Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 51901 dokumen yang sesuai dengan query
cover
Hedi Surahman
"Hidrogen merupakan sumber energi terbarukan dan ramah lingkungan yang sangat potensial untuk menggantikan bahan bakar fosil. Banyak metoda dapat digunakan untuk menghasilkan hidrogen. Pemecahan air secara fotoelektrokimia adalah salah satu metode yang sangat menjanjikan untuk mengkonversi sinar matahari menjadi energi kimia. Dalam penelitian ini, fotokatalis TiO2 nanotube arrays TNTAs tersensitasi CdS nanopartikel diinvestigasi sebagai elektroda dalam sel surya quantum dot sensitized solar cell, QDSSC yang digabung dengan sistem sel fotoelektrokimia PEC dan digunakan sebagai strategi baru untuk produksi hidrogen melalui proses pemecahan air.
Dalam risalah laporan disertasi ini disampaikan hasil investigasi terhadap sintesis, karakterisasi, dan aktivitas fotoelektrokatalisis elektroda TiO2 nanotube arrays TNTAs dan elektroda TNTAs tersensitasi CdS nanopartikel. Elektroda TNTAs disintesis dengan metode oksidasi elektrokimia plat titanium dalam larutan etilen glikol. Pengaruh konsentrasi elektrolit, potensial anodisasi, waktu anodisasi, jarak antar elektroda, dan suhu kalsinasi diinvestigasi dalam pekerjaan ini, dengan tujuan untuk memperoleh struktur tubular yang seragam dan rapat sehingga dapat meningkatkan sifat fotokatalitik material TiO2. Sensitizer CdS nanopartikel dideposisikan pada permukaan TNTAs dengan metode succesive ionic layer adsorption and reaction SILAR yang dibantu dengan ultrasonikasi. Pengujian sistem sel gabungan QDSSC-PEC untuk produksi hidrogen dilakukan dengan memvariasikan kondisi percobaan yaitu variasi zona katalisis katoda, variasi konsentrasi hole scavenger dan variasi intensitas cahaya.
Hasil karakterisasi memperlihatkan diameter dalam TNTAs meningkat dari 15 nm sampai dengan 80 nm dengan meningkatnya potensial anodisasi dari 15 V sampai dengan 60 V. sementara panjang tabung meningkat dari 2 m menjadi 7,6 m dengan meningkatnya waktu anodisasi dari 15 menit sampai dengan 120 menit pada potensial anodisasi 40 V. Elekroda yang dipreparasi pada kondisi 40 V selama 45 menit dalam elektrolit etilen glikol yang mengandung 0,3 NH4F dan 2 H2O; jarak antar elektroda 1,5 cm; suhu kalsinasi 4500C memperlihatkan struktur tabung yang rapat dan seragam dan mempunyai aktivitas fotokatalisis terbaik dengan efisiensi fotokonversi sebesar 16 dibawah penyinaran sinar UV. Data XPS TNTAs yang disensitasi CdS nanopartikel memperlihatkan komposisi kimia dan chemical state fotokatalis sebagai struktur CdS/TiO2.
Hasil pengukuran SEM elektroda CdS/TNTAs yang disintesis menggunakan metode SILAR-ultrasonikasi memperlihatkan CdS tersebar merata di permukaan mulut tabung, bagian dalam dan luar tabung. Dari hasil pengamatan TEM diperoleh ukuran CdS nanopartikel sebesar 6-10 nm. Kurva DRS memperlihatkan nilai band gap sekitar 2,28-2,32 eV yang mengindikasikan keberadaan partikel CdS pada elektroda CdS/TNTAs. Efisiensi fotokonversi CdS/TNTAs dibawah penyinaran sinar tampak sebesar 12,03 , 5 kali lebih besar dibandingkan elektroda TNTAs murni.Hasil pengujian sistem sel gabungan QDSSC-PEC memperlihatkan pembentukan gelembung udara sebagai hidrogen pada katoda dan oksigen pada anoda.
