Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64128 dokumen yang sesuai dengan query
cover
M. Leo Eriyanto Yuliansyah
"Penelitian ini mengembangkan Computer Aided Diagnosis CAD radiografi paru anak dengan menggunakan metode segmentasi Particle Swarm Optimization PSO untuk membantu dokter mendeteksi paru yang abnormal. Metode PSO mencari abnormalitas berdasarkan nilai piksel. Metode PSO dikerjakan dengan dua variasi metode yaitu FCM Wienerfilter PSO dan FCM Adaphisteq PSO. Evaluasi dilakukan dengan menghitung ROC Receiver Operating Characteristics citra segmentasi tiap metode terhadap citra acuan evaluasi dokter. Metode FCM Wienerfilter PSO memiliki nilaiROC paling baik. Overall error metode ini yaitu 11.43 1.6 dibanding dengan metode FCM Adapthisteq PSO yaitu 28.57 1,6. Hal ini menggambarkan bahwa banyak kesalahan deteksi yang dilakukan pada metode FCM Adapthisteq PSO.
Metode FCM Wienerfilter PSO ini memiliki nilai akurasi 88,57, sensitifitas 90,00, spesifitas 85,00, dan presisi 93,75 lebih tinggi dibanding dengan semua parameter ROC metode FCM Adaphisteq PSO yaitu akurasi 71,43, Sensitivitas 80,00, Spesifitas 50,00, dan Presisi 80.00. Hal ini membuktikan bahwa hasil deteksi metode FCM Wienerfilter PSO lebih banyak memiliki tingkat keberhasilan yang sesuai dengan evaluasi dokter dan lebih baik dalam mendeteksi citra abnormal. Pada citra abnormal nilai piksel metodeFCM wienerfilter PSO memiliki rentang 209-255, dan nilai piksel metodeAdapthisteq PSO memiliki rentang 206-255.

The study developed Computer Aided Diagnosis CAD children pulmonary radiography using Particle Swarm Optimization PSO segmentation method to help doctors detect abnormal lung. The PSO method searched abnormalities by value of the image pixel. PSO method used two variations method, namely FCM Wienerfilter PSO and FCM Adaphisteq PSO. The evaluation was done by calculating the ROC Receiver Operating Characteristics segmentation of each image against the reference image evaluation doctors. FCM Wienerfilter PSO method has better ROC value. Overall error of this method is 11.43 1.6 compared with the method of FCM Adapthisteq PSO is 28.57 1.6. This explain that many of the error detection on FCM Adapthisteq PSO method.
ROC FCM Wienerfilter PSO results show the value of accuracy 88,57, sensitivity 90,00, specificity 85,00, and precision 93,75 is relatively higher than all parameter of ROC FCM Adaphisteq PSO method that isaccuracy 71,43, sensitivity 80,00, specificity 50,00, and precision 80.00. This proves that the results of the detection method of FCM Wienerfilter PSO has more success rates in accordance with doctor rsquo s evaluation and better at detecting abnormal image. Abnormal lung pixel values by the method of FCM wienerfilter PSO is 209 255, andAbnormal lung pixel values by the FCM Adapthisteq PSO methodis 206 255.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48492
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahmi Seftina
"Penelitian ini mengembangkan Computer Aided Diagnosis CAD radiografi paru anak dengan menggunakan metode segmentasi Deformable Models untuk membantu mendeteksi abnormalitas. Metode Deformable Models mencari abnormalitas berdasarkan nilai piksel citra. Metode Deformable Models dikerjakan dengan dua variasi yaitu median filter Deformable Models dan wiener filter Deformable Models. Nilai piksel paru-paru abnormal dengan segmentasi wiener filter Deformable models adalah 186-255 dan median filter Deformable Models adalah 191-255. Metode wiener filter Deformable models menghasilkan nilai ROC lebih tinggi dibandingkan metode median filter dengan nilai akurasi 78,5, sensitivitas 74,5, spesifitas 80, presisi 90,0 dan overall error 21,0.

