Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 46748 dokumen yang sesuai dengan query
cover
Sakinah Hayati
"Klasifikasi kanker berbasis microarray data telah menjawab tantangan pengobatan kanker dengan terapi kanker yang dapat dimaksimalkan dan toksisitas yang dapat diminimalkan. Pada tugas akhir ini, dibahas proses klasifikasi terhadap data kanker colon untuk menentukan apakah data tersebut merupakan data kanker atau normal. Tujuan dari penulisan tugas akhir ini adalah memperoleh keakuratan klasifikasi data kanker colon dengan menggunakan Tangent Fuzzy Possibilistic C-Means (TFPCM). Keakuratan klasifikasi tergantung pada parameter-parameter: nilai , derajat fuzzy, dan derajat possibilistic yang terdapat pada algoritma TFPCM, sehingga diperlukan nilai optimal dari parameter-parameter tersebut. Metode pada tugas akhir ini menggunakan teknik Robust Fuzzy Possibilistic C-Means (RFPCM) dengan fungsi Kernel yang digunakan adalah hyper tangent Kernel Bray Curtis.

Cancer classification based on microarray data has been able to cure cancer with cancer therapy that can be maximized and with toxicity that can be minimized. In this essay, classification process of colon cancer data will be discussed further to determine whether the data is a cancer data or normal data. The purpose of writing this essay is to obtain the accuracy of colon cancer data classification using Tangent Fuzzy Possibilistic C-Means (TFPCM). The accuracy depends on the parameters: value, degree of fuzzy, and degree of possibilistic in TFPCM algorithm, so the optimal value of those parameters are needed. The method in this essay using Robust Fuzzy Possibilistic C-Means technique (RFPCM) where the Kernel function that is being used is hyper tangent Kernel Bray Curtis.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63200
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andi Wulan Lestari A.
"Dalam dekade terakhir ini, kanker menjadi pusat perhatian dunia kesehatan dikarenakan penyakit ini termasuk dalam penyebab utama kematian di seluruh dunia. Menurut statistik GLOBOCAN, International Agency for Research on Cancer IARC pada tahun 2012, terdapat 14.067.894 kasus kanker baru dengan 8.201.575 kematian akibat kanker di seluruh dunia. Oleh sebab itu, dibutuhkan tindakan pencegahan dan pengobatan yang efektif. Salah satunya dengan metode klasifikasi kanker. Metode klasifikasi kanker dapat dijadikan sebagai alat bantu tenaga medis untuk menangani kanker. Dalam tugas akhir ini diusulkan algoritma untuk mengklasifikasikan data kanker dengan menggunakan Fuzzy Possibilistic C-means FPCM dan metode baru yang menggunakan Normed Kernel Function-based Fuzzy Possibilistic C-means NKFPCM. Tujuannya untuk mendapatkan keakuratan terbaik dalam pengklasifikasian data kanker. Untuk meningkatkan keakuratan dua metode tersebut, dilakukan evaluasi kandidat fitur dengan menggunakan pemilihan fitur. Untuk pemilihan fitur digunakan metode Laplacian Score. Hasil yang diperoleh menunjukkan perbandingan keakuratan dan running time dari FPCM dan NKFPCM tanpa dan dengan dilakukan pemilihan fitur. Hasilnya, didapatkan akurasi terbaik saat dengan menggunakan metode NKFPCM dengan dilakukan pemilihan fitur, yaitu 90,91 dengan penggunaan 750 fitur untuk data kanker kandung kemih, 100 dengan penggunaan 250 fitur untuk data kanker darah leukemia , 96,67 dengan penggunaan 3.000 fitur untuk data kanker prostat, dan 100 dengan penggunaan 250 fitur untuk data kanker lambung.