Hasil pengukuran kromatografi gas menunjukkan munculnya puncak kromatogram gas hidrogen dan oksigen . Jumlah gas hidrogen yang dihasilkan sangat ditentukan oleh kondisi percobaan yang dilakukan. Kondisi percobaan optimum diperoleh dengan menggunakan katoda Pt/Ti, konsentrasi hole scavenger metanol 20 dan intensitas cahaya 160 mW/cm2. Laju pembentukan gas hidrogen yang terbentuk pada kondisi optimum sebesar 13,44 L/men. Efisiensi energi sel untuk produksi hidrogen melalui proses pemecahan air sebesar 4,78. Dari hasil ini dapat disimpulkan bahwa sel QDSSC-PEC mempunyai potensi yang menjanjikan sebagai strategi baru dalam menghasilkan hidrogen melalui proses pemecahan air secara artificial fotosintesis.

Solar hydrogen is a potential renewable energy source and environmentally friendly to replace fossil fuel. Many methods can be used to generate hydrogen. Photoelectrochemical water splitting is one of the most promising methods for convert of solar to chemical energy. In this study, CdS nanoparticles sensitized TiO2 nanotube arrays CdS TNTAs was investigated for use as an electrodes in solar cell systems quantum dot sensitized solar cell, QDSSC which combined with photoelectrochemical cell QDSSC PEC and used as a new strategy for the production of hydrogen through water splitting process.
In this dissertation report, we investigated the results of synthesis, characterization and photoelectrochemical activity of TNTAs and CdS TNTAs electrodes. The effect of electrolyte concentration, anodization potential, anodization time, the distance between the electrodes, and the calcination temperature were investigated in this work, with the aim to obtain a high ordered nanotubular structure and have a good photocatalytic activity. The sensitizer of CdS nanoparticles was deposited on the TNTAs surface by successive ionic layer adsorption and reaction SILAR method assisted with ultrasonication technique. The testing of QDSSC PEC cells for hydrogen production is done by varying the experimental conditions that variations of catalysis zone cathode , variation of hole scavenger concentration and light intensity variations.
The characterization results showed that the pore diameter of TNTAs increase from 15 nm to 80 nm with increasing anodization potential from 15 to 60 V, while the tube length increase from 2 m to 7.6 m with increasing anodization time from 15 to 120 minutes at 40 V of anodization potential. The TNTAs electrode was prepared at 40V and 45 minutes in the electrolyte of ethylene glycol containing 0.3 NH4F and 2 H2O the distance between the electrodes of 1.5 cm calcinations temperature at 4500C shows a well ordered nanotubular structures with the inner tube diameter was about 80 nm, the tube length was about 5.7 m and have the best photocatalytic activity with the photoconversion efficiency of 16 under UV light illumination.
The FE SEM results of CdS TNTAs electrode shows that CdS nanoparticles uniformly decorated on the top surface , inner wall and outer wall TNTAs without clogging at the nanotube mouth. The XPS spectra of CdS sensitized TNTAS electrode shows the chemical composition and chemical state as the CdS and TiO2 structure. The TEM image of the CdS TNTAs shows that CdS nanoparticles were abundantly deposited inside the TNTAs and a crystalline CdS nanoparticles was grown on an anatase TiO2 with particle size of 6 nm. The DRS curve shows the band gap value of about 2.28 to 2.32 eV, indicating the presence of CdS nanoparticles on the CdS TNTAs electrode. The energy photoconversion efficiency of CdS TNTAs was 12.03 under visible light illumination, which five times higher than that of a pure TNTAs electrode. The evaluating results of QDSSC PEC cell showed the formation of air bubbles as hydrogen gas at the cathode and oxygen gas at anode surface.
The measurement results of gas chromatography showed the chromatogram peaks of hydrogen and oxygen. The amount of hydrogen gas produced is determined by the experimental conditions conducted. The optimum experimental conditions obtained using Pt Ti cathode, 20 of methanol concentration as hole scavenger and light intensity of 160 mW cm2. The formation rate of hydrogen gas at optimum condition is 13.44 L men. The energy efficiency of cell for hydrogen production from water splitting process is 4.78. This results indicates that the QDSSC PEC cell have promising potential as a new strategy to generate hydrogen, which one may call an artificial photosynthetic water splitting process.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
D2345
UI - Disertasi Membership  Universitas Indonesia Library
cover
Liya Nikmatul Maula Zulfa Saputri
"Perkembangan produksi hidrogen hingga saat ini terus dilakukan salah satunya teknologi fotoelektrokimia. Terbaru, konfigurasi sel dye sensitized photoelectrochemical-dye sensitized solar cells (DSPEC-DSSC) mulai dikembangkan agar diperoleh efisiensi yang tinggi dan sistem respon terhadap cahaya tampak. Pada penelitian ini fokus pada penggunaan fotoanoda pada sistem DSPEC berupa TiO2 nanotube arrays (TNTAs) yang tersensitasi oleh S,N-Graphene Quantum Dots (S,N-GQDs), katoda berupa Pt/Ti, elektroda referensi berupa Ag/AgCl, sedangkan pada sistem DSSC digunakan fotoanoda TNTAs tersensitasi N719 dan katoda Pt/Ti.
