Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173070 dokumen yang sesuai dengan query
cover
Satrio Amarela
"ABSTRAK
Sekitar 90% bijih mangan di dunia digunakan untuk pembuatan ferromangan dan
ferrosilicomangan sebagai material paduan dalam proses steel making. Penambahan
unsur mangan dalam wujud paduan ferromangan pada proses steel making mampu
meningkatkan kekerasan dan ketangguhan baja. Ferromangan diperoleh dari
pengolahan bijih mangan metallurgical grade dengan proses peleburan. Bijih mangan
kadar rendah, melalui penelitian sebelumnya oleh Hendri (2015) dan Noegroho (2016),
tidak ekonomis untuk dilebur menjadi ferromangan 􀁇􀁈􀁑􀁊􀁄􀁑􀀃􀀰􀁑􀀃􀂕􀀙􀀓􀀈􀀃􀁖􀁈􀁋􀁌􀁑􀁊􀁊􀁄􀀃􀁅􀁌􀁍􀁌􀁋􀀃
mangan kadar rendah harus dibenefisiasi terlebih dahulu untuk meningkatkan kadar
mangan dan rasio Mn/Fe dalam bijih.
Bijih mangan kadar rendah pada penelitian ini merupakan bijih mangan lokal asal
Lampung dan Jawa Timur. Benefisiasi dilakukan menggunakan teknik gravity
separation dan reduction roasting selama 30 menit menggunakan 20% batu bara
dilanjutkan magnetic separation pada medan magnet ±500 gauss. Bijih mangan
dihaluskan ke dalam ukuran -20+40, -40+60, dan -60+80 mesh dan temperatur
reduction roasting divariasikan pada 500oC, 700oC, dan 900oC. Pengujian XRD dan
XRF dilakukan dalam mengarakterisasi sampel awal dan hasil.
Rasio Mn/Fe dan kadar mangan pada bijih asal Lampung masing-masing
sebesar 0,90 dan 7,83% sementara pada bijih asal Jawa Timur masing-masing sebesar
1,356 dan 18,52%. Setelah dibenefisiasi, hasil terbaik dari proses gravity separation
pada bijih Lampung tercapai pada rasio Mn/Fe 0,95 dengan kadar Mn 9,4% pada
89,75% recovery berat sementara pada bijih Jawa Timur diperoleh pada rasio Mn/Fe
3,32 dengan kadar mangan 40,48% pada 2,09% recovery berat. Selanjutnya, hasil
terbaik dari reduction roasting dilanjutkan magnetic separation pada bijih Lampung
diperoleh pada rasio Mn/Fe 1,96 dan kadar mangan 6,81% pada 36 wt% recovery,
sementara pada bijih Jawa Timur, tercapai pada rasio Mn/Fe 3,99 dan kadar mangan
34,31% pada 44 wt% recovery.

ABSTRACT
About 90% of manganese ore is utilized for ferromanganese and
ferrosilicomanganese production as alloying metal in the steel making process. The
addition of manganese in the form of ferromanganese to the steel making process is
able to increase hardness and toughness of steel. Ferromanganese is obtained from the
metallurgical grade manganese ore processing through the smelting process. Low grade
manganese ore, according to the previous research from Hendri (2015) and Noegroho
(2016), was not economic for direct smelting to obtain ferromanganese with Mn 􀂕􀀙􀀓􀀈􀀑􀀃
Therefore, low grade manganese ore must be beneficiate first to enhance the
manganese grade and its ratio.
Low grade manganese ore in this research are a local ore from Lampung and
East Java. The steps on the beneficiation process are including gravity separation and
reduction roasting for 30 minutes using 20% of coal followed by magnetic separation
at the magnetic intensity of ±500 Gauss. The particle size was reduced into -20+40, -
40+60, and -60+80 mesh and the temperature of reduction roasting was varied at 500oC,
700oC, and 900oC. XRD and XRF testing was conducted for the characterization of ore
and the sample results.
Mn/Fe ratio and manganese content in Lampung ore is respectively 0.9 and
7.83%, while in East Java ore is respectively 1.356 and 18.52%. After beneficiation,
the best results from gravity separation of Lampung ore was obtained at 0.95 of Mn/Fe
ratio and 9.4% of manganese content at 89.75% of weight recovery, while in East Java
ore was obtained at 3.32 of Mn/Fe ratio and 40.48% of manganese content at 2.09% of
weight recovery. Then, the best results of reduction roasting followed by magnetic
separation of Lampung ore was obtained at 1.96 of Mn/Fe ratio and 6.81% of
manganese content at 36% of weight recovery, while in East Java ore was obtained at
3.99 of Mn/Fe ratio and 34.31% of manganese content at 44% weight recovery.
"
2016
S63231
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Azhar Hadnyandita
"Mangan merupakan logam ke empat yang paling banyak digunakan di dunia setelah baja, aluminium dan tembaga. Sekitar 95% mangan digunakan untuk kebutuhan metalurgi, yaitu untuk steelmaking dan pembuatan ferroalloys seperti silico-manganese dan ferromanganese. Mangan dapat dikategorikan berdasarkan kandungannya, yaitu bijih mangan kadar rendah (kurang dari 30% Mn), sedang (30%-40% Mn) dan tinggi (lebih dari 40% Mn). Pembuatan ferromangan dengan kadar Mn minimum 60% menggunakan bijih mangan kadar rendah sangat sulit, oleh karena itu perlu dilakukan proses benefisiasi untuk meningkatkan kadar bijih Mn serta rasio Mn/Fe.