This study developed a correlation test Computer Aided Diagnosis CAD radiographic of children pulmonary using segmentation Deformable Models method for detecting Abnormalities. Deformable models method searched abnormalities by value of the image pixel. Deformable models method used two variations, namely median filter Deformable Models and wiener filter Deformable Models. Abnormal result lung pixel values with segmentation Wiener filter Deformable models is 186 255 and median filter Deformable Models is 190 255. Wiener filter Deformable models method have ROC result relatively higher than median filter Deformable models with value of accuracy 78,5, sensitivity 74,5, specificity 80.0, precision 90,0 and overall error of 21,0.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47662
UI - Tesis Membership  Universitas Indonesia Library
cover
Septia Ardiani
"Penelitian ini mengembangkan Uji Korelasi Computer Aided Diagnosis CAD radiografi paru anak dengan menggunakan metode segmentasi Markov Random Field MRF untuk membantu mendeteksi abnormalitas paru dengan kecenderungan infeksi. Metode MRF mencari abnormalitas berdasarkan nilai piksel citra. Metode MRF dikerjakan dengan empat variasi yaitu MRF tanpa filter, median filter MRF, wiener filter MRF dan adapthisteq MRF. ROC hasil segmentasi wiener filter relatif lebih tinggi dari tanpa filter. Hasil ROC wiener filter menunjukkan nilai akurasi akurasi akurasi 81,4 , sensitivitas 82,0 , spesifitas 80,0 , presisi 91,1 dan overall error 18,6 . Sedangkan ROC untuk tanpa filter maupun filter yang lain menunjukkan lebih rendah dari nilai ROC wiener filter. Namun perbedaan ROC untuk setiap jenis tingkat keberhasilan tidak lebih dari 5 , artinya keempat metode MRF masih dapat diimplementasikan. Nilai piksel paru abnormal dengan metode MRF tanpa filter, median filter MRF, dan adapthisteq MRF sama yaitu 205-255. Nilai piksel paru abnormal dengan metode wiener filter MRF yaitu 197-255. Citra paru belum dapat menentukan secara definitif penyakit infeksi paru pada anak.

This study developed a correlation test Computer Aided Diagnosis CAD radiographic of children pulmonary using segmentation Markov Random Field MRF method to detect lung abnormalities with infection trends. MRF method searched abnormalities by value of the image pixel. MRF method used four variations, namely MRF without a filter, median filter MRF, wiener filter MRF, and adapthisteq MRF. ROC segmentation results wiener filter is relatively higher than without a filter. ROC wiener filter results show the value of accuracy 81.4 , sensitivity 82.0 , specificity 80.0 , precision 91.1 and overall error of 18.6 . While the ROC for unfiltered and filter others show lower than the value of ROC wiener filter. However, differences in ROC for any kind of success rate is not more than 5 , meaning that all four methods MRF can still be implemented. Abnormal lung pixel value with MRF method without filter, median filter MRF, and adapthisteq MRF same namely 205 255. Abnormal lung pixel values by the method of wiener filter MRF is 197 255. Radiographic of children pulmonary can not definitively determine lung infections in children.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T47396
UI - Tesis Membership  Universitas Indonesia Library
cover
Ralind Remarla
"Dalam penelitian Computer Aided Diagnose (CAD) Radiografi Paru pasien dewasa dengan metode Fuzzy C Means (FCM), telah dilakukan dalam keadaan tahap awal. Penelitian ini bertujuan untuk mengetahui apakah metode clustering FCM dapat digunakan untuk membuat perangkat penolong untuk melihat abnormalitas pada paru-paru dari 200 data citra Radiografi sinar-X. Pembuatan perangkat dilakukan dengan menggunakan GUI pada Matlab.
Perancangan di bagi menjadi dua metode menggunakan metode FCM otomatis dan manual kemudian untuk mengetahui perbedaan nilai piksel digunakan metode ambang rata-rata. Kedua metode ini berdasarkan intensitas derajat keabuan 0-256. Metode FCM digunakan untuk melihat visualisasi abnormalitas secara cepat dan mengetahui garis besar posisi yang abnormal. Kemudian diteruskan dengan segmen kotak dari metode ambang rata-rata untuk mengetahui perbedaan nilai pixel citra abnormalitas dan yang normal.