TNTAs dianodisasi dari plat Ti dengan elektrolit berupa larutan aqueous, NH4F 0,5%, dan variasi konsentrasi CMC 1-2,5% pada pH 5. Proses anodisasi divariasikan pada voltase 10-25 V selama 2 jam. Pada konsentrasi Na-CMC yang rendah (1%) struktur tubular yang diperoleh disorganisir, di sisi lain pada konsentrasi Na-CMC yang lebih tinggi diamati keseragaman dan keteraturan susunan nanotubes terbentuk, di mana pada penelitian ini Na-CMC 2% memberikan yang hasil terbaik. Aktivitas fotokatalitik terbaik, dalam hal arus yang dihasilkan diperoleh oleh film TNTAs dalam kondisi sintesis berbasis elektrolit aqueous dan kondisi potensial bias 0,5% NH4F, 2% CMC, dan 20 V, dan TNTAs ini menunjukkan porositas terbaik (41,14%) dan lapisan penipisan terkecil (4,34 nm) dibandingkan film TNTA lainnya.
Pada sensitizer S,N-GQDs disintesis dari prekursor asam sitrat dan tiourea secara hidrotermal pada suhu 160°C selama 4 jam. Hasil karakterisasi menunjukkan TNTAs/S,N-GQDs memilikirespon pada cahaya tampak. Pengujian hidrogen pada konfigurasi sel DSPEC-DSSC dihubungkan secara insitu dengan alat kromatografi gas yang dilengkapi dengan detektor TCD dan kolom packed Molecular Sieve dilakukan setiap 30 menit selama 3 jam. Tandem sel DSPEC-DSSC dengan fotoanoda DSPEC berupa TNTAs/S,N-GQDs mampu memproduksi hidrogen sebesar 3,57 μmol dan % yield H2 sebesar 0,35%. Efisiensi sel yang dihasilkan tiga kali lebih besar dibandingkan dengan sistem tandem sel DSPEC-DSSC yang menggunakan TNTAs/GQDs.

The hydrogen production still develop until now, one of which is photoelectrochemical technology. Recently, the configuration of dye-sensitive photoelectrochemical-dye-sensitized solar cells (DSPEC-DSSC) was being developed in order to obtain high efficiency and a response system to visible light. In this study, the focus reasearch is on the use of photoanodes in DSPEC systems in the form of TiO2 nanotube arrays (TNTAs) which was sensitized by S,N-Graphene Quantum Dots (S,N-GQDs), cathodes in the form of Pt/Ti, reference electrodes in the form of Ag/AgCl, whereas in the DSSC system used N719 sensitized TNTAs and Pt/Ti cathodes.
TNTAs were anodized from Ti plates by aqueous electrolyte, NH4F 0.5%, and variations in CMC concentrations of 1-2.5% at pH 5. The anodizing process was varied at 10-25 V voltage for 2 hours. At low concentrations of Na-CMC (1%) the tubular structure obtained was inorganized, on the other hand at the higher Na-CMC concentrations observed the uniformity and regularity of the arrangement of nanotubes formed, where in this study 2% Na-CMC gave the best results . The best photocatalytic activity, in terms of the current generated is obtained by TNTAs films under aqueous electrolyte-based synthesis conditions and a bias potential condition of 0.5% NH4F, 2% CMC, and 20 V, and these TNTAs show the best porosity (41.14%) and the smallest thinning layer (4.34 nm) compared to other TNTA films.