Dalam penelitian ini telah dilakukan proses benefisiasi terhadap dua jenis bijih mangan lokal, yaitu bijih mangan asal Lampung dan Jawa Timur. Benefisiasi dimulai dengan crushing dan grinding dua bijih mangan, untuk mereduksi ukuran partikel. Pengaruh ukuran partikel, yaitu -20+40, -40+60 dan -60+80 mesh terhadap proses benefisiasi telah dipelajari dalam penelitian ini. Proses benefisiasi berupa gravity separation dengan menggunakan metode shaking table dilakukan terhadap kedua jenis bijih mangan tersebut. Preliminary test dilakukan setelah gravity separation untuk mengetahui feasibility dari kedua bijih mangan tersebut untuk dilakukan proses benefisiasi tahap selanjutnya, yaitu reduction roasting. Reduction roasting dilakukan terhadap bijih mangan pada suhu 700oC dengan variasi waktu 1 jam, 1,5 jam dan 2 jam. Magnetic separation dilakukan terhadap masing-masing variasi waktu menggunakan magnet dengan kekuatan sekitar 500G.
Hasil yang didapat menunjukkan bahwa ukuran partikel tidak terlalu mempengaruhi rasio Mn/Fe. Kemudian hasil dari gravity separation menunjukkan proses ini tidak efisien terhadap kedua bijih mangan. Pada bijih mangan asal Lampung tidak ada kenaikkan rasio Mn/Fe yang signifikan, lalu pada bijih mangan asal Jawa Timur rasio Mn/Fe naik menjadi 3,3 pada fraksi tailing, namun tailing yang didapat hanya sekitar 2,4% dari feed yang masuk sehingga menyebabkan proses ini tidak ekonomis. Reduction roasting memiliki efek yang penting untuk proses magnetic separation karena dapat mengubah senyawa hematite menjadi magnetite sehingga Fe pada bijih mangan dapat terpisah. Hasil magnetic separation menunjukkan rasio Mn/Fe paling tinggi didapat dalam waktu 1 jam pada ukuran -20+40, yaitu sebesar 6,10 dan menurun seiring semakin halusnya ukuran partikel.

Manganese is the fourth widely used metal in the world after steel, aluminium and copper. For about 95% of Manganese usage is for metallurgical applications, like steelmaking and the productions of ferroalloys, silico-manganese and ferromanganese. Manganese is categorized based on its content, which is low-grade (less than 30% of Mn), medium-grade (30-40% of Mn) and high-grade (more than 40% of Mn). Producing ferromanganese with a minimum content of Mn for about 60% using a low-grade manganese ore is very difficult, therefore beneficiation process is needed to enhance the Mn content and also the Mn/Fe ratio.
In this research, beneficiation processes were conducted to two local low-grade manganese ores, manganese ore from Lampung Province and from East Java Province. Beneficiation starts by crushing and grinding two manganese ores, to reduce the particle size. The effect of particle sizes, which were -20+40, -40+60 dan -60+80 mesh, to the beneficiation processes were studied in this research. Gravity separation using shaking table as a method was the first step of beneficiation process that was conducted to both manganese ores. Preliminary test were done after the gravity separation to understood the feasibility of the two manganese ores that can be processed to the next beneficiation processes, reduction roasting. Reduction roasting was conducted to the manganese ore in 700oC for 1 hour, 1,5 hours and 2 hours as a time variant. Magnetic separation was done by separating every single time variant using a magnet with an intensity about 500G.
The results shows that size fraction or particle size has a negligible effect to the Mn/Fe ratio. The gravity separation results shows that this process is not efficient to the both manganese ores. Lampung Province ore shows that there is no significant of Mn/Fe increment, and for East Java Province ore, Mn/Fe increases to 3.3 in tailing fraction, however the tailing fraction that is gained in this process was only about 2.4% from the feed therefore it?s not economical. Reduction roasting has an important effect for the magnetic separation process because it converts hematite compound to magnetite so the Fe from this ore can be separated. The magnetic separation results shows that the highest Mn/Fe ratio was gained in 1 hour on -20+40 size particle, which is 6.10 and decrease along with decresing the size particle."
Depok: Universitas Indonesia, 2016
S63233
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Arief Meyviawan
"ABSTRAK
Ferokrom (45-75% Cr dan 35-50% Fe) adalah paduan yang sangat penting dalam pembuatan baja tahan karat karena sifat kekuatan dan ketahanan terhadapa korosi yang tinggi. Ferokrom dibuat dari bijih kromit, sumber kromium yang paling ekonomis untuk di eksploitasi, melalui proses peleburan dengan menggunakan submerged arc furnace. Proses benefisiasi dengan metode roasting adalah proses yang digunakan oleh industri ferokrom dengan rasio Cr/Fe sebagai parameter utama dalam menentukan efisiensi operasi. Semakin tinggi nilai rasio Cr/Fe hasil benefisiasi, semakin tinggi efisiensi yang dicapai saat proses peleburan. Tujuan dari penelirian ini adalah untuk mencapai rasio Cr/Fe tertinggi dengan melakukan beberapa parameter selama proses roasting. Separasi magnet menggunakan kuat magnet 500 gauss dilakukan terhadap pasir kromit kadar rendah.
