Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 150545 dokumen yang sesuai dengan query
cover
Muhammad Azhar Hadnyandita
"Mangan merupakan logam ke empat yang paling banyak digunakan di dunia setelah baja, aluminium dan tembaga. Sekitar 95% mangan digunakan untuk kebutuhan metalurgi, yaitu untuk steelmaking dan pembuatan ferroalloys seperti silico-manganese dan ferromanganese. Mangan dapat dikategorikan berdasarkan kandungannya, yaitu bijih mangan kadar rendah (kurang dari 30% Mn), sedang (30%-40% Mn) dan tinggi (lebih dari 40% Mn). Pembuatan ferromangan dengan kadar Mn minimum 60% menggunakan bijih mangan kadar rendah sangat sulit, oleh karena itu perlu dilakukan proses benefisiasi untuk meningkatkan kadar bijih Mn serta rasio Mn/Fe.
Dalam penelitian ini telah dilakukan proses benefisiasi terhadap dua jenis bijih mangan lokal, yaitu bijih mangan asal Lampung dan Jawa Timur. Benefisiasi dimulai dengan crushing dan grinding dua bijih mangan, untuk mereduksi ukuran partikel. Pengaruh ukuran partikel, yaitu -20+40, -40+60 dan -60+80 mesh terhadap proses benefisiasi telah dipelajari dalam penelitian ini. Proses benefisiasi berupa gravity separation dengan menggunakan metode shaking table dilakukan terhadap kedua jenis bijih mangan tersebut. Preliminary test dilakukan setelah gravity separation untuk mengetahui feasibility dari kedua bijih mangan tersebut untuk dilakukan proses benefisiasi tahap selanjutnya, yaitu reduction roasting. Reduction roasting dilakukan terhadap bijih mangan pada suhu 700oC dengan variasi waktu 1 jam, 1,5 jam dan 2 jam. Magnetic separation dilakukan terhadap masing-masing variasi waktu menggunakan magnet dengan kekuatan sekitar 500G.
Hasil yang didapat menunjukkan bahwa ukuran partikel tidak terlalu mempengaruhi rasio Mn/Fe. Kemudian hasil dari gravity separation menunjukkan proses ini tidak efisien terhadap kedua bijih mangan. Pada bijih mangan asal Lampung tidak ada kenaikkan rasio Mn/Fe yang signifikan, lalu pada bijih mangan asal Jawa Timur rasio Mn/Fe naik menjadi 3,3 pada fraksi tailing, namun tailing yang didapat hanya sekitar 2,4% dari feed yang masuk sehingga menyebabkan proses ini tidak ekonomis. Reduction roasting memiliki efek yang penting untuk proses magnetic separation karena dapat mengubah senyawa hematite menjadi magnetite sehingga Fe pada bijih mangan dapat terpisah. Hasil magnetic separation menunjukkan rasio Mn/Fe paling tinggi didapat dalam waktu 1 jam pada ukuran -20+40, yaitu sebesar 6,10 dan menurun seiring semakin halusnya ukuran partikel.

Manganese is the fourth widely used metal in the world after steel, aluminium and copper. For about 95% of Manganese usage is for metallurgical applications, like steelmaking and the productions of ferroalloys, silico-manganese and ferromanganese. Manganese is categorized based on its content, which is low-grade (less than 30% of Mn), medium-grade (30-40% of Mn) and high-grade (more than 40% of Mn). Producing ferromanganese with a minimum content of Mn for about 60% using a low-grade manganese ore is very difficult, therefore beneficiation process is needed to enhance the Mn content and also the Mn/Fe ratio.
In this research, beneficiation processes were conducted to two local low-grade manganese ores, manganese ore from Lampung Province and from East Java Province. Beneficiation starts by crushing and grinding two manganese ores, to reduce the particle size. The effect of particle sizes, which were -20+40, -40+60 dan -60+80 mesh, to the beneficiation processes were studied in this research. Gravity separation using shaking table as a method was the first step of beneficiation process that was conducted to both manganese ores. Preliminary test were done after the gravity separation to understood the feasibility of the two manganese ores that can be processed to the next beneficiation processes, reduction roasting. Reduction roasting was conducted to the manganese ore in 700oC for 1 hour, 1,5 hours and 2 hours as a time variant. Magnetic separation was done by separating every single time variant using a magnet with an intensity about 500G.
The results shows that size fraction or particle size has a negligible effect to the Mn/Fe ratio. The gravity separation results shows that this process is not efficient to the both manganese ores. Lampung Province ore shows that there is no significant of Mn/Fe increment, and for East Java Province ore, Mn/Fe increases to 3.3 in tailing fraction, however the tailing fraction that is gained in this process was only about 2.4% from the feed therefore it?s not economical. Reduction roasting has an important effect for the magnetic separation process because it converts hematite compound to magnetite so the Fe from this ore can be separated. The magnetic separation results shows that the highest Mn/Fe ratio was gained in 1 hour on -20+40 size particle, which is 6.10 and decrease along with decresing the size particle."
