group simvastatin placebo. This study was conducted from November 2016 to October 2017 at the Vitreo-retina Clinic, Department of Ophthalmology ndash; RSCM Kirana, involving 60 eyes from 30 non-proliferative DR patients NPDR with dyslipidemia that met inclusion criteria. Each subject was observed for three months, with monthly clinical evaluation, fundus photo, and macular spectral domain optical coherence tomography SD-OCT . Serum eNOS, VCAM-1, and VEGF biomarkers, as well as HbA1c and lipid profile, were examined before and after intervention.Before intervention, there were no differences in demographic and clinical characteristics, and serum biomarker levels between two groups. After three months of treatment, there was no significant difference between CMT in the intervention group and the control group 248 40.4 ? m vs. 265.8 40.8 ? m , but a significantly lower CMT was observed in the intervention group at the first month. There was also a significantly lower CMT compared to the control group 294 39,2 vs 263 24,4, p=0,045 in eyes with diabetic macular edema DME . Macular volume after three-month treatment was 10086 886.4 ? m3 in the intervention group and 10307 1058.6 ? m3 in the control group, this difference was not significant. However, in all subjects with good blood glucose regulation HbA1c 7 , macular volume in the second month was significantly lower compared to subjects with HbA1c > 7 . Serum biologic marker levels after three-month treatment showed no significant difference between control and intervention group, respectively, in mean eNOS 3878.8 873.33 pg/mL vs 4031.2 742.56 pg/mL and median VEGF levels 242.8 86 - 1123.3 pg/mL vs 370 134.8 - 810.6 pg/mL . Nonetheless, the decrease in VCAM-1 level was significantly higher in the intervention group 50.7 pg/mL, 32.5 - 223.4 pg/mL vs. 40.4 pg/mL, 27.9 - 94.2 pg/mL . In subjects with tighter blood glucose control HbA1c 6.5 , serum VEGF level was 128.7 114.5 - 145.2 pg/mL, which was significantly lower compared to 423 86 - 1233.3 pg/mL in subjects with HbA1c > 6.5 .In conclusion, three-month treatment with simvastatin fenofibrate does not reduce CMT and macular volume in overall DR subjects with dyslipidemia, but it reduces CMT in subjects with DME. Simvastatin fenofibrate treatment in DR subjects does not prevent lowering of serum eNOS levels, elevation of VCAM-1 levels, and elevation of VEGF levels, but tight blood sugar control prevents elevation of serum VEGF. Although good glucose control remains the most essential in the management of DR, simvastatin fenofibrate may be considered as adjuvant therapy for DR with dyslipidemia and DME."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2018
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Kresna Bima Sudirgo
"Biaya transportasi adalah salah satu komponen untuk mendapatkan keuntungan maksimal, tetapi sekarang tingkat emisi yang dihasilkan dari kegiatan transportasi juga menjadi perhatian di dunia industri. Model optimal komponen biaya dan emisi diperlukan untuk mendapatkan skenario terbaik yang memiliki biaya dan emisi rendah untuk mendukung komitmen industri ramah lingkungan. Untuk mencapai model yang dapat menyerupai kondisi asli di tempat tertentu kita akan menggunakan metode classifier Naïve Bayes. Model ini akan mengklasifikasikan tingkat keramahan lingkungan dan efisiensi biaya berdasarkan pengukuran berat dan volume menggunakan database yang diperoleh dari area tertentu, pada riset ini periset menggunakan beberapa skenario transportasi dari zona industri yang memiliki aktivitas melalui pelabuhan Tanjung Priok. Sebagai hasil dari pengklasifikasi alat yang dapat mengklasifikasikan tingkat hijau, tingkat biaya dan karakteristik barang yang sesuai (apakah itu cenderung memenuhi berat atau volume) berdasarkan metode pengklasifikasi Naïve Bayes.

Transportation costs are one of the components to get the maximum profit, but now the level of emissions resulting from transportation activities also becomes a concern in the industry. Optimum models of cost and emissions components required to get the best scenario that has low costs and emissions to support green industrial commitment. To achieve a model that can resemble the original conditions on the specific place we will use the Naïve Bayes classifier method. This model will classify the environmental friendliness and cost efficiency incurred with weight and volume measurement based on existing databases acquired from specific areas, at this study researcher using multiple transportation scenarios from industrial zones that had activity through the Tanjung Priok port. As a result of a classifier of tools that can classify green levels, cost levels and suitable characteristics of goods (whether it tends to meet weight or volume) based on Naïve Bayes classifier methods."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Daffa Jatmiko
"Peranan ibu kota sangatlah vital, saat ini pemerintah kembali memutuskan pemindahan ibu kota karena Jakarta dianggap sudah tidak layak lagi menjadi ibu kota negara Republik Indonesia. Pemindahan ibu kota Indonesia nyatanya mengundang banyaknya opini pro dan kontra di kalangan masyarakat dan respon ini menarik untuk diteliti yaitu bagaimana pandangan masyarakat terhadap kebijakan pemerintah ini yang juga menggambarkan tingkat kepercayaan kepada pemerintah. Oleh karena itu, diperlukan sentiment analysis dengan classifier berbasis machine learning yang akurat dan menentukan algoritma yang terbaik. Data berupa tweets dikumpulkan dengan web scraping dan dilakukan pra-pemrosesan yang menghasilkan label data berupa polaritas dan kategori/aspek yang teridentifikasi. Model Machine Learning dengan algoritma Naive Bayes dan Support Vector Machine kemudian digunakan dalam klasifikasi polaritas kelas biner dengan fitur n-gram (urutan kata) dan optimasi heuristik yaitu Hyperparameter Tuning. Dari kombinasi fitur dan perlakuan optimasi, nilai MCC sebagai metrik evaluasi dibandingkan dan ditemukan bahwa Naive Bayes mengungguli Support Vector Machine dalam mengklasifikasi opini publik di media sosial Twitter khususnya mengenai pemindahan ibu kota.

