Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 200957 dokumen yang sesuai dengan query
cover
Tika Hanggarawati
"ABSTRAK
Tesis ini membahas penerapan model Lee-Carter, Renshaw-Haberman dan Age Period Cohort pada data kematian Pegawai Negeri Sipil di Indonesia dengan tujuan untuk membentuk mortality rate dari data riil yang telah dimodelkan dan membandingkannya dengan tabel mortalita Pegawai Negeri Sipil yang telah ada. Penelitian ini bersifat kuantitatif dengan menggunakan Cross Sectional Design
Study. Hasil penelitian menunjukkan perlunya tabel mortalita yang membedakan
antara tingkat mortalita PNS pria dan PNS wanita

ABSTRACT
The focus of this study is the application of model of Lee-Carter, Renshaw-
Haberman and Age Period Cohort to Civil Servants Mortality Data in Indonesia
with the aim to establish a mortality rate of real data that has been modeled and
compared with mortality table of Civil Servants. This research is quantitative by
using Cross Sectional Study Design. The results showed the necessity of
distinguishing mortality tables between men and women"
2016
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Manulang, Jona Martinus
"Tingkat Mortalitas merupakan salah satu indikator penting dalam pengambilan keputusan pada beberapa bidang, seperti pemerintahan, ekonomi, dan aktuaria. Oleh karena itu, penelitian ini bertujuan untuk menerapkan model Lee-Carter pada data tingkat mortalitas Indonesia kemudian meramalkan tingkat mortalitas Indonesia pada masa mendatang dengan bantuan metode ANFIS. Proses peramalan tersebut akan diimplemantasikan dalam perangkat lunak R, dan hasil akhir dari penelitian ini adalah tabel yang berisi peramalan tingkat mortalitas di Indonesia.

Mortality rate is one of the important indicators in decision making in several areas, such as government, economy, and actuary. Therefore, this study aims to apply the Lee Carter model to Indonesia 39 s mortality rate data and then forecast future mortality rates in Indonesia with the help of ANFIS method. The forecasting process will be implemented in R software, and the final result of this study will be formed into a table that contains forecasting mortality rates in Indonesia."
Depok: Universitas Indonesia, 2018
T52090
UI - Tesis Membership  Universitas Indonesia Library
cover
Timothy Theophilus
"Model mortalitas merupakan aspek penting dalam menentukan premi untuk perusahaan
asuransi jiwa ataupun dana pensiun. Model mortalitas untuk populasi tunggal umumnya
mengasumsikan independensi mortalitas antar populasi. Pada tugas akhir ini akan dibahas
model prediksi mortalitas yang mengasumsikan dependensi mortalitas antar populasi
untuk memodelkan mortalitas multi-populasi. Pendekatan yang digunakan adalah model
kredibilitas hierarki untuk memprediksi mortalitas beberapa negara (multi-populasi).
Secara sederhana, model kredibilitas Bühlmann memprediksi nilai dari suatu peubah acak
di satu periode yang akan datang. Model kredibilitas hierarki adalah generalisasi dari
model kredibilitas Bühlmann dan model kredibilitas Bühlmann-Straub dengan struktur
pohon hierarki empat tingkat atau lebih. Pada tulisan ini diterapkan struktur pohon
hierarki 5 tingkat yang terdiri dari multi-negara, negara, jenis kelamin, usia, dan tahun.
Untuk memprediksi nilai dari peubah acak yang menyatakan tingkat perubahan nilai
logaritma natural dari central death rate di periode-periode berikutnya, digunakan dua
strategi, yaitu Expanding Window dan Moving Window. Kedua strategi memanfaatkan
data prediksi terbaru sebagai data yang digunakan untuk memprediksi tahun berikutnya,
namun strategi Moving Window menghilangkan data terlama. Parameter dari model yang
digunakan akan diestimasi menggunakan pendekatan non-parametrik. Data yang
digunakan untuk penerapan model adalah data mortalitas dari Norwegia, Kanada dan
Jepang. Pada akhir tulisan, performa dari model prediksi mortalitas dengan pendekatan
model kredibilitas hierarki dibandingkan terhadap model Lee-Carter menggunakan nilai
AMAPE (Average of Mean Absolute Percentage Error) dan RR (Reduction Ratio).
Berdasarkan hasil prediksi pada tugas akhir ini, pendekatan kredibilitas hierarki memiliki
performa yang lebih baik dibanding model Lee-Carter dalam memprediksi mortalitas
multi-populasi.