Sensitizer S,N-GQDs was synthesized from the hydrothermal citric acid and thiourea precursors at 160° C for 4 hours. The characterization results showed TNTAs/S,N-GQDs have responses in visible light. Hydrogen testing in the DSPEC-DSSC cell configuration was applied by a gas chromatograph equipped with a TCD detector and a packed Molecular Sieve column performed every 30 minutes for 3 hours. DSPEC-DSSC tandem cells with DSPEC photoanodes in the form of TNTAs/S,N-GQDs are able to produce hydrogen of 3.57 μmol and% H2 yield of 0.35%. The efficiency of the cells produced is three times greater than the DSPEC-DSSC cell tandem system which uses TNTAs/GQDs.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T54873
UI - Tesis Membership  Universitas Indonesia Library
cover
Hendri
"Amonia merupakan senyawa kimia yang banyak digunakan dalam kehidupan. Produksi amonia yang sering digunakan adalah proses Haber-Bosch menggunakan hidrogen dan nitrogen pada kondisi tekanan dan suhu ekstrim. Salah satu cara lain yang berpotensi dan sedang dikembangkan adalah fiksasi nitrogen secara fotokatalisis pada kondisi ambien. Dalam penelitian ini dilakukan proses fotokatalisis reduksi nitrogen menggunakan sumber elektron yang dihasilkan oleh zona Quantum Dot Sensitized Solar Cell QDSSC berbasis semikonduktor TiO2 nanotube. TiO2 nanotube disensitasi oleh quantum dot CdS dan disinari oleh cahaya tampak menghasilkan elektron yang ditransfer ke zona katalisis untuk reduksi nitrogen menjadi amonia. Variasi waktu reaksi dan pH dilakukan untuk mengetahui pengaruhnya terhadap jumlah amonia yang dihasilkan. Karakterisasi dilakukan terhadap morfologi TiO2 serta keberadaan spesi Ti3 pada permukaan TiO2 di zona katalisis yang akan bertindak sebagai sisi aktif reduksi nitrogen. Efisiensi dari QDCdS-SSC yang diperoleh sebesar 1,63. Aplikasi QDCdS-SSC yang dimodifikasi dengan zona katalisis Ti3 /TiO2 nanotube dapat menghasilkan amonia dengan efisiensi konversi energi cahaya menjadi energi kimia oleh QDCdS-SSC sebesar 0,0211.

Ammonia is a chemical compound that mostly used in our life. Generally, ammonia is produced by Haber Bosch process using hydrogen and nitrogen at extreme pressure and temperature. The other alternative potential method is a photocatalysis process. In this research, reduction of nitrogen by photocatalysis using nanotube TiO2 based Modified CdS Quantum Dot Sensitized Solar Cell with catalytic zone was investigated. TiO2 was sensitized by CdS and irradiated by visible light to generate electrons for nitrogen reduction at catalytic zone. Variation of reaction time and pH were performed to determine the effect of ammonia production. Characterization was performed to determine morphology of TiO2 and presence of Ti3 species on the surface as an active site of nitrogen reduction. The obtained efficiency of QDCdS SSC is 1.63. Modified QDCdS SSC with Ti3 TiO2 nanotube attain to produce ammonia with solar chemical conversion efficiency at 0,0211."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sherly Kasuma Warda Ningsih