Depok: Universitas Indonesia, 2016
S63233
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satrio Amarela
"ABSTRAK
Sekitar 90% bijih mangan di dunia digunakan untuk pembuatan ferromangan dan
ferrosilicomangan sebagai material paduan dalam proses steel making. Penambahan
unsur mangan dalam wujud paduan ferromangan pada proses steel making mampu
meningkatkan kekerasan dan ketangguhan baja. Ferromangan diperoleh dari
pengolahan bijih mangan metallurgical grade dengan proses peleburan. Bijih mangan
kadar rendah, melalui penelitian sebelumnya oleh Hendri (2015) dan Noegroho (2016),
tidak ekonomis untuk dilebur menjadi ferromangan 􀁇􀁈􀁑􀁊􀁄􀁑􀀃􀀰􀁑􀀃􀂕􀀙􀀓􀀈􀀃􀁖􀁈􀁋􀁌􀁑􀁊􀁊􀁄􀀃􀁅􀁌􀁍􀁌􀁋􀀃
mangan kadar rendah harus dibenefisiasi terlebih dahulu untuk meningkatkan kadar
mangan dan rasio Mn/Fe dalam bijih.
Bijih mangan kadar rendah pada penelitian ini merupakan bijih mangan lokal asal
Lampung dan Jawa Timur. Benefisiasi dilakukan menggunakan teknik gravity
separation dan reduction roasting selama 30 menit menggunakan 20% batu bara
dilanjutkan magnetic separation pada medan magnet ±500 gauss. Bijih mangan
dihaluskan ke dalam ukuran -20+40, -40+60, dan -60+80 mesh dan temperatur
reduction roasting divariasikan pada 500oC, 700oC, dan 900oC. Pengujian XRD dan
XRF dilakukan dalam mengarakterisasi sampel awal dan hasil.
Rasio Mn/Fe dan kadar mangan pada bijih asal Lampung masing-masing
sebesar 0,90 dan 7,83% sementara pada bijih asal Jawa Timur masing-masing sebesar
1,356 dan 18,52%. Setelah dibenefisiasi, hasil terbaik dari proses gravity separation
pada bijih Lampung tercapai pada rasio Mn/Fe 0,95 dengan kadar Mn 9,4% pada
89,75% recovery berat sementara pada bijih Jawa Timur diperoleh pada rasio Mn/Fe
3,32 dengan kadar mangan 40,48% pada 2,09% recovery berat. Selanjutnya, hasil
terbaik dari reduction roasting dilanjutkan magnetic separation pada bijih Lampung
diperoleh pada rasio Mn/Fe 1,96 dan kadar mangan 6,81% pada 36 wt% recovery,
sementara pada bijih Jawa Timur, tercapai pada rasio Mn/Fe 3,99 dan kadar mangan
34,31% pada 44 wt% recovery.

ABSTRACT
About 90% of manganese ore is utilized for ferromanganese and
ferrosilicomanganese production as alloying metal in the steel making process. The
addition of manganese in the form of ferromanganese to the steel making process is
able to increase hardness and toughness of steel. Ferromanganese is obtained from the
metallurgical grade manganese ore processing through the smelting process. Low grade
manganese ore, according to the previous research from Hendri (2015) and Noegroho
(2016), was not economic for direct smelting to obtain ferromanganese with Mn 􀂕􀀙􀀓􀀈􀀑􀀃
Therefore, low grade manganese ore must be beneficiate first to enhance the
manganese grade and its ratio.
Low grade manganese ore in this research are a local ore from Lampung and
East Java. The steps on the beneficiation process are including gravity separation and
reduction roasting for 30 minutes using 20% of coal followed by magnetic separation
at the magnetic intensity of ±500 Gauss. The particle size was reduced into -20+40, -
40+60, and -60+80 mesh and the temperature of reduction roasting was varied at 500oC,
700oC, and 900oC. XRD and XRF testing was conducted for the characterization of ore
and the sample results.
Mn/Fe ratio and manganese content in Lampung ore is respectively 0.9 and
7.83%, while in East Java ore is respectively 1.356 and 18.52%. After beneficiation,
the best results from gravity separation of Lampung ore was obtained at 0.95 of Mn/Fe
ratio and 9.4% of manganese content at 89.75% of weight recovery, while in East Java
ore was obtained at 3.32 of Mn/Fe ratio and 40.48% of manganese content at 2.09% of
weight recovery. Then, the best results of reduction roasting followed by magnetic
separation of Lampung ore was obtained at 1.96 of Mn/Fe ratio and 6.81% of
manganese content at 36% of weight recovery, while in East Java ore was obtained at
3.99 of Mn/Fe ratio and 34.31% of manganese content at 44% weight recovery.