Hasil penelitian nenujukkan bahwa, Kinerja Metode FCM Akurasi 57,7%, sensitifitas 50,0%, spesifikasi 89,5% , Overal Error 42,3% dan Presisi 95,1%. Sedangkan metode Segmen per kotak Akurasi 56,7%, sensitifitas 51,7%, spesifikasi 88,5% , Overal Error 43,3% dan Presisi 96,7%. berdasarkan penelitian dapat disimpulkan bahwa Metode FCM dalam paru hanya bisa menunjukkan visual secara cepat dan garis besar namun tidak memberikan akurasi yang cukup memuaskan, hal ini di karenakan data input yang random tidak dapat dijadikan patokan untuk ukuran keberhasilan.

In the study Computer Aided Diagnose (CAD) Lung Radiography adult patients with Fuzzy C Means (FCM), has been carried out in a state of infancy. This study aims to determine whether the FCM clustering method can be used to make the device helper to see abnormalities in the lungs of 200 image data of X-ray radiography. Making the device is done by using the GUI in Matlab.
The design is divided into two methods using automated and manual methods FCM then to determine differences in pixel value threshold method is used on average. Both methods are based on the intensity of gray 0-256 degrees. FCM method is used for visualizing abnormalities quickly see and know the outline of an abnormal position. Then forwarded to the segment boxes of the average threshold method to determine differences in pixel values abnormalities and normal image.
That research results, performance FCM method Accuracy 57.7%, 50.0% sensitivity, 89.5% specification, Overal Error 42.3% and 95.1% precision. While the method of segment per box Accuracy 56.7%, 51.7% sensitivity, 88.5% specification, Overal Error 43.3% and 96.7% precision. based study concluded that the method of FCM in the lungs can only show rapid visual and outline but does not give a satisfactory accuracy, it is in because random input data can not be used as a benchmark to measure success.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43858
UI - Tesis Membership  Universitas Indonesia Library
cover
Ni Larasati Kartika Sari
"ABSTRAK
Penelitian ini mengembangkan Computer Aided Diagnosis (CAD) untuk mamografi dengan menggunakan metode segmentasi Markov Random Field (MRF) dan local threshold. Metode local threshold mencari abnormalitas dengan membandingkan segmen citra abnormal dengan normal. Sementara itu, metode MRF mencari abnormalitas berdasarkan nilai piksel dan bentuk cluster. Metode MRF dikerjakan dengan dan tanpa median filter, contrast enhancement histeq dan CLAHE. Metode segmentasi local threshold memiliki sensitivitas 77,8%, akurasi 68,4%, spesifitas 60,4%, presisi 62,5%, dan overall error 31,6%. Rendahnya keberhasilan disebabkan bentuk payudara pada data sampel tidak seragam, sehingga tiap segmen dari tiap citra belum tentu menunjukkan posisi yang sama. Segmentasi citra MRF yang dilakukan tanpa filter dan contrast enhancement, memiliki keberhasilan terendah. Hal ini membuktikan bahwa citra mamografi memiliki kontras yang rendah dan noise yang tinggi. Metode MRF dilengkapi dengan median filter memiliki akurasi tertinggi (87,0%) dan overall error terendah (12,8%), yang berarti metode ini adalah metode yang paling baik dalam melakukan deteksi sesuai dengan diagnosis dokter. Metode histeq+MRF memiliki sensitivitas yang tinggi (95,9%) dan spesifitas yang rendah (76,2%) yang menunjukkan bahwa metode ini berhasil mendeteksi citra abnormal sebagai abnormal, namun banyak mendeteksi citra normal sebagai abnormal. Metode CLAHE+MRF memiliki nilai spesifitas tertinggi (92,2%) dan sensitivitas terendah (73,1%) yang berarti metode berhasil mendeteksi citra normal sebagai normal, namun banyak mendeteksi citra abnormal sebagai normal. Dalam menentukan sifat benign dan maglina dari cluster abnormal, metode histeq+MRF merupakan metode yang paling berhasil dalam memvisualisasi citra dengan diagnosis maglina.