"Penggunaan energi matahari untuk produksi hidrogen dari air dapat menjadi alternatif yang potensial untuk mengatasi masalah keberlanjutan pasokan energi dan pengurangan pencemaran lingkungan. Sistem tandem dyes sensitized solar cell-photoelectrocatalytic (DSSC-PEC) berpotensi dikembangkan menjadi salah satu perangkat pemanen sinar matahari untuk produksi hidrogen (Solar to hydrogen). Dalam sistem tandem tersebut bagian PEC sebagai tempat terjadinya reaksi pemecahan air, sedangkan bagian DSSC berfungsi sebagai salah satu penyedia tegangan insitu dan elektron aktif bagi sel PEC. Material TiO2 nanotube arrays (TNAs) merupakan material satu dimensi (1D) yang memiliki sifat fotokatalitik yang superior dan luas permukaan spesifik yang besar, serta channel 1D yang kondusif dalam transpor muatan. TNAs telah dipreparasi menggunakan metode two step anodization dengan meningkatkan potensial anodisasi tahap dua pada potensial sedang. Plat Ti digunakan sebagai working electrode dan stainless steel digunakan sebagai counter electrode. Elektrolit yang digunakan adalah etilen glikol yang mengandung 0,3% w/w NH4F dan 2% v/v H2O. Hasil anodisasi tahap satu dihilangkan dengan sonikasi dalam air distilasi selama 20 menit dan plat ini berperan sebagai template untuk anodisasi tahap dua. Hasil anodisasi yang diperoleh pada tahap dua dikalsinasi pada suhu 450° C selama 2 jam untuk merubah fasa amorf menjadi fasa kristalin. Band gap energy dari TNAs yang dipreparasi dengan metode two step yakni sekitar 3,07-3,31 eV. Morfologi permukaan TNAs yang dihasilkan berbentuk heksagonal (honey comb). Peningkatan potensial anodisasi pada tahap dua menghasilkan TNAs yang highly order dengan durasi pembentukan yang relatif lebih singkat dengan nilai regularity ratio (RR) optimum 0,92. Agar lebih responsif terhadap sinar tampak, TNAs dimodifikasi dengan BiOI (bismuth oxyiodide) dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) dengan bantuan ultrasonikasi dan pemanasan menggunakan pelarut air distilasi dan pelarut sorbitol. BiOI/TNAs hasil modifikasi responsif terhadap sinar tampak pada rentang 450-580 nm (redshift) dengan nilai band gap sekitar 1,90 eV-2,32. Morfologi permukaan BiOI/TNA yang dihasilkan yakni bentuk nanoplate, nanoflake, dan nanosheet dengan orientasi tegak lurus pada matriks TiO2 nanotubes. Modifikasi BiOI pada TNAs tidak mengubah fasa kristal anatase. Fotoanoda Graphene Oxide (GO)/TNAs dan reduced-Graphene Oxide (rGO)/TNAs dipreparasi menggunakan teknik drop casting dan teknik deposisi Cyclic Voltammetry (CV), berturut-turut. Modifikasi TNAs dengan material GO ini berhasil menggeser serapan pada sinar tampak (430 nm). Material GO atau rGO/TNAs ini dimodifikasi dengan BiOI untuk mendapatkan fotoanoda ternary yang memiliki respon fotoelektrokimia yang lebih tinggi. BiOI/TNAs dan ternary BiOI/GO/TNAs digunakan sebagai fotoanoda pada zona PEC. Sementara itu, pada bagian katoda PEC digunakan TNAs yang dimodifikasi dengan Pt yang dipreparasi dengan metode fotoreduksi, sebagai zona katalis untuk pembentukan hidrogen. Pengembangan bagian DSSC digunakan fotoanoda TNAs yang disensitasi dengan N719 dyes dan bagian katodanya digunakan kaca Fluorine-doped Tin Oxide (FTO) yang dilapisi dengan Pt. Efisiensi DSSC N719 dyes/TNAs optimum yang didapat sekitar 5,23%. Perangkat DSSC dan PEC ini diaplikasikan untuk produksi hidrogen menghasilkan persen solar to hydrogen (STH) sekitar 2,56%. Saat diaplikasikan untuk produksi hidrogen dan degradasi fenol secara simultan dengan persen solar to hydrogen (STH) turun menjadi 1,34%, namun mampu mendegradasi fenol hingga 73,74%. Dari hasil studi ini menunjukkan bahwa sistem DSSC-PEC dengan fotoanoda bagian PEC berupa BiOI/TNAs atau BiOI/rGO/TNAs memiliki potensi yang menjanjikan secara simultan untuk produksi hidrogen dan degradasi zat organik dalam air berkadar garam tinggi.