"
2016
S63231
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Arief Meyviawan
"ABSTRAK
Ferokrom (45-75% Cr dan 35-50% Fe) adalah paduan yang sangat penting dalam pembuatan baja tahan karat karena sifat kekuatan dan ketahanan terhadapa korosi yang tinggi. Ferokrom dibuat dari bijih kromit, sumber kromium yang paling ekonomis untuk di eksploitasi, melalui proses peleburan dengan menggunakan submerged arc furnace. Proses benefisiasi dengan metode roasting adalah proses yang digunakan oleh industri ferokrom dengan rasio Cr/Fe sebagai parameter utama dalam menentukan efisiensi operasi. Semakin tinggi nilai rasio Cr/Fe hasil benefisiasi, semakin tinggi efisiensi yang dicapai saat proses peleburan. Tujuan dari penelirian ini adalah untuk mencapai rasio Cr/Fe tertinggi dengan melakukan beberapa parameter selama proses roasting. Separasi magnet menggunakan kuat magnet 500 gauss dilakukan terhadap pasir kromit kadar rendah.
Roasting dilakukan pada temperatur 800, 1000 dan 1200 oC selama 30, 60, dan 90 menit. 100 gram produk non magnet hasil separasi magnet awal digunakan sebagai material utama, 30,6 gram batubara sebagai reduktor dan 10 gram CaCO3 sebagai flux. Separasi magnet dilakukan untuk memisahkan senyawa yang bersifat magnet hasil roasting. Respon dari roasting di lihat dengan X-ray diffraction (XRD), sedangkan efek separasi magnet dievaluasi dengan X-ray fluorescence (XRF). Hasil penelitian ini menunjukkan rasio Cr/Fe tertinggi adalah 1,54 pada roasting 1000 oC selama 60 menit. Terlihat bahwa roasting dapat memisahkan senyawa FeO dari struktur spinel dan separasi magnet dapat mengurangi unsur besi untuk meningkatkan rasio Cr/Fe.

ABSTRACT
Ferrochromium (45-70 % Cr and 35-50% Fe) is a vital alloy mostly used for the production of stainless steel due to its high strength and corrosion resistance. It is produced from chromite ore, the only economically exploitable resource of chromium, through carbo-thermic smelting in submerged arc furnaces. The beneficiation-roasting process of chromite is currently applied as ferrochromium industrial production with the Cr/Fe ratio as the main parameter to determine the efficiency of the operation. The higher Cr/Fe ratio obtained during beneficiation-roasting process, the higher efficiency of smelting would be achieved. The objective of this research is to get the highest Cr/Fe ratio with conducting several parameters during roasting operation. Magnetic separation using 500 gauss of the magnetic intensity was carried out to the low grade chromite ore.
Roasting was conducted at 800, 1000 and 1200 oC for 30, 60 and 90 minutes with the 100 grams of non-magnetic product as the main material, 30.6 gram of coal as reductor and 10 gram of CaCO3 as flux. Afterwards, magnetic separation was reconducted to separate the magnetic constituent. The roasting response was observed by X-ray diffraction (XRD), while the effect of magnetic separation was determined by X-ray fluorescence (XRF). The results showed that the highest Cr/Fe ratio is 1.54, achieved after roasting at 1000oC for 60 minutes. It clearly indicates that roasting process has successfully released the FeO from Spinel Crystal and separation using magnet can decrease the iron constituent in chromite to enhance the Cr/Fe ratio."
2017
S66090
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raja Jovian Trisila
" ABSTRAK
Kromium merupakan salah satu unsur penting di dalam industri moderen. Kegunaan kromium yang paling utama adalah sebagai campuran dalam produksi baja tahan karat dalam bentuk ferrokromium. Bahan baku kromium yang dapat digunakan untuk menjadi ferrokromium harus memiliki kandungan 48 Cr2O3 min dengan rasio Cr/Fe sebesar 3. Bijih kromit kadar rendah, melalui penelitian sebelumnya oleh Nurjaman 2015 , hanya dapat menghasilkan ferrokromium dengan rasio Cr/Fe sebesar 0,662 Cr: 35,22 ; Fe: 53,15 , sehingga bijih perlu dibenefisiasi terlebih dahulu untuk meningkatkan kadar kromium dan rasio Cr/Fe yang terkandung di dalamnya. Bijih kromit kadar rendah pada penelitian ini merupakan bjih kromit lokal asal Kabupaten Konawe, Sulawesi Tenggara. Terdapat beberapa proses benefisiasi bijih kromit kadar rendah yang umum digunakan. Pada penelitian kali ini, digunakan teknik benefisiasi reduksi-roasting yang dilanjutkan dengan pemisahan magnetik. Sebelum proses reduksi-roasting, dilakukan proses pengayakan sehingga didapatkan bijih dengan ukuran partikel 50 mesh. Proses reduksi-roasting dilakukan pada temperatur 1000 C dengan durasi 60 menit dengan variasi jenis reduktor grafit, kokas, dan arang batok 5 excess carbon dan jumlah aditif CaCO3 5 , 15 , dan 20 . Proses pemisahan magnetik dilakukan dengan