Roasting dilakukan pada temperatur 800, 1000 dan 1200 oC selama 30, 60, dan 90 menit. 100 gram produk non magnet hasil separasi magnet awal digunakan sebagai material utama, 30,6 gram batubara sebagai reduktor dan 10 gram CaCO3 sebagai flux. Separasi magnet dilakukan untuk memisahkan senyawa yang bersifat magnet hasil roasting. Respon dari roasting di lihat dengan X-ray diffraction (XRD), sedangkan efek separasi magnet dievaluasi dengan X-ray fluorescence (XRF). Hasil penelitian ini menunjukkan rasio Cr/Fe tertinggi adalah 1,54 pada roasting 1000 oC selama 60 menit. Terlihat bahwa roasting dapat memisahkan senyawa FeO dari struktur spinel dan separasi magnet dapat mengurangi unsur besi untuk meningkatkan rasio Cr/Fe.

ABSTRACT
Ferrochromium (45-70 % Cr and 35-50% Fe) is a vital alloy mostly used for the production of stainless steel due to its high strength and corrosion resistance. It is produced from chromite ore, the only economically exploitable resource of chromium, through carbo-thermic smelting in submerged arc furnaces. The beneficiation-roasting process of chromite is currently applied as ferrochromium industrial production with the Cr/Fe ratio as the main parameter to determine the efficiency of the operation. The higher Cr/Fe ratio obtained during beneficiation-roasting process, the higher efficiency of smelting would be achieved. The objective of this research is to get the highest Cr/Fe ratio with conducting several parameters during roasting operation. Magnetic separation using 500 gauss of the magnetic intensity was carried out to the low grade chromite ore.
Roasting was conducted at 800, 1000 and 1200 oC for 30, 60 and 90 minutes with the 100 grams of non-magnetic product as the main material, 30.6 gram of coal as reductor and 10 gram of CaCO3 as flux. Afterwards, magnetic separation was reconducted to separate the magnetic constituent. The roasting response was observed by X-ray diffraction (XRD), while the effect of magnetic separation was determined by X-ray fluorescence (XRF). The results showed that the highest Cr/Fe ratio is 1.54, achieved after roasting at 1000oC for 60 minutes. It clearly indicates that roasting process has successfully released the FeO from Spinel Crystal and separation using magnet can decrease the iron constituent in chromite to enhance the Cr/Fe ratio."
2017
S66090
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laurensia
"ABSTRAK
Sekitar 95 dari seluruh bijih kromit yang ditambang di dunia digunakan sebagai bahan baku pembuatan ferrochromium FeCr . Pada penelitian sebelumnya, peleburan pasir kromit kadar rendah tidak dapat menghasilkan ferrochromium dengan kadar Cr ge; 60 sehingga pasir kromit kadar rendah harus dilakukan proses benefisiasi untuk meningkatkan kadar Cr dan rasio Cr/Fe sebelum proses peleburan menjadi ferrochromium. Penelitian ini menggunakan pasir kromit kadar rendah asal Kabupaten Konawe, Sulawesi Selatan. Proses benefisiasi yang dilakukan adalah magnetic separation menggunakan medan magnet 800 Gauss dan reduction roasting selama 60 menit pada temperatur 1000 C dengan variabel jumlah reduktor, yaitu 5 lean carbon, stokiometri, 5 excess carbon dan 10 excess carbon serta jumlah aditif CaSO4, yaitu 5 , 10 , 15 , dan 20 . Rasio Cr/Fe dan kadar Cr pada bahan baku pasir kromit adalah 0,9 dan 19,27 . Kromium dalam pasir kromit kadar rendah berada dalam mineral magnesiochromite, aluminian, yang terasosiasi dengan unsur besi dalam struktur spinel. Magnetic separation yang dilakukan pada bahan baku pasir kromit menghasilkan kenaikan rasio Cr/Fe dan kadar Cr menjadi sebesar 1,31 dan 21,33 akibat adanya pemisahan antara kromit yang bersifat paramagnetik dan pengotornya yang bersifat magnetik. Selanjutnya, hasil terbaik dari reduction roasting yang dilanjutkan dengan magnetic separation diperoleh pada proses reduction roasting dengan menggunakan 10 excess carbon dan 20 CaSO4, yaitu menghasilkan rasio Cr/Fe dan kadar Cr sebesar 1,19 dan 20,48 atau setara dengan FeCr yang mengandung 54,5 Cr.

ABSTRACT
Around 95 of mined chromite ore in the world is utilized as raw material for ferrochromium making process. According to the previous research, the melting of low grade chromite sand could not produce ferrochromium with Cr ge 60 so that low grade chromite sand has to be beneficiated to enhance the chromium grade and Cr Fe ratio before the melting process to produce ferrochromium. This research utilized low grade chromite sand from Konawe District, South Sulawesi. The beneficiation processes that was conducted were magnetic separation, which used magnetic field of 800 Gauss and reduction roasting for 60 minutes at 1000 C with various reductant dosage, 5 lean carbon, stoichiometry, 5 excess carbon and 10 excess carbon along with various dosage of CaSO4 as additive, 5 , 10 , 15 , and 20 . Cr Fe ratio and chromium content in low grade chromite sand are 0.9 and 19.27 . Chromium, in low grade schromite sand, was existed as magnesiochromite, aluminian, which associated with iron in spinel structure. Magnetic sseparation process that was conducted to the raw material, resulted in enhancement of Cr Fe ratio and chromium content to 1.31 and 21.33 due to separation of the paramagnetic chromite from the magnetic gangue. Furthermore, the best result from reduction roasting followed by magnetic separation was obtained when reduction roasting used 10 excess carbon and 20 CaSO4, which resulted at 1.19 of Cr Fe ratio and 20.48 of chromium content or equivalent to FeCr with 54.5 Cr."