Over the past decade, cancer has become the center of attention in the medical field due to its reputation as one of the main causes of death in the worldwide. According to GLOBOCAN statistics, International Agency for Research on Cancer IARC , there were 14,067,894 new cancer cases and 8,201,575 cancer related deaths occurred in 2012. Therefore, preventive actions and effective treatments are required to reduce these threats. One method of handling of cancer using cancer classification. Cancer classification method can be used as aids to handle Cancer. This research proposed an algorithm to classify cancer data using Fuzzy Possibilistic C Means FPCM and a new method, Normed Kernel Function Based Fuzzy Possibilistic C Means NKFPCM. The purpose of this research is to obtain the best accuracy in the classification of cancer data. To improve the accuracy of these two methods, the feature candidate will be evaluated using feature selection. The feature selection was conducted using Laplacian Score. The results obtained show the comparison of the accuracy and running time of FPCM and NKFPCM without and with feature selection. The results show that the best accuracy obtained when using NKFPCM with features selection, with percentage of 90.91 by using 750 features for bladder cancer data, 100 by using 250 features for blood cancer leukemia data, 96.67 by using 3,000 features for prostate cancer data, and 100 by using 250 features for gastric cancer data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66693
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arvan Aulia Rachman
"Klasifikasi data kanker dilakukan untuk menemukan terapi yang tepat yaitu memaksimalkan efektivitas dan meminimalkan toksisitas. Pada umumnya, data kanker terdiri dari banyak fitur. Namun, tidak semua fitur tersebut informatif. Oleh karena itu, fitur-fitur tersebut akan diseleksi menggunakan metode Fisher's Ratio untuk memilih fitur-fitur yang paling informatif. Fitur-fitur terbaik akan dibentuk data baru. Data, sebelum dan setelah dilakukan pemilihan fitur, diklasifikasi menggunakan metode Fuzzy C-Means. Akurasi dari proses klasifikasinya akan dibandingkan. Hasilnya, tanpa melakukan pemilihan fitur, diperoleh rata-rata akurasi sebesar 82.92%. Setelah dilakukan pemilihan fitur, diperoleh akurasi terbaik dengan menggunakan 150 fitur dengan rata-rata akurasi sebesar 89.68%.

Classification of cancer data is done to find the right therapy that maximize efficacy and minimize toxicity. In general, cancer data consists of many features. However, not all of these features are informative. Therefore, these features will be selected using Fisher's Ratio to choose features that are most informative. The best features to be formed new data. Data, before and after feature selection, are classified using Fuzzy C-Means. The accuracy of the classification process will be compared. As a result, without doing feature selection, the accuracy is 82.92%. After doing feature selection, the best accuracy is obtained by using 150 features with the accuracy is 89.68%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64140
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nedya Shandri
"Penyakit kronis adalah penyakit yang diderita dalam waktu panjang dan dapat berkembang secara cepat, salah satunya adalah penyakit kanker dan diabetes. Oleh karena itu, dengan melakukan pendeteksian dini maka perkembangan penyakit kanker dan diabetes akan menurun. Salah satu cara pendektesian dini dapat dilakukan oleh machine learning. Teknik machine learning banyak digunakan dalam berbagai bidang khususnya untuk analisa data medis.  Clustering merupakan salah satu metode dari machine learning yang bertujuan untuk mengelompokkan suatu dataset ke dalam subset berdasarkan ukuran jarak. Salah satu contoh metode clustering adalah metode Entropi Fuzzy C-Means yang dapat mengidentifikasi entropi disetiap titik data dan memilih pusat kluster terdekat dengan entropi minimum. Pada penelitian akan digunakan data kanker dan diabetes dari UCI Repository dengan menggunakan metode Entropi Fuzzy C-Means yang akan dimodifikasi dengan kernel RBF. Sebelum dilakukan klasifikasi, dilakukan pemilihan fitur menggunakan Chi-Square. Tujuan dari penelitian ini adalah untuk mendapatkan fitur-fitur yang optimal dan mengetahui hasil akurasi menggunakan untuk klasifikasi data diabetes dan kanker. Diperoleh hasil akurasi tertinggi pada klasifikasi data medis menggunakan metode Entropi Fuzzy C-Means berbasis kernel dengan pemilihan fitur Chi-Square yaitu sebesar 83.33% untuk data diabetes dan 77.77-100% untuk data kanker.