menggunakan sebuah magnetic disc dengan intensitas medan magnet sebesar 500 Gauss dalam keadaan kering. Proses karakterisasi mineral dengan alat XRD dilakukan setelah proses reduksi-roasting untuk mengamati perubahan senyawa yang terjadi. Di lain hal, karakterisasi dengan alat XRF dilakukan setelah proses pemisahan magnetik untuk mengetahui rasio Cr/Fe akhir pasir kromit. Rasio Cr/Fe dan kadar kromium pada bijih asal Kabupaten Konawe masing-masing sebesar 0,90 dan 29,3 .Setelah proses benefisiasi, kandungan Cr2O3 dan rasio Cr/Fe akhir yang dimiliki setiap sampel berbeda-beda. Nilai rasio Cr/Fe tertinggi didapatkan dari sampel yang menggunakan reduktor arang batok 5 excess carbon dan 20 aditif CaCO3, yaitu sebesar 1,601 Cr: 25,27 ; Fe: 15,78 Secara teoritis, kandungan Cr2O3 di dalam pasir kromit tersebut adalah 62,5 . Berdasarkan kepada data hasil penelitian, nilai rasio Cr/Fe meningkat seiring dengan meningkatnya jumlah aditif CaCO3 yang digunakan
ABSTRACT Chromium is on of the most important element in modern industry. The main function of chromium is an alloying metal ferrochrome in stainless steel production. To obtain metallurgical grade which economically used as alloying metal, the chromium ore chromite should contain 48 Cr2O3 min with Cr Fe ratio equal to 3. Low grade chromite ore, according to the previous research from Nurjaman 2015 , merely can produce ferrochrome with Cr Fe ratio 0.66 Cr 35.22 Fe 53.15 , therefore low grade chromite ore must be beneficiate first to enhance the chromium grade and its ratio. Low grade chromium ore in this research are a local ore from Konawe, Southeast Sulawesi. There are some available beneficiation process. The steps on the beneficiation process are including reduction roasting and magnetic separation. Before the reduction roasting process ocured, the size of the ore was filtered with 50 mesh siever tool. Reduction roasting process was occurred at 1000 C in 60 minutes, the reductant 5 excess carbon type graphite, cokes, and coconut shell charcoal and CaCO3 additive content 5 , 15 , and 20 was varied. Magnetic separation process was done by using 500 Gauss magnetic disc in dry condition. The mineral was characterized by XRD after the reuction roasting process to detect the compound change inside the mineral. On the other hand, the mineral was characterized by XRF after magnetic separation process to identified the final Cr Fe ratio of the chromite ore. Cr Fe ratio and chromium content in low grade Konawe chromite ore is respectively 0.9 and 29.3 . After the beneficiation process, the ores have different chromium content and Cr Fe ratio. The highest Cr Fe ratio was obtained from the ore with 5 excess carbon coconut shell charcoal reductant and 20 CaCO3 additive, the ratio is 1.601 Cr 25.27 Fe 15.78 . Theoritically, the final Cr2O3 content of the ore is 62.5 . Based on the research data, Cr Fe ratio enhanced with increasing the additive dosage."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66709
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laurensia
"ABSTRAK
Sekitar 95 dari seluruh bijih kromit yang ditambang di dunia digunakan sebagai bahan baku pembuatan ferrochromium FeCr . Pada penelitian sebelumnya, peleburan pasir kromit kadar rendah tidak dapat menghasilkan ferrochromium dengan kadar Cr ge; 60 sehingga pasir kromit kadar rendah harus dilakukan proses benefisiasi untuk meningkatkan kadar Cr dan rasio Cr/Fe sebelum proses peleburan menjadi ferrochromium. Penelitian ini menggunakan pasir kromit kadar rendah asal Kabupaten Konawe, Sulawesi Selatan. Proses benefisiasi yang dilakukan adalah magnetic separation menggunakan medan magnet 800 Gauss dan reduction roasting selama 60 menit pada temperatur 1000 C dengan variabel jumlah reduktor, yaitu 5 lean carbon, stokiometri, 5 excess carbon dan 10 excess carbon serta jumlah aditif CaSO4, yaitu 5 , 10 , 15 , dan 20 . Rasio Cr/Fe dan kadar Cr pada bahan baku pasir kromit adalah 0,9 dan 19,27 . Kromium dalam pasir kromit kadar rendah berada dalam mineral magnesiochromite, aluminian, yang terasosiasi dengan unsur besi dalam struktur spinel. Magnetic separation yang dilakukan pada bahan baku pasir kromit menghasilkan kenaikan rasio Cr/Fe dan kadar Cr menjadi sebesar 1,31 dan 21,33 akibat adanya pemisahan antara kromit yang bersifat paramagnetik dan pengotornya yang bersifat magnetik. Selanjutnya, hasil terbaik dari reduction roasting yang dilanjutkan dengan magnetic separation diperoleh pada proses reduction roasting dengan menggunakan 10 excess carbon dan 20 CaSO4, yaitu menghasilkan rasio Cr/Fe dan kadar Cr sebesar 1,19 dan 20,48 atau setara dengan FeCr yang mengandung 54,5 Cr.