2017
S66515
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendri Saputra
"[ABSTRAK
Potensi cadangan bijih mangan di Indonesia cukup besar, namun terdapat
di berbagai lokasi yang tersebar di seluruh Indonesia. Komoditi ini menjadi bahan
baku yang tidak tergantikan di industri baja dunia. Ferromangan (FeMn)
merupakan logam paduan dengan komposisi 75% Mangan (Mn) dan 25% besi (Fe)
yang umumnya digunakan pada proses peleburan besi/baja guna memperbaiki
sifak-sifat mekanik dari produk yang dihasilkan.
Penelitian ini dilakukan untuk mempelajari pengaruh proses pencanpuran
bijih Mn kadar rendah (LG) yang berasal dari Kab. Tanggamus, Lampung (16,3
%Mn-19,2 %Fe-20,2 %Si) dengan bijih Mn kadar menengah (MG) yang berasal
dari Jember, Jawa Timur (27,7 %Mn-4,4 %Fe-14,7%Si) sebagai bahan baku untuk
pembuatan logam FeMn dengan kandungan minimal sebesar 50 %Mn. Penelitian
ini dilakukan sebanyak 5 kali percobaan dengan variasi pada campuran bijih Mn
yaitu [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG, [3] 75 %LG+25 %MG, [4]
100 %LG, dan [5] 100 %MG. Bijih mangan diproses menggunakan Submerged Arc
Furnace (SAF) dengan input berupa bijih Mn sebagai bahan baku utama, kokas
sebagai reduktor, dan kapur sebagai aditif. Ketiga bahan baku tersebut dilebur
hingga mencapai temperatur 1500 oC. Untuk mengetahui kualitas bahan baku dan
produk FeMn yang dihasilkan, dilakukan analisa seperti XRF (X-Ray
Fluoroscence), XRD (X-Ray Diffraction), AAS (Atomic Absorbtion Spectrometry),
dan Proksimat.
Dari hasil penelitian didapatkan bahwa untuk percobaan [1] diperoleh
logam FeMn sebanyak 5,2 Kg dengan kadar 54,05 %Mn, percobaan [2] diperoleh
logam FeMn sebanyak 4,75 Kg dengan kadar 50,03 %Mn, percobaan [3] diperoleh
logam FeMn sebanyak 4,6 Kg dengan kadar 36,44 %Mn, percobaan [4] diperoleh
logam FeMn sebanyak 4,3 Kg dengan kadar 31,13 %Mn, dan percobaan [5]
diperoleh logam FeMn sebanyak 12,8 Kg dengan kadar 75,19 %Mn. Pengaruh dari
proses pencampuran (Mn-blend) dalam pembuatan ferromangan ini adalah
semakin banyak komposisi bijih Mn kadar menengah (MG) yang digunakan,
menyebabkan (a) semakin banyaknya kokas dan semakin berkurangnya kapur yang
dibutuhkan, (b) meningkatnya yield, jumlah produk, serta kandungan persentase
Mn dari FeMn yang dihasilkan, dan (c) semakin rendahnya konsumsi energi yang
dibutuhkan.
ABSTRACT
The potential reserve of manganese ore in Indonesia is very large, but it
was located in different locations spread throughout Indonesia. Manganese ore is
one of raw material in producing ferromanganese that is not replaceable in the
world steel industry. Ferromanganese (FeMn) is an alloying metal that contained
of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process
of iron/steel making to improve its mechanical properties.
In this experiment, ferromanganese production was conducted by blending
two kinds of manganese ore, that was low grade Mn ore (LG) which derived from
Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore
(MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to
obtain ferromanganese with a minimum content of 50 %Mn. The composition of
Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG,
[3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese
ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone
was added into the furnace as reductant and flux agent, respectively. Those raw
materials are smelted until 1500 °C. To determine the composition of raw materials
and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay
Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be
done.
From each composition of Mn-blend above in this experiment, it was
obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03
%Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn,
and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this
ferromanganese production was by the increasing composition of the medium
grade manganese ore (MG) that will cause: (a) the increasing number of cokes and
the decreasing of limestone required, (b) the increasing of yield, the number of
products, and also the percentage of manganese content FeMn, and (c) the
decreasing of energy consumption required., The potential reserve of manganese ore in Indonesia is very large, but it
was located in different locations spread throughout Indonesia. Manganese ore is
one of raw material in producing ferromanganese that is not replaceable in the
world steel industry. Ferromanganese (FeMn) is an alloying metal that contained
of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process
of iron/steel making to improve its mechanical properties.
In this experiment, ferromanganese production was conducted by blending
two kinds of manganese ore, that was low grade Mn ore (LG) which derived from
Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore
(MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to
obtain ferromanganese with a minimum content of 50 %Mn. The composition of
Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG,
[3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese
ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone
was added into the furnace as reductant and flux agent, respectively. Those raw
materials are smelted until 1500 °C. To determine the composition of raw materials
and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay
Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be
done.
From each composition of Mn-blend above in this experiment, it was
obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03
%Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn,
and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this
ferromanganese production was by the increasing composition of the medium
grade manganese ore (MG) that will cause: (a) the increasing number of cokes and
the decreasing of limestone required, (b) the increasing of yield, the number of
products, and also the percentage of manganese content FeMn, and (c) the
decreasing of energy consumption required.]"