Mortality model is an important aspect in determining premium for life insurance
company and pension fund company. Generally, mortality model for single population
assumes independence between mortality of population. This thesis discusses mortality
model that assumes dependence between mortality of population to model multipopulation
mortality. Hierarchical credibility model is the approach used to forecast
mortality of multi-country (multi-population) in this writing. Bühlmann credibility model
predicts the value of a random variable in the future. Hierarchical credibility model is the
generalization of Bühlmann credibility model and Bühlmann-Straub credibility model
with a tree structure of four or more levels. This thesis applies a five-level tree structure
consisting of multi-country, country, gender, age, and year. To predict the random
variable of the yearly decrement of the logarithm of central death rate over the following
periods, two strategies are adopted, which are Expanding Window and Moving Window.
Both strategies utilize the newest predicted data as a part of the data used to predict the
next period, however Moving Window removes the oldest data. The parameters used will
be estimated using the nonparametric approach. Application of the model is applied to
mortality data of Norway, Canada and Japan. In the end of this thesis, mortality model
forecasting performance of hierarchical credibility approach is compared with Lee-Carter
model based on the values of AMAPE (Average of Mean Absolute Percentage Error) and
RR (Reduction Ratio). In accordance with the prediction results from this writing, the
hierarchical credibility approach yields better performance than the Lee-Carter model in
forecasting multi-population mortality.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lutfiani Safitri
"ABSTRAK
Mengetahui mortality rate pada masa mendatang sangat dibutuhkan perusahaan asuransi jiwa untuk dapat menentukan besarnya premi yang harus dibayarkan kepada perusahaan tersebut. Dalam penelitian ini akan dilakukan peramalan tingkat mortalita di Indonesia dengan menggunakan Model Lee-Carter Klasik dan Model Lee-Carter Umum. Selanjutnya, pada model Lee-Carter klasik akan dilakukan estimasi parameter menggunakan 2 cara yang berbeda, cara pertama menggunakan metode Least Square dan Singular Value Decomposition SVD dan cara kedua menggunakan metode Least Square dan Newton Raphson. Sedangkan pada model Lee-Carter umum akan dilakukan estimasi parameter menggunakan metode Least Square dan metode Newton Raphson. Hasil dari estimasi parameter tersebut akan dibandingkan berdasarkan masing-masing model dan metode yang digunakannya. Selanjutnya, hasil estimasi parameter yang bergantung terhadap waktu akan digunakan dalam peramalan tingkat mortalita menggunakan metode Neural Network. Hasil peramalan berupa tabel tingkat mortalita di Indonesia pada masa mendatang.

ABSTRACT
Knowing future mortality rate is needed by assurance company to decide the value of the premium which has to be paid by the company. this research will forecast the mortality rate in Indonesia by using classical Lee Carter Model and Umum Lee Carter model. Than Lee Carter classical model will be estimated the parameter by using two different mothod. First method is by using Singular Value Decomposition SVD and the second method is by using Least Square and Newton Raphson. The result of parameter estimation will be compared based on each model and method. Then, the result depends on time which will be used in mortality forecasting by using neural network. The result is a table about the mortality rate in the future."
2018
T51451
UI - Tesis Membership  Universitas Indonesia Library
cover
Arman Haqqi Anna Zili
"Jika informasi mengenai tingkat mortalitas untuk beberapa periode ke depan bisa didapatkan di masa sekarang maka perencanaan keuangan dan kebijakan yang akan diambil diharapkan dapat lebih baik dan terarah. Dalam penelitian ini, model yang digunakan untuk menghitung tingkat mortalitas adalah model Lee-Carter. Kemudian tingkat mortalitas pada masa mendatang akan diramalkan menggunakan bantuan metode ARIMA Auto Regressive Integrated Moving Average . Proses peramalan akan diimplementasikan menggunakan perangkat lunak R. Hasil akhir peramalan akan disajikan dalam bentuk tabel dan grafik.