ABSTRACT
Around 95 of mined chromite ore in the world is utilized as raw material for ferrochromium making process. According to the previous research, the melting of low grade chromite sand could not produce ferrochromium with Cr ge 60 so that low grade chromite sand has to be beneficiated to enhance the chromium grade and Cr Fe ratio before the melting process to produce ferrochromium. This research utilized low grade chromite sand from Konawe District, South Sulawesi. The beneficiation processes that was conducted were magnetic separation, which used magnetic field of 800 Gauss and reduction roasting for 60 minutes at 1000 C with various reductant dosage, 5 lean carbon, stoichiometry, 5 excess carbon and 10 excess carbon along with various dosage of CaSO4 as additive, 5 , 10 , 15 , and 20 . Cr Fe ratio and chromium content in low grade chromite sand are 0.9 and 19.27 . Chromium, in low grade schromite sand, was existed as magnesiochromite, aluminian, which associated with iron in spinel structure. Magnetic sseparation process that was conducted to the raw material, resulted in enhancement of Cr Fe ratio and chromium content to 1.31 and 21.33 due to separation of the paramagnetic chromite from the magnetic gangue. Furthermore, the best result from reduction roasting followed by magnetic separation was obtained when reduction roasting used 10 excess carbon and 20 CaSO4, which resulted at 1.19 of Cr Fe ratio and 20.48 of chromium content or equivalent to FeCr with 54.5 Cr."
2017
S66515
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agis Rahma Faradila
"ABSTRAK
Melalui Proses Benefisiasi dengan Variabel Jumlah Penambahan Reduktor Coal dan Aditif CaCO3 pada Reduction-RoastingSekitar 90 dari bijih kromit ditambang dikonversi menjadi ferrochrome oleh industri metalurgi. Industri stainless steel mengkonsumsi sekitar 80 dari ferrochrome yang diproduksi terutama dengan karbon tinggi . Pasir kromit kadar rendah pada penelitian ini merupakan pasir kromit lokal asal Kabupaten Konawe, Sulawesi Selatan. Benefisiasi dilakukan menggunakan teknik Magnetic Separation baik di awal sebelum reduction-roasting maupun di akhir setelah reduction-roasting dan Pre-reduction roasting dilakukan selama 60 menit pada temperatur 1000 C menggunakan variabel penambahan jumlah reduktor sebesar 5 lean coal, stokiometri, 5 excess carbon dan 10 excess carbon serta penambahan jumlah aditif sebesar 5 , 15 , dan 20 . Pengujian XRD dan XRF dilakukan dalam mengarakterisasi sampel awal dan hasil. Rasio Cr/Fe 0,9 dan kadar Cr pada pasir kromit awal 29,3 dalam bentuk Cr2O3 serta kadar Fe 30,9 dalam bentuk Fe2O3. Setelah dilakukan pemisahan magnetik di awal rasio Cr/Fe meningkat menjadi 1,31. Kemudian dilakukan reduksi-roasting dengan hasil bahwa variasi penambahan reduktor dan aditif dapat mempengaruhi perubahan fasa yang terjadi. Dengan seiring penambahan aditif, pemecahan struktur spinel akan semakin baik. Kemudian dilakukan pemisahan magnetic yang dilanjutkan dengan pengujian XRF, rasio Cr/Fe meningkat menjadi 1.530 pada variasi stokiometri reduktor 20 aditif dan 5 excess carbon 20 aditif. Reduktor optimum berada pada stokiometri dan 5 excess carbon sedangkan aditif optimum di 20 . Rasio Cr/Fe setara dengan 60,5 dalam FeCr. Oleh sebab itu, dapat disimpulkan proses benefisiasi berhasil untuk meningkatkan kadar Cr pada pasir kromit kadar rendah. Jenis aditif dan reduktor yang berbeda akan mempengaruhi hasil reduksi-roasting sehingga rasio Cr/Fe yang dihasilkan pun berbeda.Kata kunci: Ferrochrome, pasir krom kadar rendah, pasir krom metallurgical grade, benefisiasi, gravity separation, reduction roasting, magnetic separation

ABSTRACT
Through Beneficiation Process with the Variation of Reductant Coal and CaCO3 as Additive Dosage on Reduction Roasting Process Approximately 90 of the mined chromite ore is converted to ferrochrome by the metallurgical industry. Chromite sand low grade in this study is a local chromite sand origin Konawe, South Sulawesi. Beneficiation Magnetic Separation is done using techniques well in the beginning before the reduction roasting and in the end after reduction roasting and Pre reduction roasting is done for 60 minutes at a temperature of 1000 C using a variable amount of reductant additions of 5 lean coal, stoichiometric, 5 excess carbon and 10 excess carbon and the addition of an additive at 5 , 15 and 20 . XRD and XRF testing done in characterizing the initial sample and results. The ratio of Cr Fe and Cr content is 0.9 at the beginning of chromite sand in the form of 29.3 Cr2O3 and Fe content of 30.9 in the form of Fe2O3. After magnetic separation at the beginning of the ratio of Cr Fe increased to 1 31. Then do the reduction roasting with the result that the variation of the addition of