Fakultas Teknik Universitas Indonesia, 2015
S62747
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Bobby Saputra
"[ABSTRAK
Logam ferromangan adalah salah satu unsur paduan penting pada baja
untuk meningkatkan sifat mekanis, ketahanan aus, dan kekerasannya. Bentuk
ferromangan (FeMn) telah diatur dalam standard ASTM dengan kadar minimal
sebesar 75% Mangan (Mn). Tujuan penelitian ini adalah pembuatan logam FeMn
dengan kandungan minimal 60%Mn dari bijih mangan lokal dan mempelajari efek
dari basasitas terak yang dipengaruhi oleh penambahan kapur sebagai zat aditif
dalam proses pembuatan ferromangan terhadap jumlah produk ferromangan yang
dihasilkan dan konsumsi energi yang dibutuhkan dalam proses tersebut.
Dalam penelitian ini digunakan bijih mangan lokal kadar menengah dari
daerah Jember-Jawa Timur 39.38 Mn ? 2.89 Fe ? 26.58 SiO2 (Medium Grade Ore)
dengan teknologi Mini Sub-merged Arc Furnace (SAF) di UPT BPM LIPI,
Lampung. Setiap satu kali proses, digunakan 30 kg bijih mangan (Ø ±30mm), 7.5
kg kokas, dan jumlah batu kapur yang bervariasi, yaitu; 8, 10, 12, dan 14 kg.
Proses peleburan berlangsung pada temperatur 1200-1500 oC. Kemudian hasil
akan dianalisa dengan menggunakan XRF (X-Ray Fluoroscence), XRD (X-Ray
Diffraction), AAS (Atomic Absorbtion Spectrometry), dan Proksimat.
Hasil penelitian menunjukan bahwa dengan meningkatnya basasitas terak
(dari 0.32 hingga 0.76) akan meningkatkan jumlah produk ferromangan hingga 8.2
kg FeMn, kemudian memaksimalkan kadar % mangan yang tereduksi pada logam
hingga mencapai komposisi kimia yang optimal (78,13 Mn-12,65 Fe-8.93 Si),
menekan konsumsi energi hingga 9.8 kwh/kg ferromangan, menekan angka
konsumsi elektroda, dan menghasilkan prosentase efisiensi proses berupa % yield
yang cukup tinggi yakni sebesar 58.61%. Hasil lain yang menunjang proses
pengolahan ferromangan dengan meningkatnya hasil basasitas terak adalah
tercapainya suhu reaksi yang tinggi yakni sebesar 15940C sehingga membuat
reduksi oksida mangan pada terak menjadi mangan pada logam semakin baik,
kemudian jumlah terak juga dapat ditekan. Selanjutnya secara tinjauan aspek
ekonomi dari keempat kali proses penelitian, maka didapatkan hasil yang paling
menguntungkan sebesar Rp 5.731,-/proses.
ABSTRACT
Ferromanganese metal is an important alloying element in steel production
industry used to maximize its mechanical properties such as wear resistance and
hardness. The most common form of ferromanganese according to ASTM standard
contain min.75%Mn and max.25%Fe inside the product. The target of this research
is to obtain ferromanganese metal with min.60%Mn using medium grade
manganese ore (39.38 Mn ? 2.89 Fe ? 26.58 SiO2) from Jember district - East Java,
yet the effect of its slag basicity will also support the most optimum result. This kind
of basicity will determined by the amount of limestone as fluxing agent which added
to the furnace. Moreover, this study will focus to the effect of its slag basicity on the
number of ferromanganese product and the amoung of energy consumption.
This study was taking place at UPT BPM LIPI Lampung, Sumatera. Using
their Mini Sub-merged Arc Furnace (SAF) the process began without any
beneficiation processs for its raw material. Manganese ore Ø ±30mm, cokes, and
limestones were added at the same time to the SAF and melted at 1200-1450 oC.
Processes were repeated 4 times with each process using 30 kg manganese ore, 7.5
kg cokes, and limestones which varied from 8, 10, 12, and 14 kg. Validity of this
study supported by the chemical analysis which took place before and after
reduction process using some tools such as XRF (X-Ray Fluoroscence), XRD (XRay
Diffraction), AAS (Atomic Absorbtion Spectrometry), and Proxymate analysis.
The result of this research showed an increasing trend in product?s quality
as the slag basicity and the amount of limestone increased. As the slag basicity
increase, the number of ferromanganese metal products were also increased until
8.2 kg FeMn and the amount of manganese element in metal phase also showed the
most optimum chemical composition of ferromanganese metal (78,13 Mn-
12,65 Fe-8.93 Si). Furthermore, the energy consumption can be reduced until 9.8
kwh/kg FeMn as well as the electrodes consumption and also the efficiency
percentage or % yield process can be increased up to 58.61%. Other parameters
which used to support these 4-times-research plan was the temperature level which
turned out to be as high as 15940C and helped the reduction process of manganese
oxide into manganese metal became easier. Not only to obtain more manganese
content in metal phase, but also this level of reduction temperature can reduced the
amount of slag. Finally, in addition to support the optimum data, economic analysis
also showed that this composition was the most profitable process with Rp 5.731,-
/process as its profit., Ferromanganese metal is an important alloying element in steel production
industry used to maximize its mechanical properties such as wear resistance and
hardness. The most common form of ferromanganese according to ASTM standard
contain min.75%Mn and max.25%Fe inside the product. The target of this research
is to obtain ferromanganese metal with min.60%Mn using medium grade
manganese ore (39.38 Mn – 2.89 Fe – 26.58 SiO2) from Jember district - East Java,
yet the effect of its slag basicity will also support the most optimum result. This kind
of basicity will determined by the amount of limestone as fluxing agent which added
to the furnace. Moreover, this study will focus to the effect of its slag basicity on the
number of ferromanganese product and the amoung of energy consumption.