If information about the mortality rate for some future periods can be obtained in the present then the financial planning and policy to be taken are expected to be better and directed. The model used to calculate the mortality rate in this paper is the Lee Carter model. Then future mortality rates will be forecast with the use of the ARIMA Auto Regressive Integrated Moving Average method. Meanwhile, the forecasting process will be implemented using software R. The final result of forecasting will be presented in tabular and graphical form."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49536
UI - Tesis Membership  Universitas Indonesia Library
cover
Sihombing, Anggia Abygail
"Peramalan tingkat morbiditas merupakan elemen yang penting bagi pemerintah dalam membuat kebijakan sosial-ekonomi di tahun-tahun mendatang. Begitu pun juga bagi perusahaan asuransi yang memerlukan tingkat morbiditas agar dapat menyediakan produk asuransi yang tepat sasaran di suatu wilayah atau negara. Pada penelitian ini, digunakan model Lee-Carter dalam meramalkan tingkat morbiditas tuberkulosis paru di Indonesia pada tahun 2022, menggunakan data tingkat morbiditas yang tersedia dari tahun 2014 hingga 2021, dan tersedia untuk tujuh kelompok umur, yaitu 0-14, 15-24, 25-34, 35-44, 45-54, 55-64, dan ≥65. Sumber data penelitian diambil dari Profil Kesehatan Indonesia Tahun 2018-2021 yang dirilis oleh Kementerian Kesehatan Republik Indonesia. Peramalan tingkat morbiditas melalui model Lee-Carter dimulai dengan mengestimasi nilai parameter pada model Lee-Carter menggunakan metode Least Square. Kemudian, dilakukan proyeksi nilai parameter yang bergantung waktu pada model Lee-Carter menggunakan metode Simple Moving Average (SMA), Double Moving Average (DMA), Simple Exponential Smoothing (SES), dan Holt’s Linear Trend (HLT). Dari hasil simulasi ditemukan bahwa metode terbaik untuk memproyeksi nilai parameter bergantung waktu untuk satu periode ke depan adalah metode Simple Exponential Smoothing (SES). Nilai proyeksi dari parameter yang diperoleh digunakan untuk menghitung nilai peramalan dari tingkat morbiditas. Hasil peramalan tingkat morbiditas tuberkulosis di Indonesia pada tahun 2022 menunjukkan terjadi penurunan untuk kelompok umur 0-14 tahun, 15-24 tahun, 35-44 tahun, dan 45-54 tahun, sedangkan untuk kelompok umur 25-34 tahun dan ≥65 tahun terjadi peningkatan.

Forecasting morbidity rates is an important element for the government in making socio-economic policies in the coming years. Likewise, insurance companies need morbidity rates in order to provide targeted insurance products in a region or country. In this study, the Lee-Carter Model was used to forecast the morbidity rate of pulmonary tuberculosis in Indonesia in 2022, using morbidity rate data available from 2014 to 2021, and available for seven age groups, namely 0-14, 15-24, 25-34, 35-44, 45-54, 55-64, and ≥65. The research data source was taken from the 2018-2021 Indonesian Health Profile released by the Ministry of Health of the Republic of Indonesia. Forecasting the morbidity rate through the Lee-Carter model begins with estimating the parameter values in the Lee-Carter model using the Least Square method. Then, time-dependent parameter values are projected on the Lee-Carter model using the Simple Moving Average (SMA), Double Moving Average (DMA), Simple Exponential Smoothing (SES), and Holt's Linear Trend (HLT). From the simulation results it was found that the best method for projecting time-dependent parameter values for one period into the future is the Simple Exponential Smoothing (SES) method. The projected values of the parameters obtained are used to calculate the forecasting value of the morbidity rate. The results of forecasting the tuberculosis morbidity rate in Indonesia in 2022 showed a decrease for the age groups 0-14 years, 15-24 years, 35-44 years, and 45-54 years, while for the age groups 25-34 years and ≥65 years there was an increase."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Sandy Athalla Syach
"Dalam kurun waktu beberapa tahun terakhir ini dunia sedang menghadapi bahaya dari pandemi serta peperangan atau konflik antar negara. Kasus seperti pandemi dan konflik atau perang antar negara merupakan kejadian atau kondisi ekstrim yang dapat terjadi kapan saja dan menimbulkan banyak korban jiwa. Oleh karena itu, diperlukan pemodelan yang dapat mengakomodir mortalitas akibat kejadian ekstrim tersebut. Model Lee-Carter merupakan sebuah model yang menggunakan data tingkat mortalitas dari kelompok usia yang diamati dari waktu ke waktu. Untuk mengakomodir tingkat mortalitas ekstrim, model Lee-Carter dimodifikasi menggunakan Extreme Value Theory (EVT) yang disebut dengan Model EVT modified Lee-Carter. Pendekatan EVT yang digunakan adalah pendekatan Peak Over Threshold (POT) dengan Generalized Pareto Distribution (GPD). Model ini diimplementasikan pada data tingkat mortalitas Indonesia tahun 1998 untuk peramalan tingkat mortalitas periode pandemi Covid-19 tahun 2021 dan 2022. Dalam pemodelan GPD, didapatkan nilai threshold sebesar 0,02. Untuk nilai yang berada di atas threshold, dimodelkan dengan GPD dan nilai yang berada dibawah threshold dimodelkan dengan distribusi normal dan empiris. Hasil yang didapatkan dari nilai Mean Absolute Error (MAE) dan Mean Absolute Percentage Error (MAPE) adalah model Extreme Value Theory Modified Lee-Carter distribusi empiris memberikan nilai MAPE terkecil sebesar 12,156%. Sementara itu, model Extreme Value Theory Modified Lee-Carter distribusi normal memiliki nilai MAPE sebesar 13,175% dan model Lee-Carter biasa sebesar 13,343% dalam peramalan tingkat mortalitas Indonesia pada kelompok usia yang mengalami kejadian ekstrim.