reductant agents and additives can affect the phase change that occur. With over additive, breaking spinel structure, the better. Then magnetic separation followed by XRF testing, the ratio of Cr Fe increased to 1.530 in the variation of 20 of the stoichiometric reductant additive and 5 20 excess carbon additives. Reductant agents that are in the optimum stoichiometric and 5 excess carbon while the optimum additive at 20 . The ratio of Cr Fe equivalent to 60.5 in FeCr. Therefore, it can be concluded successfully beneficiation process to increase the Cr content at low levels of chromite sand. Type different additives and reductant agents will affect the outcome of reduction roasting so that the ratio of Cr Fe produced any different. "
2017
S66501
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Royani
"ABSTRAK
Pelindian mangan dari bijih mangan kadar rendah telah berhasil dilakukan menggunakan larutan sulfat. Pada percobaan ini, bijih mangan dipanggang dengan arang kayu sebagi reduktor pada 700 oC selama 120 menit. Kemudian kalsin hasil pemanggangan dilindi menggunakan larutan asam sulfat. Parameter proses pelindian yang diamati meliputi pengaruh kecepatan pengadukan, konsentrasi asam, temperatur, waktu dan persen padatan terhadap mangan terekstrak. Hasil optimum didapat pada proses pelindian dengan konsentrasi 12% H2SO4, kecepatan pengadukan 400 rpm, rasio padatan 1:10, dan temperatur 75 oC selama 3 jam dengan mangan terekstrak sebesar 84,61%. Kinetika reaksi pelindian mangan dalam asam sulfat dikendalikan oleh proses difusi dengan nilai energi aktivasi sebesar 4,88 KJ/mol.

ABSTRACT
The leaching of manganese from low-grade manganese ores in aqueous sulfuric acid solution was investigated. In this study, manganese ores were prepared by reduction roasting using charcoal as a reductant at 700 oC for 120 min. The roasted samples were then leached with aqueous sulfuric acid solution. The effects of agitation rate, sulfuric acid concentration, solid/liquid mass ratio, leaching temperature and leaching time on the leaching efficiency of manganese were studied. The optimal leaching conditions are achieved at 12% H2SO4, agitation rate of 400 rpm, solid/liquid mass ratio of 1:10, and the leaching temperature of 75 oC for 180 min. Under the optimal condition, the leaching efficiency of manganese can reach 84.61%. The kinetical reaction of manganese dissolution in aqueous sulfuric acid solution was found to be controlled by diffusion process with activation energy is 4.88 KJ/mol.
"
Depok: Universitas Indonesia, 2016
T45188
UI - Tesis Membership  Universitas Indonesia Library
cover
Michael Kelvin Eddy Husin
"ABSTRACT
There has been a constant need in developing new ways of extracting valuable elements from its ore from time to time. There is always an effort made by scientists and engineers all around the globe in the pursuit of extraction methods that is more efficient and beneficial than ever before. Rice husk is the byproduct of rice production. It is estimated that nowadays the utilization of this byproduct is not maximized yet, while the rice production in Indonesia itself keeps on increasing. This research was intended to study the utilization of rice husk as the reduction agent of lateritic nickel ore. The reduction process done have been able to reduce the limonite ore to NiO and magnetite. The beneficiation process that was done in this research includes roasting ndash quenching and reduction process. The best result of the Fe and Ni concentration of the final product was 19.81 wt. and 1.23 wt. respectively. The nickel beneficiation have been succeeded having increased the initial nickel content in the limonite ore of 1.19 wt. to 1.23 wt. in the final product. The beneficiation process that was done in this research includes roasting ndash quenching and reduction process.

ABSTRAK
Kebutuhan untuk mengembangkan cara ndash; cara baru untuk proses ekstraksi elemen berharga dari sumbernya terus menerus meningkat dari waktu ke waktu. Para peneliti selalu berusaha untuk mengembangkan cara ekstraksi yang lebih efisien dan bermanfaat dari yang sebelumnya. Sekam merupakan hasil sambilan dari proses produksi beras. Diperkirakan pada masa ini, pemanfaatan sekam belum maksimal sebanding dengan penghasilannya yang terus meningkat di Indonesia. Riset ini ditujukan untuk mempelajari penggunaan sekam dalam proses benefikasi bijih limonit. Proses benefisiasi yang dilakukan dalam riset ini meliputi proses roasting ndash; quenching dan reduksi. Proses reduksi yang dilakukan telah berhasil mereduksi limonit menjadi NiO dan magnetit. Hasil konsentrasi Fe dan Ni terbaik adalah 19.81 dan 1.23 berturut ndash; turut. Proses benefisiasi nikel telah berhasil dengan meningkatkan konsentrasi nikel dari 1.19 menjadi 1.23."