This study was taking place at UPT BPM LIPI Lampung, Sumatera. Using
their Mini Sub-merged Arc Furnace (SAF) the process began without any
beneficiation processs for its raw material. Manganese ore Ø ±30mm, cokes, and
limestones were added at the same time to the SAF and melted at 1200-1450 oC.
Processes were repeated 4 times with each process using 30 kg manganese ore, 7.5
kg cokes, and limestones which varied from 8, 10, 12, and 14 kg. Validity of this
study supported by the chemical analysis which took place before and after
reduction process using some tools such as XRF (X-Ray Fluoroscence), XRD (XRay
Diffraction), AAS (Atomic Absorbtion Spectrometry), and Proxymate analysis.
The result of this research showed an increasing trend in product’s quality
as the slag basicity and the amount of limestone increased. As the slag basicity
increase, the number of ferromanganese metal products were also increased until
8.2 kg FeMn and the amount of manganese element in metal phase also showed the
most optimum chemical composition of ferromanganese metal (78,13 Mn-
12,65 Fe-8.93 Si). Furthermore, the energy consumption can be reduced until 9.8
kwh/kg FeMn as well as the electrodes consumption and also the efficiency
percentage or % yield process can be increased up to 58.61%. Other parameters
which used to support these 4-times-research plan was the temperature level which
turned out to be as high as 15940C and helped the reduction process of manganese
oxide into manganese metal became easier. Not only to obtain more manganese
content in metal phase, but also this level of reduction temperature can reduced the
amount of slag. Finally, in addition to support the optimum data, economic analysis
also showed that this composition was the most profitable process with Rp 5.731,-
/process as its profit.]"
Fakultas Teknik Universitas Indonesia, 2015
S62268
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alif Ardiansyah Putra
"[ABSTRAK
Mangan merupakan logam yang digunakan untuk berbagai macam kebutuhan seperti untuk campuran logam agar menghasilkan baja dalam industri baja. Kebutuhan bijih mangan juga meningkat seiring dengan peningkatan teknologi dan kebutuhan akan mangan tersebut. Pada penelitian ini akan dilakukan proses pembuatan ferromangan dari bahan baku bijih mangan lokal dengan menggunakan submerged arc furnace (SAF). Proses peleburan dilakukan dengan menggunakan 30kg bijih mangan, 12kg batu kapur, dan jumlah kokas serta batu bara yang bervariasi, yaitu 0%, 25%, 50%, 75%, dan 100%. Kemudian, analisa karaktrisasi akan dilakukan untuk mengetahui kualitas produk ferromangan yang dihasilkan, yaitu analisa XRF (X-Ray Fluoroscence), XRD (X-Ray Diffraction) untuk mengecek kadar mangan dan kadar slag, analisa masa selama proses produksi, dan analisa jumlah pemakaian energi selama proses produksi.
Hasil penelitian menunjukkan dengan peningkatan kadar kokas dibandingkan kadar batu bara dapat meningkatkan kualitas maupun kuantitas produk ferromangan. Dengan penggunaan 9.5kg (100%) coke akan menghasilkan massa/yield tertinggi yaitu 12.8kg / 96.24% karena kokas memiliki unsur yang lebih baik daripada batu bara sehingga proses reduksi dapat menjadi optimal. Selanjutnya, kandungan mangan pada produk ferromangan tertinggi saat penggunaan 9.5kg (100%) coke sebesar 75.19% Mn karena kokas memiliki kandungan unsur pengotor yang lebih sedikit dibandingkan dengan batu bara sehingga proses reduksi berlangsung dengan optimal. Kemudian, konsumsi energy terendah saat penggunaan 9.5kg (100%) coke sebesar 7.03KWh/kg karena kokas memiliki kandungan pengotor yang sedikit, salah satu contohnya volatile matter, jika kandungan unsur tersebut besar maka konsumsi energi akan bertambah. Sedangkan kandungan fosfor dan sulfur terendah pada produk ferromangan ketika penggunaan 9.5 kg (100%) coke, yaitu fosfor dibawah 0.001% dan sulfur 0.18%. Pengaruh kandungan tersebut berasal dari reduktor yang digunakan, kokas memiliki kandungan phosphorus dan sulphur yang lebih rendah jika dibandingkan dengan kokas. Phosphorus dapat membuat rapuh logam karena adanya perbedaan kekerasan, kekuatan, dan keuletannya. Sedangkan sulphur dapat membuat rapuh logam pada saat temperature tempa, sehingga kemampuan tempanya akan menurun. Selain itu berdasarkan aspek ekonomi, diperoleh hasil yang memilik keuntungan tertinggi sebesar Rp62,565 dengan penggunaanreduktor sebanyak 9.5kg (100%) coke dan 0kg (0%) coal.
ABSTRACT
Manganese mineral is one of the metal element which are used in common to produce alloy steel product. Manganese element is important to enhance steel properties such as wear resistance and hardness. Due to high demand of alloy steel, the production of ferromanganese products are also increase. This phenomena leaded to a large number of manganese ore supply. In this present study, the ferromanganese production will be conducted in mini submerged arc furnace (SAF) technology. The process began with 30 kg medium grade manganese ore from Jember, East Java-Indonesia, 12 kg limestone as its fluxing agent, and with the main variable of mixed reductor from 0%, 25%, 50%, and 100% of cokes and coal as its balance. Along the process, chemical analysis also conducted with some tools to obtain an accurate data of chemical compositions within the raw materials, slag, and ferromanganese product. These chemical analysis were conducted by XRF, XRD, and Proximate analysis. Furthermore, not only the chemical composition but also the number of electricity in each process were calculated to obtain the most efficient process.