Chronic disease is a disease that occur for a long time and can develop quickly, one of them is cancer and diabetes. The early detection is very helpful to reduce the development of the disease. One of the ways to detect cancer and diabetes disease is using machine learning technic. Machine learning technic is widely use in many aspects especially in medical data analysis. Clustering is part of machine learning technic that is used to group a dataset into subset based on space size. Entropy Fuzzy C-Means is one of the methods which can identify entropy in every data and can choose the cluster center similar with minimum entropy. In this paper we will use cancer and diabetes medical data from UCI Repository using Entropy Fuzzy C-Means method which is modified by kernel RBF. Before classification, we will select the feature using Chi-Square  to get the optimal subset feature. The purpose of this study was to obtain optimal features and find out the results of accuracy using for the classification of diabetes and cancer data. The medical data classification using Entropy Fuzzy C-Means based on kernel with Chi-Square feature selection gives the 100% highest accuration result for cancer data and 83,33% for diabetes data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggi Pandyo Wibowo
"Magnetic Resonance Spectroscopy (MRS) membantu ahli radiologi untuk mengetahui tingkat keganasan dari kanker otak (astrocytoma). Dalam tugas akhir ini akan dibahas proses klasifikasi terhadap data hasil MRS untuk mengetahui tingkat keganasan dari astrocytoma yang terdiri dari Tingkat rendah (Low Grade), Tingkat tinggi (High Grade), dan Normal. Data yang digunakan dalam tugas akhir ini berasal dari RSU Pusat Nasional Dr. Cipto Mangunkusumo, Jakarta. Metode yang digunakan untuk klasifikasi adalah metode Independent Component Analysis dan metode Possibilistic C-Means.
Hasil percobaan yang dilakukan menunjukkan bahwa metode Independent Component Analysis mempunyai nilai akurasi 96,67% sementara nilai akurasi dari metode Possibilistic C-Means mencapai 90,91%. Dalam tugas akhir ini, akan dibuat sebuah perangkat lunak untuk pendukung keputusan yang membantu memberikan informasi mengenai tingkat keganasan dari astrocytoma.

Magnetic Resonance Spectroscopy (MRS) helps radiologists to determine the level of malignancy of brain cancer (astrocytoma). In this final project, we will discuss the classification process of MRS data to determine the level of malignancy of astrocytoma consisting of low grade, high grade, and normal. The data used in this final project comes from the National Central Hospital Dr. Cipto Mangunkusumo, Jakarta. The methods used for classification are the Independent Component Analysis method and the Possibilistic C-Means method.
The experimental results show that the Independent Component Analysis method has an accuracy value of 96.67% while the accuracy value of the Possibilistic C-Means method reaches 90.91%. In this final project, a decision support software will be made to help provide information about the level of malignancy of astrocytoma.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27867
UI - Skripsi Open  Universitas Indonesia Library
cover
Aldi Purwanto
"

Kanker merupakan salah satu penyakit dengan angka kematian tertinggi di dunia. Kanker adalah penyakit ketika sel-sel abnormal tumbuh tidak terkendali yang dapat menyerang organ tubuh yang berdampingan atau menyebar ke organ lain. Untuk mendiagnosis kanker paru-paru dapat dilakukan dengan pengambilan gambar rontgen, CT scan, dan biopsi jaringan paru. Tujuan dari penelitian ini adalah untuk memprediksi apakah pasien menderita kanker paru-paru atau tidak, dengan menggunakan data gambar CT scan mereka. Oleh sebab itu, dalam penelitian ini digunakan ekstraksi fitur dari gambar CT scan sebagai data untuk mengklasifikasi kanker paru-paru. Data yang digunakan merupakan data gambar CT scan yang didapat dari SPIE-AAPM Lung CT Challenge 2015. Gambar CT scan paru-paru dengan ukuran 512x512 sebelumnya dilakukan pre-processing 2D crop dan filtering. Dengan mengekstraksi fitur dari data gambar seperti ukuran nodul, Gray Level Co-occurrence Matriks (GLCM), dan Local Binary Pattern (LBP) dapat mengubah data gambar menjadi numerik. K-Fold Cross Validation digunakan untuk memisahkan data menjadi data training dan data testing. Fuzzy C-Means (FCM) dan Fuzzy Kernel C-Means (FKCM) diterapkan untuk pengklasifikasian. Didapatkan performa FKCM lebih baik dibandingkan FCM, dengan rata-rata akurasi 75.60%, precision 83.05%, dan specificity 87.80%. Oleh karena itu, penambahan kernel pada metode Fuzzy C-Means dapat meningkatkan performa dari metode tersebut