The solar energy utilization for hydrogen production from water can be a potential alternative to address the problem of sustainability of energy supply and reduction of environmental pollution. The tandem dyes-sensitized solar cell-photoelectrocatalytic (DSSC-PEC) system can potentially be developed into one of the solar harvesting devices for hydrogen production (Solar to hydrogen). In this tandem system, the PEC compartment acts as a site for the water-splitting reaction, while the DSSC part provides insitu voltage and active electrons for the PEC cell. TiO2 nanotube arrays (TNAs) are one-dimensional (1D) with a superior photocatalytic high surface area and one dimension channel conducive to charge transport. TNAs have been prepared using a two-step anodization method by increasing the second-step voltages at moderate voltage. The Ti foil and stainless steel were used as the working and counter electrodes, respectively. The ethylene glycol containing 0.3% w/w of NH4F and 2% v/v H2O was used as the electrolyte. The first anodization result was removed by the ultrasonication process in the distilled water for 20 min, and this foil acted as the template for the second step of anodization. The second anodization product was calcined at 450° C for 2 h to convert the amorphous phase into a crystalline phase. Increasing the second step potential for producing TNAs with a highly ordered structure can improve the PEC properties. The band gap energy of TNAs prepared with the two-step anodization method was 3.07-3.31 eV. The surface morphology of TNAs prepared by the two-step anodization method was hexagonal (honeycomb). The increasing voltage in the second anodization step reveals TNAs with high order and short-duration of TNAs production with a regularity ratio (RR) was 0.92. In order to extend absorption in the visible range, TNAs were modified with BiOI (bismuth oxy iodide) by Successive Ionic Layer Adsorption and Reaction (SILAR) with ultrasonication and heat-assisted by using deionized water and sorbitol solvent. Modified BiOI/TNAs were responsive to visible light in the 450-580 nm (redshift) range, with a band gap energy of 1.90 - 2.32 eV. The BiOI/TNAs morphology was nanoplate, nanoflake, and nanosheet perpendicular to TiO2 nanotube matrices. The modification of BiOI on TNAs did not change the anatase crystal phase. The photoanode of Graphene oxide (GO)/TNAs and reduced-Graphene Oxide (rGO)/TNAs were prepared by Drop Casting and Cyclic Voltammetry (CV) deposition, respectively. The TNAs were modified with GO material and succeeded in shifting the absorption in visible light (430 nm). The GO/TNAs and the rGO/TNAs were modified with BiOI to produce a ternary photoanode with a higher photoelectrochemical response. The BiOI/TNAs and BiOI/GO/TNAs ternaries were used as photoanodes in the PEC zone. Meanwhile, at the PEC cathode, TNAs modified with Pt prepared by the photoreduction method were used as catalyst zone for the hydrogen formation. The development of DSSC using TNAs photoanode that were sensitized with N719 dyes and for the cathode used Fluorine-doped Tin Oxide (FTO) glass modified with Pt. The optimum efficiency of DSSC was 5.23%. The DSSC and PEC devices were applied for hydrogen production to produce solar to hydrogen (STH) of around 2.56 %. When applied to hydrogen production and phenol degradation simultaneously, the percentage of solar to hydrogen (STH) decreased to 1.34% but degraded phenol up to 73.74%. The results of this study reveal that the DSSC-PEC system with PEC photoanodes in the form of BiOI/TNAs or BiOI/rGO/TNAs has a promising potential for simultaneous hydrogen production and degradation of organic substance in salty water.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Fardha Abidillah
"Amonia merupakan senyawa kimia yang banyak digunakan dalam kehidupan. Produksi amonia yang sering digunakan adalah proses Haber-Bosch yang menghasilkan emisi CO2 yang besar dan harus dilakukan pada suhu dan tekanan ekstrim. Produksi NH3 air dan N2 secara fotokatalisis dapat dilakukan pada temperatur dan tekanan ruang sehingga menjadikan produksi ini sangat ideal. Namun metode ini masih memiliki efisiensi yang relatif rendah.
Dalam penelitian ini dilakukan proses konversi nitrogen menjadi ammonia tandem sel surya, Quantum Dot Sensitized Solar Cell (QDSSC), dengan sel fotoelektrokimia sebagai zona katalisis. Fotoanoda dalam sel surya menggunakan  TiO2 nanotube yang disensitasi dengan CdS, sedangkan sel fotoelektrokimia pada zona katalisis menggunakan pasangan electrode Ti3+/TiO2 nanotube yang diletakan dalam dua kompartemen terpisah. Tandem sel yang dikembangkan berhasil mengkonversi N2 menjadi NH3, dengan menggunakan sumber hidrogen dari air dan input energi dari sinar tampak, denga rata-rata efisinesi konversi berkisar antara 0,03-0,098%.

Ammonia is an essential substance in human lives. The most common method in ammonia production in industries is the Haber-Bosch method, this method using high temperature and pressure also produce CO2 emissions as sideproduct. NH3 can be produced by water and N2 through a photolytic reaction using room temperature and atmospheric pressure which made this reaction is ideal for ammonia production. But this method has low efficiency of production.