2017
S68558
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendri Saputra
"[ABSTRAK
Potensi cadangan bijih mangan di Indonesia cukup besar, namun terdapat
di berbagai lokasi yang tersebar di seluruh Indonesia. Komoditi ini menjadi bahan
baku yang tidak tergantikan di industri baja dunia. Ferromangan (FeMn)
merupakan logam paduan dengan komposisi 75% Mangan (Mn) dan 25% besi (Fe)
yang umumnya digunakan pada proses peleburan besi/baja guna memperbaiki
sifak-sifat mekanik dari produk yang dihasilkan.
Penelitian ini dilakukan untuk mempelajari pengaruh proses pencanpuran
bijih Mn kadar rendah (LG) yang berasal dari Kab. Tanggamus, Lampung (16,3
%Mn-19,2 %Fe-20,2 %Si) dengan bijih Mn kadar menengah (MG) yang berasal
dari Jember, Jawa Timur (27,7 %Mn-4,4 %Fe-14,7%Si) sebagai bahan baku untuk
pembuatan logam FeMn dengan kandungan minimal sebesar 50 %Mn. Penelitian
ini dilakukan sebanyak 5 kali percobaan dengan variasi pada campuran bijih Mn
yaitu [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG, [3] 75 %LG+25 %MG, [4]
100 %LG, dan [5] 100 %MG. Bijih mangan diproses menggunakan Submerged Arc
Furnace (SAF) dengan input berupa bijih Mn sebagai bahan baku utama, kokas
sebagai reduktor, dan kapur sebagai aditif. Ketiga bahan baku tersebut dilebur
hingga mencapai temperatur 1500 oC. Untuk mengetahui kualitas bahan baku dan
produk FeMn yang dihasilkan, dilakukan analisa seperti XRF (X-Ray
Fluoroscence), XRD (X-Ray Diffraction), AAS (Atomic Absorbtion Spectrometry),
dan Proksimat.
Dari hasil penelitian didapatkan bahwa untuk percobaan [1] diperoleh
logam FeMn sebanyak 5,2 Kg dengan kadar 54,05 %Mn, percobaan [2] diperoleh
logam FeMn sebanyak 4,75 Kg dengan kadar 50,03 %Mn, percobaan [3] diperoleh
logam FeMn sebanyak 4,6 Kg dengan kadar 36,44 %Mn, percobaan [4] diperoleh
logam FeMn sebanyak 4,3 Kg dengan kadar 31,13 %Mn, dan percobaan [5]
diperoleh logam FeMn sebanyak 12,8 Kg dengan kadar 75,19 %Mn. Pengaruh dari
proses pencampuran (Mn-blend) dalam pembuatan ferromangan ini adalah
semakin banyak komposisi bijih Mn kadar menengah (MG) yang digunakan,
menyebabkan (a) semakin banyaknya kokas dan semakin berkurangnya kapur yang
dibutuhkan, (b) meningkatnya yield, jumlah produk, serta kandungan persentase
Mn dari FeMn yang dihasilkan, dan (c) semakin rendahnya konsumsi energi yang
dibutuhkan.
ABSTRACT
The potential reserve of manganese ore in Indonesia is very large, but it
was located in different locations spread throughout Indonesia. Manganese ore is
one of raw material in producing ferromanganese that is not replaceable in the
world steel industry. Ferromanganese (FeMn) is an alloying metal that contained
of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process
of iron/steel making to improve its mechanical properties.
In this experiment, ferromanganese production was conducted by blending
two kinds of manganese ore, that was low grade Mn ore (LG) which derived from
Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore
(MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to
obtain ferromanganese with a minimum content of 50 %Mn. The composition of
Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG,
[3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese
ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone
was added into the furnace as reductant and flux agent, respectively. Those raw
materials are smelted until 1500 °C. To determine the composition of raw materials
and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay
Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be
done.
From each composition of Mn-blend above in this experiment, it was
obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03
%Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn,
and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this
ferromanganese production was by the increasing composition of the medium
grade manganese ore (MG) that will cause: (a) the increasing number of cokes and
the decreasing of limestone required, (b) the increasing of yield, the number of
products, and also the percentage of manganese content FeMn, and (c) the
decreasing of energy consumption required., The potential reserve of manganese ore in Indonesia is very large, but it
was located in different locations spread throughout Indonesia. Manganese ore is
one of raw material in producing ferromanganese that is not replaceable in the
world steel industry. Ferromanganese (FeMn) is an alloying metal that contained
of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process
of iron/steel making to improve its mechanical properties.
In this experiment, ferromanganese production was conducted by blending
two kinds of manganese ore, that was low grade Mn ore (LG) which derived from
Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore
(MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to
obtain ferromanganese with a minimum content of 50 %Mn. The composition of
Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG,
[3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese
ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone
was added into the furnace as reductant and flux agent, respectively. Those raw
materials are smelted until 1500 °C. To determine the composition of raw materials
and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay
Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be
done.