The result of this research showed an increasing trend in ferromanganese quality and quantity with a large number of cokes. Instead of coal, cokes are more effective as a reductor agent in this process. This study showed that with 9.5 kg of cokes (100%) the reduction process of ferromanganese will produce 12.8 kg of ferromanganese metal, 75.19% of manganese content, 96.24% of yield ratio, and least number of energy consumption 7.03 kwh/kg ferromanganese product. One of the reasons to support this result is because cokes have lesser number of impurities than in coal such as volatile matter. The amount of phosphor and sulfur content in ferromanganese metal also can be reduced to < 0.001% P and 0.18% S by using 100% cokes as its reductor. These parameters are important because with small number of phosphor and sulfur content the metal will become tougher and hinder the negative effect of short red hardness in metal during further forming activity. The other reason to support the effectiveness of using 100% cokes as the reductor instead of mixing with coal is the amount of profit for each process which is turned to be the highest profit number compare to other mixing composition, it is Rp 62.565,-/process., Manganese mineral is one of the metal element which are used in common to produce alloy steel product. Manganese element is important to enhance steel properties such as wear resistance and hardness. Due to high demand of alloy steel, the production of ferromanganese products are also increase. This phenomena leaded to a large number of manganese ore supply. In this present study, the ferromanganese production will be conducted in mini submerged arc furnace (SAF) technology. The process began with 30 kg medium grade manganese ore from Jember, East Java-Indonesia, 12 kg limestone as its fluxing agent, and with the main variable of mixed reductor from 0%, 25%, 50%, and 100% of cokes and coal as its balance. Along the process, chemical analysis also conducted with some tools to obtain an accurate data of chemical compositions within the raw materials, slag, and ferromanganese product. These chemical analysis were conducted by XRF, XRD, and Proximate analysis. Furthermore, not only the chemical composition but also the number of electricity in each process were calculated to obtain the most efficient process.
The result of this research showed an increasing trend in ferromanganese quality and quantity with a large number of cokes. Instead of coal, cokes are more effective as a reductor agent in this process. This study showed that with 9.5 kg of cokes (100%) the reduction process of ferromanganese will produce 12.8 kg of ferromanganese metal, 75.19% of manganese content, 96.24% of yield ratio, and least number of energy consumption 7.03 kwh/kg ferromanganese product. One of the reasons to support this result is because cokes have lesser number of impurities than in coal such as volatile matter. The amount of phosphor and sulfur content in ferromanganese metal also can be reduced to < 0.001% P and 0.18% S by using 100% cokes as its reductor. These parameters are important because with small number of phosphor and sulfur content the metal will become tougher and hinder the negative effect of short red hardness in metal during further forming activity. The other reason to support the effectiveness of using 100% cokes as the reductor instead of mixing with coal is the amount of profit for each process which is turned to be the highest profit number compare to other mixing composition, it is Rp 62.565,-/process.]"
Fakultas Teknik Universitas Indonesia, 2015
S62267
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daffa Satria Wibowo
"Indonesia merupakan negara produksi bauksit kelima terbesar di dunia, dimana berdasarkan data hasil riset United States Geological Survey (USGS) mencatat bahwa Indonesia memproduksi bauksit sebanyak 21 juta ton kering di tahun 2022. Bauksit dapat diolah dengan menggunakan metode Bayer untuk menghasilkan alumina (Al2O3), dimana 1 ton bauksit akan menghasilkan 0,3 ton alumina. Namun, metode Bayer tersebut akan menghasilkan red mud sebagai tailing dalam upaya memproduksi alumina dari bauksit. Red mud mempunyai potensi daur ulang yang tinggi sebagai bentuk pemanfaatan limbah padat dalam upaya mengurangi pencemaran lingkungan. Red mud dapat menjadi secondary resource dalam menghasilkan logam besi (Fe). Penelitian ini menjelaskan tentang proses pemulihan besi dari red mud dengan menggunakan metode reduction roasting – magnetic separation, dimana disertai dengan penambahan sodium sulfat (Na2SO4) sebagai zat aditif dan katalis. Variasi yang digunakan selama penelitian ini adalah temperatur roasting (900oC, 1000oC, dan 1100oC) dan kadar sodium sulfat (0 gram, 4 gram, dan 8 gram) untuk memperoleh kondisi yang efisien dalam menghasilkan tingkat pemulihan besi tertinggi. Proses karakterisasi yang digunakan selama penelitian ini adalah XRD dan XRF. Tingkat pemulihan besi terbesar yang diperoleh adalah 95,83% pada kadar sodium sulfat sebanyak 8 gram dan temperatur roasting sebesar 1100oC.

Indonesia is the world's fifth-largest producer of bauxite. According to research data from the United States Geological Survey (USGS), Indonesia produced 21 million dry tons of bauxite in 2022. Bauxite can be processed using the Bayer method to produce alumina (Al2O3), where 1 ton of bauxite yields 0.3 tons of alumina. However, the Bayer method generates red mud as a tailing in the effort to produce alumina from bauxite. Red mud has a high recycling potential as a form of solid waste utilization to reduce environmental pollution. It can become a secondary resource for producing iron (Fe). This study explains the process of iron recovery from red mud using the reduction roasting – magnetic separation method, with the addition of sodium sulfate (Na2SO4) as an additive and catalyst. The variations used in this study are roasting temperatures (900°C, 1000°C, and 1100°C) and sodium sulfate concentrations (0 grams, 4 grams, and 8 grams) to achieve efficient conditions for the highest iron recovery rate. The characterization processes used in this study are XRD and XRF. The highest iron recovery rate obtained was 95.83% with 8 grams of sodium sulfate and roasting temperature of 1100°C."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rian Dipantria Putra
"Timah merupakan logam yang memiliki aplikasi pengunaan yang sangat luas dan bervariasi. Hal ini mengakibatkan permintaan akan timah cenderung untuk meningkat tiap tahunnya. Oleh karena itu, perlu ditemukan cara untuk mengolah timah semaksimal mungkin.