This research purpose is to produce ammonia through photocatalytic reaction of nitrogen reduction using modified Quantum Dot Sensitized Solar Cell (QDSSC) in TiO2 nanotube, through separation of an anodic catalytic zone and cathodic zone. TiO2 nanotube sensitized by CdS and illuminated by visible light to produce electron which can be transferred to catalytic zone for nitrogen reduction. The solar cell that has been made succeeded in convert N2 to NH3, using water as H2 source and visible light as an energy source, with average conversion efficiency 0,03-0,098 %.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Indriani
"Upaya untuk memproduksi hidrogen masih sedikit dari sumber yang terbarukan. TiO2 dalam bentuk nanotube arrays dengan dopan Boron yang disintesis dengan metode anodisasi untuk produksi hidrogen telah diinvestigasi. Perlakuan termal katalis B-TiO2 nanotube arrays (B-TNTAs) dilakukan dengan kalsinasi reduksi dengan gas hidrogen pada suhu 500oC selama 2 jam. Analisis SEM menunjukkan morfologi nanotube arrays tiap konsentrasi boron seragam. Analisis UV-Vis DRS menunjukkan B-TNTAs memiliki absorbansi yang besar pada jangkauan panjang gelombang sinar tampak dengan band gap energy yang relatif rendah yaitu menjadi 2,9 eV. Analisis XRD menunjukkan hasil 100% kristal anatase murni. Melalui proses fotokatalisis, hidrogen mampu dihasilkan hingga 48959 μmol/m2 setelah 4 jam pengujian dengan katalis 7,5 mM B-TNTAs.

Attempts to produce hydrogen is still slightly from renewable sources. TiO2 nanotube arrays in the form of boron dopants synthesized by anodizing method for hydrogen production has been investigated. Catalyst-thermal treatment of TiO2 nanotube arrays B (B-TNTAs) performed by calcination reduction with hydrogen gas at a temperature of 500oC for 2 hours. SEM analysis showed the morphology of nanotube arrays by uniform boron concentration. UV-Vis DRS analysis showed B-TNTAs has a large absorbance in the visible wavelength range with a band gap energy is relatively low, to 2.9 eV. XRD analysis produces 100% anatase crystals. Through a photocatalytic process, hydrogen is able to produce up to 48959 μmol/m2 after 4 hours of testing with catalyst 7.5 mM B-TNTAs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47784
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Duli Asih
"Teknologi semakin berkembang pesat selama beberapa tahun terakhir, demikian pula dengan semakin tingginya kebutuhan akan energi. Namun, kebutuhan tersebut tidak sebanding dengan ketersediaan energi yang ada. Hal ini mendorong dilakukannya penelitian yang mendalam dan meluas mengenai kemungkinan penggunaan sumber energi baru dan terbarukan. Teknologi panel surya diprediksi akan dapat mengatasi masalah energi khususnya energi listrik. Dalam tulisan ini, sebuah penelitian dilakukan untk menganalisis kinerja panel surya PV-A 255W yang dioperasikan pada daerah beriklim tropis seperti Indonesia dimana temperatur udara dan radiasi yang relatif tinggi akan mempengaruhi temperatur panel dan karakteristik secara signifkan. Pengaruh temperatur dan radiasi akan direpresentasikan dalam kurva karakteristik I-V dan P-V. Karakteristik PV tersebut akan dianalisis menggunakan pemodelan pada MATLAB Simulink berdasarkan persamaan matematis yang membentuk kurva karakteristik PV.
Berdasarkan hasil simulasi, diketahui nilai koefisien arus I­SC­, tegangan VOC dan daya Pmax secara berturut-turut sebesar 0,56%/oC, -0,31 %/oC dan -0,4%/oC. Koefisien tersebut dapat digunakan untuk mengkalkulasi rentang perubahan arus, tegangan, daya dan energi keluaran panel surya pada temperatur dan radiasi tertentu pada suatu titik di permukaan bumi. Diketahui bahwa sebuah PV-A 255W dapat menghasilkan energi listrik maksimum sebesar 308,2 kWh.. Selain itu, penggunaan karakteristik panel dapat mebantu dalam menentukan dan membandingkan konsep konfigurasi sistem PV-Inverter seperti Central Inverter, String Inverter dan AC-Module yang dihubungkan untuk menyuplai sistem beban 5 kWac khususnya pada daerah beriklim tropis.

The technology has been extremely developed over the years and for that reason, the demand of energy availability is also increasing. In contrast, it is not comparable to the availability of energy. This problem has led to the needs of further yet comprehensive researches in the possibility of usage of new and renewable energy source. Solar panel technology (Photovoltaic) has been predicted to be able to resolve future's energy problem and supply in electricity. A research has been conducted in order to analyze solar panel performance of PV-A 255W which is operated in tropical areas like Indonesia in which relatively high ambience temperature and average radiation significantly affect PV's temperature and characteristics, those will be represented on I-V and P-V characteristics curve. PV's characteristics on high temperature would be analyzed using PV modeling through MATLAB Simulink based on mathematical equations that form PV's characteristic curve.
