Skripsi ini bertujuan mengembangkan model konsumsi bahan bakar dump truck menggunakan machine learning untuk mengoptimalkan efisiensi dan mengurangi biaya operasional pada tahapan hauling dalam industri pertambangan dan penggalian batubara. Tahapan hauling merupakan sumber biaya terbesar, terutama dalam pengoperasian dump truck, di mana pembelian bahan bakar menjadi faktor biaya yang paling signifikan. Penelitian ini menggunakan algoritma Linear Regression (LR), Random Forest (RF), dan Support Vector Machine (SVM) untuk membangun model konsumsi bahan bakar dump truck. Data historis konsumsi bahan bakar dump truck diambil dari 6 area penambangan Perusahaan Kontraktor Penambangan. Hasil penelitian menunjukkan bahwa algoritma Random Forest (RF) memberikan performa terbaik dengan R2 sebesar 0,9004, MAE sebesar 0,1909, dan RMSE sebesar 0,3159, serta tingkat akurasi yang lebih tinggi dibandingkan dengan algoritma lainnya. Selanjutnya, penelitian menganalisis variabel input yang paling berpengaruh terhadap model konsumsi bahan bakar dump truck menggunakan teknik permutation feature importance. Hasilnya, variabel input yang paling berpengaruh adalah "accel_pos" atau percepatan atau perlambatan gerakan (acceleration) dump truck yang menunjukkan pentingnya perilaku dan gaya mengemudi dump truck dalam mempengaruhi efisiensi penggunaan bahan bakar.