Cancer is one of the diseases with the highest mortality rate in the world. Cancer is a disease when abnormal cells grow out of control that can attack the body's organs side by side or spread to other organs. To diagnose lung cancer can be done by taking x-ray images, CT scans, and lung tissue biopsy. The purpose of this study is to classify whether patients have lung cancer or not using their CT scan image data. Therefore, in this study feature extraction from CT images was used as data to classify lung cancer. The data used in the form of CT scan image obtained from SPIE-AAPM Lung CT Challenge 2015. Previously, a CT scan of the lung with a size of 512x512 was pre-processed 2D crop and filtering. By extracting features from image data such as nodule size, Gray Level Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP) can convert image data to numeric. K-Fold Cross Validation is used to separate data into training data and testing data. Fuzzy C-Means (FCM) and Fuzzy C-Means (FKCM) are applied for classification. FKCM performed better than FCM, with 75.60% average accuracy, 83.05% average precision, and 87.80% average specificity. Therefore, adding a kernel to the Fuzzy C-Means method can improve the performance of the method.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafira Nur Amalia
"Dalam suatu penelitian, dibutuhkan data yang dikumpulkan dan diolah untuk memecahkan permasalahan dan membuktikan hipotesis dalam penelitian. Namun, seringkali data yang diperoleh tidak menyimpan nilai untuk suatu variabel pada observasi yang diharapkan. Data yang tidak tersimpan menyebabkan data penelitian kosong dan berdampak pada penelitian. Jika peristiwa ini terjadi, maka penelitian terindikasi memiliki missing data atau missing values. Salah satu cara untuk mengatasi missing values yaitu dengan imputasi. Imputasi bekerja dengan mengisi nilai pada missing values dengan suatu nilai estimasi yang telah dianalisis dan diputuskan untuk membuat suatu dataset lengkap. Dalam proses imputasi, seringkali ditemukan bahwa data yang digunakan untuk imputasi terkadang memiliki karakteristik yang tidak jelas atau tidak konsisten, maka salah satu solusinya adalah dengan menggunakan metode Fuzzy C-Means (FCM). Estimasi nilai-nilai missing values menggunakan model FCM menghasilkan model prediksi dengan variasi parameter yang beragam sehingga dibutuhkan pendekatan lain untuk menghasilkan model terbaik dengan parameter yang optimal. Hal inilah yang mendasari diperlukannya suatu pendekatan hybrid, yaitu dengan menggabungkan beberapa model machine learning untuk memperoleh hasil estimasi missing values terbaik. Pada penelitian ini, dilakukan implementasi Hybrid Fuzzy C-Means dan Majority Vote (Hybrid FCMMV) pada data Penyakit Paru Obstruktif Kronik (PPOK) tahun 2012-2017 yang diperoleh dari Rumah Sakit Cipto Mangunkusumo (RSCM) untuk memberikan performa imputasi yang lebih baik berdasarkan akurasi, presisi, recall, dan F-Score melalui klasifikasi metode ensemble Random Forest.