Penelitian ini dilakukan untuk recovery atau pemulihan timah dari teraknya dengan menggunakan metode roasting dan pencampuran karbon dengan variasi jumlah karbon reduksi 1:0, 1:1, 1:2, dan 1:3 pada suhu 9000C, pelindian selektif dengan menggunakan H2SO4, dan Electrowinning. Untuk karakterisasi sampel menggunakan X-RD yang dilengkapi dengan software X-RD Match!, STA, AAS, dan EDS.

Tin is a metal which has a various and wide uses. This?ll make the demand of tin is tend to increase every year. So, the new way is needed to process tin as maximum as possible.
This study was conducted to recover tin from tin slags with roasting and mixing with carbon methods with various quantity of carbon reductor which is 1:0, 1:1, 1:2, and 1:3 at 9000C, selective leaching with sulfate acid, and electrowinning. For characterization of sample using X-RD equipped with X-RD Match! Software, AAS, and EDS."
Depok: Universitas Indonesia, 2015
S62717
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutauruk, Jonathan Kriswanto
"[ABSTRAK
Logam tantalum dan niobium merupakan logam yang sumbernya termasuk ke dalam kategori critical in mid term. Terak timah merupakan limbah yang dapat dijadikan sebagai sumber cadangan kedua. Dalam penelitian ini akan dilihat pengaruh pemanggangan pada 700 oC serta pengaruh variasi konsentrasi larutan NaOH dan HCl sebagai larutan lindi, sampel terak timah yang digunakan berasal dari Indonesia dengan kadar 0,33% Ta2O5 dan 0,64% Nb2O5. Pengujian XRF digunakan untuk melihat perubahan kadar Ta2O5 dan Nb2O5 setelah proses pemanggangan dan pelindian. Hasil pemanggangan didapatkan distribusi massa terbanyak pada ukuran mesh +100 dan terjadi peningkatan kadar Ta2O5 dan Nb2O5 berturut-turut meningkat sebanyak 21,1% dan 37,5%. Kadar yang dihasilkan dari pelindian dengan 4 M NaOH meningkat sebanyak 3,48 dan 1,75 kali lipat dari Ta2O5 dan Nb2O5 awal. Secara keseluruhan rangkaian penelitian khususnya setelah pelindian HCl memperoleh peningkatan kadar mencapai 1,51% Ta2O5 pada 1 M HCl dan 1,41% Nb2O5 pada 4 M HCl.
ABSTRACT
The source of tantalum and niobium were known include as critical in mid term. The tin slag is a waste which could be a secondary resource. This research to found the effect of 700 oC roasting and concentration variable of NaOH and HCl solution as leaching reagent, the sample used Indonesian tin slag which have initial grade 0.33% Ta2O5 dan 0.64% Nb2O5.The change of Ta2O5 and Nb2O5 grades were determined by XRF test after roasting and leaching. The highest mass distribution on +100 mesh as the roasting result and the grades were increased 21.1% and 37.5% for Ta2O5 and Nb2O5. The results of leaching 4 M NaOH were increased of about 3.48 and 1.75 times from initial grade. From the whole of results, especially after HCl leaching were increased to 1.51% Ta2O5 on 1 M HCl and 1.41% Nb2O5 on 4 M HCl.
;The source of tantalum and niobium were known include as critical in mid term. The tin slag is a waste which could be a secondary resource. This research to found the effect of 700 oC roasting and concentration variable of NaOH and HCl solution as leaching reagent, the sample used Indonesian tin slag which have initial grade 0.33% Ta2O5 dan 0.64% Nb2O5.The change of Ta2O5 and Nb2O5 grades were determined by XRF test after roasting and leaching. The highest mass distribution on +100 mesh as the roasting result and the grades were increased 21.1% and 37.5% for Ta2O5 and Nb2O5. The results of leaching 4 M NaOH were increased of about 3.48 and 1.75 times from initial grade. From the whole of results, especially after HCl leaching were increased to 1.51% Ta2O5 on 1 M HCl and 1.41% Nb2O5 on 4 M HCl.
, The source of tantalum and niobium were known include as critical in mid term. The tin slag is a waste which could be a secondary resource. This research to found the effect of 700 oC roasting and concentration variable of NaOH and HCl solution as leaching reagent, the sample used Indonesian tin slag which have initial grade 0.33% Ta2O5 dan 0.64% Nb2O5.The change of Ta2O5 and Nb2O5 grades were determined by XRF test after roasting and leaching. The highest mass distribution on +100 mesh as the roasting result and the grades were increased 21.1% and 37.5% for Ta2O5 and Nb2O5. The results of leaching 4 M NaOH were increased of about 3.48 and 1.75 times from initial grade. From the whole of results, especially after HCl leaching were increased to 1.51% Ta2O5 on 1 M HCl and 1.41% Nb2O5 on 4 M HCl.
]"
Fakultas Teknik Universitas Indonesia, 2015
S62254
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>