ABSTRACT
This research developed Computer Aided Diagnosis (CAD) for mammography using Markov Random Field (MRF) and local thereshold method. The Local thereshold methods finds abnormalities by comparing segments from abnormal image. While, MRF methods find abnormalities based on the pixel value and cluster's shape. In this research, the MRF method carried out with median fiter, histeq, and CHALCE contrast enhancement. MRF without any filter and contrast enhancement also done. The sensitivity, accuracy, specfity, presision and overall error of local thereshold method sequentially are 77.8%, 68.4%, 60.4%, 62.5%, and 31.6%. The low result caused by the diversity of the breast's from in the sample, so that each segment on each image doesn't refer to the same anatomical position. MRF segmentationwithout any filter and contrast enhancement gave the worst result. This result proved that mammography images have poor contrast and lot of noise. MRF method with median filter has the highestaccuracy (87.0%) and the lowest overall error (12.8%). This score shows that median filter + MRF method is the best method that can matches doctor's diagnosis. Histeq+MRF method has the highest sensitivity (95.9%) and the lowest specifity (76.52%). This result indicates that histeq+MRF method succesfully detect abnormal image as abnormal, but detect many the normal images as abnormal. CLAHE+MRF method has the highest specifity (92.2%) and the lowest sensitivity (73.1%). It shows that this method has a good performance in detecting normal image as normal but detect many abnormal images as normal. Histeq+MRF method shows the best performance in visualizing maglina clusters."
2016
T45203
UI - Tesis Membership  Universitas Indonesia Library
cover
Wini Sri Wahyuni
"Kanker liver pada citra hasil CT-Scan memiliki bentuk, lokasi serta tekstur yang berbeda – beda disetiap citra. Perbedaan contrast antara abnormalitas dan liver sehat sering kali tidak dapat terlihat jelas, sehingga menyulitkan dalam evaluasi. Abnormalitas liver antara lain pembengkakan, fibrosis, kehadiran tumor jinak atau tumor ganas. Perbedaan contrast rendah dengan ukuran lebar dalam citra mudah dikenali sebagai abnormalitas, namun untuk massa kecil dan contrast rendah sulit dievaluasi. Dalam penelitian ini telah dilakukan CAD dengan tujuan untuk membantu evaluasi abnormalitas liver utamanya abnormalitas dengan ukuran kecil. Metode penelitian yang digunakan dalam penelitian ini adalah metode segmentasi berdasarkan active contour. Data yang digunakan merupakan data sekunder citra abdomen yang dihasilkan dari modalitas Computed Tomography Scanner (CT-Scan) RSUD Cibinong Bogor. Teknik pengumpulan data yang digunakan dengan melakukan observasi pada data pasien citra liver abnormal dari pasien-pasien kanker liver dan citra liver normal dari pasien-pasien penyakit lainnya sesuai dengan diagnosis dokter. Sedangkan untuk olah data digunakan proses ekstraksi fitur menggunakan analisis tekstur Gray-Level Co-occurrence Matrix (GLCM) dengan machine learning berupa Artificial Neural Network (ANN) untuk deteksi abnormalitas citra. Hasil penelitian menyatakan bahwa ANN dapat digunakan untuk mengelompokkan citra kedalam grup normal dan abnormal dengan akurasi sebesar 89% sensitivitas 86%, spesifisitas 92%, presisi 91%, error keseluruhan 10%.