In the last few years the world has been facing danger from pandemics and wars or conflicts between countries. Cases such as pandemics and conflicts or wars between countries are extreme events or conditions that can occur at any time and cause many casualties. Therefore, modeling is needed that can accommodate mortality due to extreme events. The Lee-Carter model is a model that uses mortality rate data from age groups observed over time. To accommodate extreme mortality rates, the Lee-Carter model was modified using Extreme Value Theory (EVT) which is called the modified Lee-Carter EVT Model. The EVT approach used is the Peak Over Threshold (POT) approach with Generalized Pareto Distribution (GPD). This model was implemented on Indonesian mortality rate data in 1998 to forecast mortality rates for the Covid -19 pandemic period in 20 21 and 2022. In GPD modeling, a threshold value of 0.02 is obtained . For values that are above the threshold, they are modeled with GPD and values that are below the threshold are modeled with a normal and empirical distribution. The results obtained from the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) values are that the Extreme Value Theory Modified Lee-Carter empirical distribution model gives the smallest MAPE value of 12.156%. Meanwhile, the Extreme Value Theory Modified Lee-Carter normal distribution model has a MAPE value of 13.175% and the regular Lee-Carter model is 13.343% in predicting Indonesia's mortality rate in age groups that experience extreme events.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adrina Ferderika Nggie
"Prevalensi dan Karakteristik Faktor Risiko pada Kejadian
Age-related Macular Degeneration diJakarta Timur Jakarta Urban-Eye Health Study
Tujuan: Untuk mengetabui prevalensi dan kontribusi beberapa faktor risiko pada kejadian Agerelated Macular Degeneration di Jakarta Timur.
Metode:
Jakarta Urban-Eye Health Study merupakan penelitian potong lintang berbasis populasi yang menggunakan metode multistage cluster random sampling pada penduduk berusia 40 tahun atau lebih di daerah Jakarta Timur. Semua respondn penelitian dilakukan pemeriksaan di Puskesmas. Diagnosis AMD ditegakkan berdasarkan pemeriksaan fundus dengan menggunakan foto fundus.
Basil: Dari 1259 responden yang ikut dalam penelittian ini telah dilakukan pemeriksaan foto fundus untuk mengetahui apakah ada tanda-tanda dari AMD. Prevalensi dry dan weI AMD didapatkan pada 52 orang (4,1%) and 3 orang (0,2%). Prevalensi AMD didapatkan semakin meningkat dengan bertambahnya usia, dimana 3,4% pada kelompok usia 40-49 tabun, 4,8% pada kelompok usia 50-59 tahun, dan 7,4% pada usia ~ 70 yahun.
Kesimpulan: Pada penelitian ini didapatkan bahwa prevalensi AMD di Jakarta Timur lebih tinggi dari prevalensi yang didapatkan di daerah Y ogyakarta. Dengan semakin bertambahnya usia, prevalensi AMD juga menjadi semakin meningkat."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2008
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Haris La Ode
"Selama beberapa tahun terakhir, kontribusi sektor pertanian terhadap PDB Indonesia mengalami penurunan setiap tahun yang mengakibatkan tingkat partisipasi tenaga kerja sektor pertanian juga cenderung menurun. Tren di Indonesia menunjukkan penurunan persentase tenaga kerja sektor pertanian di usia muda, tetapi di saat yang bersamaan persentase tenaga kerja sektor pertanian di usia tua justru meningkat. Penelitian ini bertujuan untuk melihat pengaruh dari usia, periode, dan kohor terhadap perkembangan tingkat partisipasi tenaga kerja sektor pertanian di Indonesia. Penelitian ini menggunakan data dari lima periode Survei Angkatan Kerja Nasional (Sakernas) yaitu Sakernas pada tahun 2000, tahun 2005, tahun 2010, tahun 2015, dan tahun 2020. Dengan menggunakan analisis mixed effect logistic regression, diperoleh hasil bahwa tingkat partisipasi tenaga kerja sektor pertanian di usia muda lebih rendah dibandingkan tenaga kerja usia tua. Tenaga kerja pada usia muda yang berasal dari kohor-kohor awal memiliki probabilitas bekerja di sektor pertanian lebih tinggi dibandingkan tenaga kerja usia muda yang berasal dari kohor-kohor terkini. Transisi pada perekonomian Indonesia yang mengakibatkan pertumbuhan sektor non pertanian meningkat menyebabkan tingkat partisipasi tenaga kerja usia muda terus menurun sehingga generasi muda mulai kehilangan minat dan lebih memilih untuk tidak bekerja di sektor pertanian