The role of the capital city is very vital, at this time the government has again decided to move the capital city because Jakarta is considered no longer suitable as the capital city of the Republic of Indonesia. The relocation of Indonesia's capital city in fact invites many pro and contra opinions among the public and this response is interesting to study, namely how the public views this government policy which also describes the level of trust in the government. Therefore, sentiment analysis is needed with a machine learning-based classifier that is accurate and determines the best algorithm. Data in the form of tweets is collected by web scraping and pre-processed which produces data labels in the form of polarity and identified categories/aspects. Machine Learning model with Naive Bayes algorithm and Support Vector Machine is then used in the classification of binary class polarity with n-gram features (word order) and heuristic optimization, namely Hyperparameter Tuning. From the combination of features and optimization treatment, the MCC value as an evaluation metric was compared and it was found that Naive Bayes outperformed the Support Vector Machine in classifying public opinion on Twitter social media, especially regarding the relocation of the capital city."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifah
"Diabetes Melitus (DM) merupakan gangguan sistem metabolik akibat pankreas tidak memproduksi cukup insulin atau tubuh tidak mampu menggunakan insulin yang ada secara efektif. Menderita diabetes dalam jangka waktu panjang dapat mengakibatkan berbagai macam komplikasi salah satu di antaranya adalah Retinopati diabetik. Retinopati diabetik  adalah kelainan pada bagian mata yang disebabkan oleh adanya kerusakan dan penyumbatan pada pembuluh darah di bagian belakang mata (retina). Pada penelitian kali ini akan di gunakan data retinopati diabetik dengan menggunakan metode seleksi fitur Recursive Feature Elimination (RFE) dan Chi-Square dan akan di klasifikasi menggunakan Support Vector Machine.

Diabetic retinopathy is one of the complication of diabetes, which is an eye disease that can cause blindness. Its happen because of damage of retina as a result of the long illness of diabetic melitus. People usually do research using image data in diabetic patients. This paper present about diabetic retinopathy will extracting with feature selection. In this study, we use data diabetic patients who will be extracted with a feature selection method. Feature selection used in this study is Recursive Feature Elimination (RFE) and Chi-Square. For classification of diabetic retinopathy has been done by Support Vector Machine (SVM). From the experimental result with various tunning hyperparameters, the classification model can obtain the accuracy between 97%-100% for both methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivera Siti Nataza
""b>ABSTRAK
"
Intrusion Detection System adalah suatu sistem yang berfungsi untuk mendeteksi serangan berbahaya dan kerentanan pada jaringan komputer. Beberapa teknik data mining telah diajukan dalam menyelesaikan persoalan deteksi intrusi pada jaringan. Pada skripsi ini, akan diajukan klasifikasi data Intrusion Detection System menggunakan Na ve Bayes Classifier dan Particle Swarm Optimization sebagai pemilihan fitur. Pertama, Particle Swarm Optimization melakukan pemilihan fitur untuk mendapatkan fitur yang optimal. Lalu, hasil dari pemilihan fitur tersebut akan diklasifikasikan menggunakan Na ve Bayes Classifier dengan harapan dapat memberikan hasil yang lebih akurat. Data yang digunakan adalah dataset KDD CUP 1999. Hasil akhir dari penelitian ini adalah berupa perbandingan hasil akurasi antara klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur dan klasifikasi menggunakan Na ve Bayes Classifier dengan pemilihan fitur Particle Swarm Optimization. Hasil empiris menunjukkan bahwa klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur memperoleh akurasi tertinggi sebesar 99.16 . Sementara klasifikasi menggunakan Na ve Bayes Classifier dengan pemilihan fitur Particle Swarm Optimization memperoleh akurasi tertinggi sebesar 99.12 . Hasil dari penelitian ini menunjukkan bahwa metode pemilihan fitur Particle Swarm Optimization dapat diterapkan pada proses klasifikasi menggunakan Na ve Bayes Classifier. Akan tetapi dengan menambahkan metode ini tidak menjamin bahwa hasil yang diperoleh akan lebih baik daripada proses klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur.
"
"
"ABSTRACT
"
Intrusion Detection System is a system that has a function to detect malicious attacks and vulnerabilities on computer networks. Several data mining techniques have been proposed in solving the problem of intrusion detection on the network. In this research, data classification of Intrusion Detection System will be filed using Na ve Bayes Classifier and Particle Swarm Optimization as feature selection. First, Particle Swarm Optimization will perform the feature selection to get the optimal features. Then, the results of the feature selection will be classified using Na ve Bayes Classifier in hopes of getting more accurate results. The data used in this study is KDD CUP 1999 dataset. The end result of this study is a comparison of accurate results between the classification using Na ve Bayes Classifier without feature selection and classification using Na ve Bayes Classifier with Particle Swarm Optimization as feature selection. The empirical results indicate that the classification using Na ve Bayes Classifier without feature selection obtains the highest accuracy of 99.16 . While the classification using Na ve Bayes Classifier with Particle Swarm Optimization as feature selection obtained the highest accuracy of 99.12 . The results of this study indicate that the Particle Swarm Optimization feature selection method can be applied to the classification process using Na ve Bayes Classifier. However, adding this method does not guarantee that the results obtained will be better than the classification process using Na ve Bayes Classifier without feature selection."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>