Liver abnormalities in CT image commonly have different shape, location and texture. The contrast between abnormalities and healthy liver often cannot be clearly seen, making it difficult to evaluate. Liver abnormalities include swelling, fibrosis, the presence of benign tumors or malignant tumors. Low contrast differences with width measurements in images are easily recognized as abnormalities, but for small masses and low contrast it is difficult to evaluate. In this study CAD was carried out with the aim to help evaluate liver abnormalities, especially small size abnormalities. The segmentation method based on active contour is the method was employed in this research. The data which used was secondary data resulting abdomen image  from modalities of Computed Tomography Scanner (CT-Scan) of Cibinong Hospital, Bogor. The data collection techniques was used in this research were data abnormal liver image from patients liver cancer and normal liver image from patients other diseases according to the doctor's diagnosis. Meanwhile, the technique used to processing data was extraction feature process with analysis Gray-Level Co-occurrence Matrix (GLCM) texture and machine learning of Artificial Neural Network (ANN) for detection abnormality image. Results of this research stated that ANN can used for classify image to normal and abnormal group with accuracy of 89%, sensitivity of 86%, specificity of 92%, precision of 91%, and error of 10%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53457
UI - Tesis Membership  Universitas Indonesia Library
cover
Imam Nurhuda
"ABSTRAK
Penelitian ini mengembangkan Computer Aided Diagnose (CAD) CT jantung pasien
dewasa dengan menggunakan metode segmentasi deformable dan Frangi filter. Metode segmentasi deformable dan Frangi filter untuk mendapatkan posisi kalsifikasi di dalam maupun di luar arteri koroner. Setelah itu, kalsifikasi yang terdapat di dalam arteri koroner dihitung skor kalsium menggunakan metode skor Agatson dan dihitung persentase luasannya terhadap luas
pembuluh darah untuk mengetahui korelasi antara skor kalsium, persentase penyempitan pembuluh darah dengan tingkat keparahan risiko penyakit jantung. Metode segmentasi deformable dan Frangi filter dapat menunjukan secara visual posisi kalsifikasi yang terdapat pada pembuluh darah arteri koroner untuk 4 cabang utama, yaitu left main (LM), left circumflex (LCx), left anterior descending (LAD), and right coronary arteries (RCA). Pada pengukuran persentase plak pada pembuluh darah, nilai persentase terendah adalah 20% sedangkan nilai persentase tertinggi adalah 75%. Tingkat risiko penyakit jantung koroner dapat diprediksi sebanding dengan nilai persentase plak pada pembuluh darah. Sementara itu, Perhitungan skor kalsium sesuai dengan hasil evaluasi dokter dalam penentuan stadium risiko penyakit jantung

ABSTRACT
This research developed Computer Aided Diagnose (CAD) CT heart of adult patients by using deformable segmentation method and Frangi filter. Method of deformable segmentation and Frangi filter to obtain the position of calcification inside and outside the coronary artery. Furthermore, calcification found in the coronary artery was calculated by calcium score using Agatson score method and calculated percentage of extent to blood vessel area to know correlation between calcium score, percentage of narrowing of blood
vessels with the severity of risk of heart disease. The deformable segmentation method and Frangi filter can show visually the position of calcification contained in coronary artery vein for 4 main branches, ie left main (LM), left circumflex (LCx), left anterior descending (LAD), and right coronary arteries (RCA ). In calculating the percentage of plaque on blood vessels, the lowest percentage value is 20% while the highest percentage value is 75%. The
risk of coronary heart disease is proportional to the percentage of plaque in blood vessels. Meanwhile, calcium score calculation is accordance with the results of the evaluation of the doctor in determining the stage of risk of heart disease"
2018
T50381
UI - Tesis Membership  Universitas Indonesia Library
cover
Yuli Kusumawardani
"ABSTRAK
Positron Emission Tomography (PET) telah dikenal sebagai modalitas molecular imaging yang sering memberikan informasi yang mendahului hasil pencitraan anatomi dari modalitas lain seperti Computed Tomography (CT) dan Magnetic Resonance (MR). Keunggulan PET untuk mendeteksi uptake yang sangat sedikit dari FDG dapat memberikan informasi abnormalitas pada organ, salah satunya pada otak. Pencitraan modalitas PET digunakan untuk mendiagnosis apabila terdapat abnormalitas dalam organ serta untuk memantau keberhasilan perlakuan radioterapi. Pada pencitraan otak menggunakan 2-Deoxy-2-[18F] fluoroglucose (FDG) uptake yang kecil tidak mudah dikenali secara visual, sehingga perlu menggunakan metode yang dapat membantu untuk mendeteksi. Dengan adanya teknik Computer-Aided Diagnosis (CAD) berupa segmentasi dan klasifikasi menggunakan citra PET diharapkan memberikan informasi abnormalitas dengan ukuran kecil yang tidak tampak secara visual. Pada penelitian ini, dikembangkan CAD menggunakan citra otak dengan modalitas PET untuk mendeteksi abnormalitas otak dengan metode klasifikasi menggunakan ekstraksi fitur berupa Gray Level Co-Occurrance Matrix (GLCM), intensity histogram, dan Gray Level Run Length Matrix (GLRLM) sebagai dataset dari klasifikasi teknik Artificial Neural Network (ANN). Hasil klasifikasi yang dievaluasi menggunakan Receiver Operating Characteristic (ROC) dengan hasil error pelatihan terkecil 1.92 ± 0.70 % dan error pengujian terkecil 12.30 ± 3.47%. Hasilnya menunjukkan bahwa sistem CAD yang dikembangkan dapat mengenali citra otak normal dan abnormal.