Indonesia GDP share of agriculture sector has declined over years recently, which was followed by declining in agricultural labor participation rate. The trend shows percentage of youth agricultural labor become lower and percentage of elder agricultural labor is increasing at the same time. This study aims to see the age, period, and cohort effect on agricultural labor participation rate over years using National Labor Force Survey data (Sakernas) in five periods consists of Sakernas 2000, Sakernas 2005, Sakernas 2010, Sakernas 2015, and Sakernas 2020. This study using mixed effect logistic regression and it results show youth agricultural participation rate is lower than elder agricultural participation rate. Youth labor from older cohort have higher probabilities to work in agriculture than from younger cohort. The growth of non-agriculture share in Indonesia GDP as the result of economic transformation, causes lowering in youth agricultural participation rate, thus, the youth have less interest and choose to not work in agriculture."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nanda Purnomo Aji
"ABSTRAK
Harga premi asuransi jiwa di Indonesia dipengaruhi oleh tabel kematian Indonesia digunakan oleh masing-masing perusahaan asuransi, seperti tabel kematian Indonesia berdasarkan jenis kelamin. Jika informasi tahun mendatang tabel kematian Indonesia berdasarkan jenis kelamin dapat diketahui, informasi tersebut dapat bermanfaat bagi perusahaan asuransi untuk mengatur premi
strategi perhitungan sehingga lebih cocok untuk menghadapi risiko di masa depan. Makalah ini memprediksi tabel angka kematian Indonesia berdasarkan jenis kelamin selama lima periode ke depan dengan menggunakan Lee- Model Carter. Parameter model Lee-Carter diperkirakan dengan menggunakan Least Square metode dan metode Newton Raphson, sedangkan prediksi parameter yang tergantung pada waktu menggunakan metode Double Moving Average. Keakuratan hasil estimasi dan perkiraan
diukur dengan menggunakan Mean Absolute Perscentage Error (MAPE). Dari penelitian ini, Tabel kematian Indonesia berdasarkan jenis kelamin diperoleh untuk periode 2015-2020 sampai
2035-2040.

ABSTRACT
The price of life insurance premiums in Indonesia is influenced by Indonesia's death tables used by each insurance company, such as Indonesia's death tables by sex. If the next year's information on Indonesia's death table based on sex can be known, this information can be useful for insurance companies to manage premiums calculation strategies so that it is more suitable for dealing with risks in the future. This paper predicts Indonesia's mortality table by sex over the next five periods using the Lee-Carter Model. The Lee-Carter model parameters are estimated using the Least Square method and Newton Raphson method, while the parameter predictions that depend on time use the Double Moving Average method. Accuracy of estimation and estimation results measured using Mean Absolute Perscentage Error (MAPE). From this study, Indonesian death tables by sex were obtained for the period 2015-2020
2035-2040.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>