From each composition of Mn-blend above in this experiment, it was
obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03
%Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn,
and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this
ferromanganese production was by the increasing composition of the medium
grade manganese ore (MG) that will cause: (a) the increasing number of cokes and
the decreasing of limestone required, (b) the increasing of yield, the number of
products, and also the percentage of manganese content FeMn, and (c) the
decreasing of energy consumption required.]"
Fakultas Teknik Universitas Indonesia, 2015
S62747
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robby Krisnaldo Elvin
"Mineral mangan merupakan salah satu mineral yang paling banyak ditemui di kerak bumi. Sebagian besar produksi mangan dan paduannya di dunia saat ini diserap oleh industri baja. Ferromangan merupakan salah satu logam paduan dengan kandungan mangan yang sangat tinggi, yaitu sekitar 65 - 90%. Sebanyak 90%, ferromangan digunakan untuk menambahkan unsur mangan kedalam material baja untuk memperbaiki sifat-sifat mekanik dari material baja, seperti kekuatan, hardenability, dan ketahanan terhadap aus. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan kadar kokas terhadap keefisienan proses reduksi bijih mangan lokal kadar menengah menjadi produk ferromangan. Proses reduksi dilakukan pada tungku submerged arc furnace tiga fasa dengan kapasitas 100 Kg/Batch dilengkapi dengan tiga buah elektroda grafit. Setiap percobaan menggunakan 30 Kg bijih mangan lokal, 12 Kg limestone, dan kadar kokas yang bervariasi, yaitu 5,5 Kg (18,33%), 7,5 Kg (25,00%), 9,5 Kg (31,67%), dan 11,5 Kg (38,33%). Hasil penelitian menunjukkan bahwa kuantitas dan kualitas produk ferromangan yang dihasilkan meningkat seiring dengan bertambahnya kadar kokas yang digunakan. Dimana kandungan mangan pada ferromangan dan massa/yield produk ferromangan cenderung meningkat. Kandungan mangan pada produk ferromangan tertinggi sebesar 78% pada pengujian menggunakan kokas sebanyak 7,5 Kg (25,00%). Sedangkan massa produk ferromangan tertinggi terdapat pada pengujian dengan menggunakan kokas sebanyak 9,5 Kg (31,67%), yaitu 12,8 Kg. Dan pada penggunaan energi selama proses berlangsung cenderung menurun dengan penambahan kokas, dimana penggunaan energi terendah selama proses reduksi berlangsung pada pengujian menggunakan kokas sebanyak 9,5 Kg (31,67%) sebesar 7,03 KWh/Kg. Namun konsumsi elektroda cenderung meningkat. Sehingga konsumsi elektroda grafit terendah pada saat menggunakan kokas 5,5 Kg (18,33%), yaitu sebesar 0,75 Kg. Berdasarkan aspek ekonomi, pengujian dengan keuntungan tertinggi terdapat pada pengujian menggunakan kokas sebanyak 9,5 Kg (31,67%) yaitu sebesar Rp 62.565 pada tiap satu kali pengujian.

Manganese is one of the most common minerals in the earth’s crust.Manganese plays an important role in the development of various steel making processes and its continuing importance is indicated by the fact that about 90% of all manganese alloys consumed annually goes into steel production as an alloying element in the form of ferromanganese. Ferromanganese is one of the metal alloys with a high content of manganese, which is about 65 - 90%. Manganese has four functions to steel such as desulphurizing agent, deoxidation agent, enhancing hardness, and wear resistance. This research, studies have been made to obtain the most optimum raw material composition to produce ferromanganese metal based on local medium grade manganese ore with various amount of cokes as its main variable. The process is conducted four times by smelting manganese ore into ferromanganese metal in mini submerged arc furnace (SAF) technology using three graphite electrodes. The process begin with using 30 kg of medium grade manganese ore from Jember, East Jawa-Indonesia, 12 kg of limestone as its fluxing agent, and various number of cokes from 5,5 kg (18,33%), 7,5 kg (25%), 9,5 kg (31,67%), and 11,5 kg (38,33%). Influence of various amount of cokes being used in this study have been investigated. The experiment conducted by increasing number of cokes carried out good results. Higher consumption of cokes will produce bigger number of ferromanganese metal and also the manganese content inside it. The most optimum composition of cokes shown by this study is 9,5 kg (31,67%), producing the biggest number of product at 12,8 kg of ferromanganese and consuming the least energi at 7,03 kwh/kg FeMn. The other result also showed that adding 7,5 kg (25%) of cokes will produce 78% manganese content inside the metal which was the highest manganese content. However, with an increase of cokes, the electrode consumption will also increase. The experiment with 5,5 kg (18,33%) of cokes carried out the least electrodes consumption at 0,75 kg/process. Moreover, to support the optimum raw material composition, economic evaluation has been conducted. The biggest profit is Rp 62.565,-/process for 9,5 kg (31,67%) of cokes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S61950
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>