In a research study, collected and processed data are needed to solve problems and prove hypotheses. However, the obtained data often do not store the value for a variable in the expected observation. Data that are not stored contribute to the emptying of research data which has an impact on the research itself. If the phenomenon occurs, it indicates that the research has missing data or missing values. One way to overcome missing values ​​is using imputation techniques. The technique works by filling in the missing values with an estimated value that has been analyzed and decided to create a complete dataset. In the process, it is often found that the data being used for imputation have unclear or inconsistent characteristics, which can be solved by implementing Fuzzy C-Means (FCM) method. The estimation of missing values ​​using the FCM model produces predictive models with a variety of parameters, hence another approach to produce the best model with optimal parameters is needed. This underlies the need for a hybrid approach, which is acquired through combining or integrating different machine learning models to earn the best estimation result of missing values. In this study, the implementation of Hybrid Fuzzy C-Means and Majority Vote (Hybrid FCMMV) was conducted on Chronic Obstructive Pulmonary Disease (COPD) data in 2012-2017 from Cipto Mangunkusumo Hospital (RSCM) ) to provide better imputation performance based on accuracy, precision, recall, and F-Score through the classification of the Random Forest ensemble method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kiki Aristiawati
"Penyakit Paru Obstruktif Kronik (PPOK) merupakan salah satu penyebab kematian terbanyak dengan jumlah kematian sekitar 3 juta jiwa atau setara dengan 5,2% dari jumlah
kematian di seluruh dunia. Untuk itu diperlukan penelitian lebih lanjut mengenai PPOK, namun data yang dikumpulkan dalam penelitian biasanya tidak memuat semua data yang diinginkan. Hilangnya informasi dalam data dikenal dengan istilah missing values yang dapat menjadi masalah untuk semua jenis analisis data. Salah satu cara untuk menangani missing values yaitu dengan melakukan proses imputasi data pada tahap preprocessing untuk mendapatkan data lengkap yang diharapkan mampu meningkatkan akurasi dari analisis data yang dilakukan. Pada penelitian ini dilakukan imputasi menggunakan mean dan Fuzzy C-Means (FCM). FCM merupakan metode pengelompokan yang memungkinkan satu bagian data menjadi milik dua atau lebih kelompok berdasarkan nilai keanggotaannya. Data lengkap hasil imputasi diuji menggunakan metode klasifikasi Decision Tree dengan persentase data training 50%-90% untuk melihat performa dari metode mean dan FCM. Berdasarkan penelitian ini diperoleh nilai akurasi, presisi, dan recall tertinggi untuk klasifikasi data PPOK yang diimputasi menggunakan mean masing-masing sebesar 64,7%, 71%, dan 65%. Sedangkan nilai akurasi, presisi, dan recall tertinggi untuk klasifikasi data PPOK yang diimputasi menggunakan FCM
masing-masing sebesar 78,9%, 85%, dan 79%. Hasil ini menunjukkan bahwa FCM membantu Decision Tree untuk mengklasifikasikan data lebih baik dengan nilai imputasi yang lebih baik untuk menggantikan missing values.

Chronic Obstructive Pulmonary Disease (COPD) is one of the most causes of death in the world with around 3 million deaths, equivalent to 5.2% of deaths worldwide. For this reason, further research needs to be done on CPOD, but the data collected in the study often does not contain all the desired data. Loss information in data is called as a missing values which can be a problem for all types of data analysis. One way to handle missing values is by doing the imputation process at the preprocessing stage to obtain complete data which is expected to increase the accuracy of the data analysis performed. In this study, imputation was done using mean and FCM. FCM is a clustering method that allows one part of the data to belong to two or more groups based on their membership function. The complete dataset was trained with Decision Tree classifier with the percentage of data training 50%-90% to observe the performance in terms of accuracy, precision, and recall for mean and FCM method. Based on this study, the highest value of accuracy, precision,
and recall for classification of COPD data imputed using mean of 64.7 %, 71 % and 65 % respectively. While the highest value of accuracy, precision, and recall for classification of COPD data imputed using FCM is 78.9 %, 85 %, and 79 % respectively. These results indicate that FCM helps Decision Tree to classify data better with better imputation values to replace missing values."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diyah Septi Andryani
"Clustering bertujuan untuk mengklasifikasikan pola yang berbeda ke dalam kelompok yang disebut cluster. Analisis gen dengan menggunakan metode clustering dinilai lebih akurat dibandingkan analisis nukleotida menggunakan penyejajaran DNA. Hybrid clustering pada tesis ini mengkombinasikan algoritma fuzzy c-means dan algoritma divisive mampu meningkatkan keakurasian jika dibandingkan pendekatan pengelompokan partitional tradisional. Algoritma divisive akan dijalankan pada step kedua setelah hasil clustering yang diperoleh dari pengelompokan partisi fuzzy c-means.
Penentuan jumlah cluster terbaik ditentukan dari nilai Indeks Davies Bauldin yang paling minimum. Sebanyak 1252 barisan DNA HPV Human papillomavirus diperoleh dari Genbank NCBI dengan proses melakukan ekstraksi ciri DNA, selanjutnya dilakukan normalisasi. Proses ekstraksi ciri, normalisasi, dan penerapan algoritma partisi fuzzy c-means dan divisive dalam metode hybrid clustering menggunakan bantuan program open source.
Pada hasil hybrid clustering level awal diperoleh jumlah cluster optimum sebanyak 3 cluster dengan nilai Indeks Davies Bouldin paling minimum adalah 0.9715919. Pada level ke-2 clustering didapatkan cluster ke-1 terbagi atas 9 sub cluster dengan nilai IDB minimum adalah 0.8909797. Cluster ke-2 terbagi atas 2 sub cluster dengan nilai IDB minimum adalah 0.7650508. Cluster 3 terbagi atas 2 sub cluster dengan nilai IDB minimum adalah 0.9112528. Nilai IDB pada level kedua selalu lebih kecil dibanding nilai IDB pada level 1. Hal ini mengindikasikan bahwa hybrid clustering memberikan hasil yang lebih baik terhadap hasil clustering.