ABSTRACT
Positron Emission Tomography (PET) is well known as a molecular imaging modality that provides functional organ information. This information supports the results of anatomical imaging from other modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This superiority is due to the ability of PET to detect of small amount uptake from 2-Deoxy-2-[18F] fluoroglucose (FDG) which provide for information about abnormalities of organs, especially in the brain. Therefore, PET imaging is powerful to diagnose the presence of abnormalities, staging cancer, and evaluating radiotherapy treatment results. In brain PET imaging sometimes, small uptake is not easily visual recognized, hence an additional supporting method for its detection is needed. In this study, Computer-Aided Diagnosis (CAD) of brain abnormalities from PET images using classification methods based on a feature in the form of Gray Level Co-Occurrence Matrix (GLCM), intensity histogram, dan Gray Level Run Length Matrix (GLRLM) as a dataset of Artificial Neural Network (ANN). The result based on Receiver Operating Characteristic (ROC) illustrated that the training error was 1.92 ± 0.70 % and the test error was 12.30 ± 3.47%. These results mean that this developed CAD system can recognize normal and abnormal brain images.
"
2019
T53798
UI - Tesis Membership  Universitas Indonesia Library
cover
Faisa Maulidina
"Kanker merupakan pertumbuhan sel abnormal di dalam tubuh yang tidak terkendali. Ketika kanker dimulai di paru-paru, hal ini dinamakan sebagai kanker paru-paru. Terdapat faktor-faktor tertentu yang meningkatkan risiko seseorang yang mengidap penyakit ini, yaitu dengan merokok (termasuk perokok pasif), riwayat kanker paru-paru dalam keluarga, terpapar radiasi, dan infeksi HIV. Penyakit ini dapat didiagnosis melalui image tests, diantaranya yaitu chest x-ray, CT scan, MRI scan, PET scan, dan bone scan. Meskipun diagnosa telah dilakukan dengan banyak cara, namun masih terdapat banyak kesalahan dalam mendiagnosa penyakit tersebut. Untuk mengatasi dan membantu hal tersebut, klasifikasi penyakit kanker paru-paru dapat dilakukan dengan menggunakan metode machine learning. Dataset yang akan digunakan untuk mengklasifikasikan penyakit ini berupa CT Scan yang didapatkan dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Metode klasifikasi yang digunakan adalah Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), dimana Particle Swarm Optimization-Genetic Algorithm (PSO-GA) digunakan untuk mengoptimisasi parameter pada Support Vector Machine (SVM). Untuk mengevaluasi hasil kinerja metode tersebut, akan dilihat nilai akurasi, presisi, recall, dan f1-score dan dibandingkan dengan metode SVM tanpa optimisasi. Dari hasil yang didapat, klasifikasi dengan menggunakan Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM) menghasilkan performa yang lebih baik jika dibandingkan dengan Support Vector Machine (SVM) tanpa optimisasi parameter.

Cancer is an uncontrolled growth of abnormal cells in the body. When cancer starts in the lungs, it is referred as lung cancer. There are certain factors that increase a person's risk of this disease, such as smoking (including passive smoker), a family history of lung cancer, exposure to radiation, and HIV infection. This disease can be diagnosed through image tests, including chest x-ray, CT scan, MRI scan, PET scan, and bone scan. Although diagnosis has been made in many ways, there are still many errors in diagnosing the disease. To overcome and help this problem, the classification of lung cancer can be done by using machine learning method. The dataset that used to classify this disease is CT Scan obtained from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The classification method that will be used is Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), where Particle Swarm Optimization-Genetic Algorithm (PSO-GA) was used to optimize the parameters of the Support Vector Machine (SVM). To evaluate the results of the performance of the method, values of accuracy, precision, recall, and f1-score will be seen and it will be compared with SVM without the optimization. From the results obtained, classification using Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO- GA-SVM) produces better performance compared to Support Vector Machine (SVM) without parameter optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jimmy
Depok: Fakultas Teknik Universitas Indonesia, 2000
14-22-35949996
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>