Based on PV simulation, it is known then that temperature-dependence coefficients of short circuit current, open circuit voltage (VOC), and maximum output power (Pmax ) consecutively as high as 0,56%/oC, -0,31 %/oC and -0,4%/oC. Those coefficients can be used to calculate the ranges of change in PV current, voltage, output power and average output energy of certain data temperature and radiance at earth's surface's certain point. It is acquired that a single PV-A 255W module could generate up to 308,2 kWh of electricity on average. Besides that, using PV's characteristics could enable in configurating and comparing suitable PV-Inverter system concept like Central Inverter, String Inverter and AC-Module to be connected to supply 5 kWac system or load in tropical areas.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60464
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zini, Gabriele
"This book presents the readers with the modeling, functioning and implementation of solar hydrogen energy systems, which efficiently combine different technologies to convert, store and use renewable energy. Sources like solar photovoltaic or wind, technologies like electrolysis, fuel cells, traditional and advanced hydrogen storage are discussed and evaluated together with system management and output performance. Examples are also given to show how these systems are capable of providing energy independence from fossil fuels in real life settings."
Milan: [, Springer], 2012
e20398868
eBooks  Universitas Indonesia Library
cover
Andy Prakoso
"Listrik telah menjadi sebuah kebutuhan yang sangat penting bagi kehidupan manusia masa kini dan telah menjadi salah satu tolok ukur kemajuan suatu daerah. Hingga kini, ketergantungan terhadap bahan bakar fosil untuk pemenuhan kebutuhan listrik sangat mengkhawatirkan, dan mengakibatkan penipisan bahan bakar tersebut. Saat ini dunia sedang memberikan perhatian lebih kepada energi terbarukan sebagai salah satu solusi terbaik untuk menyelesaikan masalah pemenuhan energi di masa depan. Energi terbarukan menjadi sebuah solusi terbaik karena tidak akan habis dan ramah lingkungan. Namun dibalik itu, energi terbarukan juga memiliki kekurangan sehingga dibuat sebuah sistem hibrida yang diharapkan mampu untuk meminimalisasi kekurangan tersebut. Dalam penelitian ini dibuat sebuah rancangan sistem hibrida dengan perangkat lunak HOMER PRO untuk memperhitungkan faktor teknis dan faktor ekonomi dari sistem hibrida tersebut sehingga mampu membuat rancangan sistem hibrida yang handal. Dalam rancangan hibrida ini dan menggunakan asumsi-asumsi yang akan terjadi maka sistem hibrida ini akan bisa mandiri tanpa terhubung dengan grid pada tahun ke-19.

Electricity has become a very important need for human life today and one of the parameters in one region condition. Nowadays, the dependence on fossil fuels to fulfill the electricity needs is really worrying, and it causes the depletion of fossil fuels. Today, the whole world is paying more attention to renewable energy as one of the best solution to solve the future energy problems. Renewable energy becomes the best solution because it will not be exhausted and enviromentally friendly. In the other hand, renewable energy also have problem, because it cannot produce energy everytime like photovoltaics which can produce energy only when there is enough solar radiation. Therefore, a hybrid system is made that expected to minimize the weakness from other components of the system . In this project, a hyrid system is designed using HOMER PRO software to calculate the electricity and economic factor of the hybrid system. The objective of this project is to find the best hybrid system that can solve the electricity problems. The system will be independent since grid function will replaced by fuel cell in the 19th year based on the assumption."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Teknologi konvensional sel surya berbasis pada proses konversi satu foton menghasilkan satu pasangan elektron hole. Dengan kata lain, efisiensi kuantumnya tidak dapat melebihi 100%. Mekanisme ini melahirkan sebuah nilai batas maksimum efisiensi termodinamika yang bisa dicapai oleh sel surya sebesar 33,7%, atau lebih dikenal dengan Scockley-Queisser limit. Fenomena baru akan muncul apabila sebuah material mampu menghasilkan lebih dari sepasang elektron-hole ketika menerima satu foton, atau menyerap lebih dari satu foton sekaligus untuk menghasilkan sepasang elektron-hole berdaya ganda. Fenomena ini dikenal dengan sebutan carrier multiplication (CM)."
MRS 1:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>