Clustering aims to classify the different patterns into groups called clusters. Analysis gene by using clustering method is considered more accurate than analysis of nucleotide using DNA alignment. In this thesis, hybrid clustering algorithm which combines fuzzy c means and algorithm divisive will be improve accuracy when compared to partitional clustering. Divisive algorithms will applied on second level after clustering partition using fuzzy c means.
To find the best number of clusters is determined using the minimum value of Davies Bouldin Index DBI of the cluster results. The data is 1252 sequences of HPV DNA sequences obtained from Gen Bank Database in the National Centre for Biotechnology Information NCBI at http www.ncbi.nlm.nih.gov in FASTA format. The data is converted into numerical form through feature extraction using n mers frequency.
The results on first level hybrid clustering obtained the optimum cluster divided into three clusters with the value of the minimum Davies Bouldin Index is 0.9715919. Morever, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47171
UI - Tesis Membership  Universitas Indonesia Library
cover
Rezki Aulia Putri
"Sinusitis adalah peradangan pada dinding sinus, yaitu rongga kecil yang terhubung dengan rongga udara dalam tulang tengkorak. Sinus terletak di belakang dahi, di dalam struktur tulang pipi, di kedua sisi hidung, dan di belakang mata. Sinusitis disebabkan oleh peradangan pada rongga hidung, tumbuhnya polip, alergi, dan hal lainnya yang dapat terjadi pada orang dewasa, remaja, bahkan anak-anak. Untuk mengklasifikasi jenis sinusitis, penulis menggunakan Fuzzy C-Means Berbasis Kernel yang merupakan pengembangan dari Fuzzy C-Means. Fuzzy C-Means mengelompokkan data menggunakan jarak Euclidean. Namun, jika data yang akan dipisahkan adalah data non linear, maka konvergensinya akan kecil dan membutuhkan waktu yang lama. Untuk menyelesaikan masalah ini dapat digunakan Fuzzy C-Means Berbasis Kernel yang menggunakan fungsi kernel untuk menggantikan jarak Euclidean. Metode ini memetakan objek dari ruang data ke ruang fitur yang berdimensi lebih tinggi, sehingga dapat mengatasi kelemahan FCM. Data yang digunakan adalah data penyakit sinusitis yang diperoleh dari laboratorium radiolog RSUPN Cipto Mangunkusumo, Jakarta. Karena data yang digunakan adalah data non linear, maka metode yang lebih cocok digunakan adalah Fuzzy C-Means Berbasis Kernel. Dengan menggunakan software Matlab diperoleh akurasi 100% dengan waktu mendekati 0 detik untuk Fuzzy C-Means Berbasis Kernel.

Sinusitis is an inflammation of the sinus wall, a small cavity interconnected through the airways in the skull bones. It is located on the back of the forehead, inside the cheek bone structure, on both side of the nose, and behind the eyes. Sinusitis is caused by infection, growth of nasal polips, allergies, and others. This condition can effect adults, teenagers, and even children. To classify sinusitis we used Kernel Based Fuzzy C-Means, which is the development of Fuzzy C-Means (FCM). FCM algorithm groups data using Euclidean distance. However, when non linear data is separated, the convergence is innacurate and need a long running time. To overcome this problem, a Kernel Based Fuzzy C-Means that use kernel functions as a substitute for Euclidean distance. It maps objects from data space to a higher dimention feature space, so they can overcome FCM deficiencies. Data that is used is sinusitis dataset obtained from the laboratory of radiology at Cipto Mangunkusumo National General Hospital, Jakarta. Because the data used is non-linear dataset, the more suitable method is Kernel Based Fuzzy C-Means. By using the Matlab software 100% accuracy is obtained and running time is close to 0 for Kernel Based Fuzzy C-Means.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>