Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160130 dokumen yang sesuai dengan query
cover
James
"Perilaku korosi paduan aluminium seri 5xxx dimana aplikasinya banyak digunakkan pada sektor lingkungan aggresive (air laut) diketahui menggunakan metode immersion test pada sampel yang telah dianodisasi berbagai variasi waktu dan tegangan, serta sampel tanpa anodisasi. Proses anodisasi aluminium 5xxx menggunakan medium elektrolit H2SO4 25% dan Pb sebagai logam inert. Variasi tegangan pada proses anodisasi sebesar 10 V, 15 V, 20 V dan waktu selama 5 menit, 10 menit, 15 menit. Hasil XRD menunjukan adanya fasa Al2O3 yang terbentuk hasil anodisasi. Uji korosi dilakukan pada medium NaCl 3.5% selama 6 hari (144 jam) untuk sampel yang dianodisasi maupun tidak. Pada proses anodisasi pemberian tegangan dan waktu yang besar tidak begitu menghasilkan laju korosi yang lamban. Sampel 8 adalah sampel yang mempunyai laju korosi paling kecil. Sampel yang telah direndam mengalami penambahan massa hal ini diakibatkan terbentuknya endapan yang ditunjukkan oleh pengujian SEM dan mikroskop optik.

Corrosion behaviour of aluminium alloy type 5xxx which used in many sector especially marine are measured by using immersion test method. Anodizing process are using H2SO4 25% solutions and Pb as inert metal. Anodizing process voltage variation is 10V, 15 V, and 20 V and time 5 minutes, 10 minutes, and 15 minutes in order to slow the corrosion rate. XRD results show the existence of aluminium oxide (Al2O3) phase after sample anodized. Anodized sample and Un-Anodized sample soaked into a NaCl 3.5%. Sample are measured each 1 day soaked in a solution through 6 day. Anodizing at high voltage and time is not showed that CPR (Corrosion Penetration Rate) linear as function time and voltage. Sample 8 is the most resistance of corrosion. SEM and optical microscope result show there is any sediment and pitting after immersion test soaked after 6 day on a NaCl 3.5% solution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64066
UI - Skripsi Membership  Universitas Indonesia Library
cover
Donnie Indrawan
"Aluminium 2024 (Al 2024) merupakan salah satu jenis paduan aluminium komersil dengan tembaga sebagai paduan utamanya. Jenis paduan ini sudah sejak lama digunakan dalam industri otomotif, penerbangan, dan militer. Keberadaan unsur Cu sebagai paduan utama memberikan efek penguatan pada segi mekanis tetapi melemahkan sifat korosinya. Anodisasi merupakan salah satu metode perlindungan aluminium paduan dari korosi menggunakan prinsip elektrokimia yang cepat, sederhana dan ekonomis. Variasi tegangan dan waktu dilakukan untuk melihat pengaruh parameter terhadap ketebalan serta ketahanan korosi Al 2024. Proses anodisasi dilakukan pada larutan H2SO4 30% pada temperatur ruang.
Hasil dari material anodisasi kemudian diuji pada medium korosif NaCl 3,5% selama 6 hari melalui proses immersion test. Ketebalan lapisan oksida paling efektif diperoleh pada anodisasi dengan parameter tegangan 15 V dan waktu 10 menit. Sebagian besar sampel uji menunjukkan trend yang sama dan indikasi terjadinya korosi sumuran (pitting corrosion) disertai munculnya endapan pada permukaan. Perlakuan anodisasi yang memberikan proteksi berupa lapisan oksida dibuktikan dengan kehadiran fasa α-Al2O3 and ɣ-Al2O3 dalam pengujian XRD. Pengamatan SEM dan mikroskop optik memperlihatkan penampakan permukaan Al 2024 setelah 6 hari immersion test pada larutan NaCl 3,5%.

Aluminium Alloy 2024 (Al 2024) is one of commercial alloy with copper as the main alloy. This alloy has been used in many industrial application such as automotive, aerospace, and military. Copper as a major alloying elements gives a mechanical strengthening effect but weaken the corrosion resistance. Anodizing is fast, simple, and economical method to protect aluminium from corrosion with the principal of electrochemical. The variations of anodizing voltage and time have been done with 30% H2SO4 electrolyte at room temperature to analyze its influence on thickness and corrosion behaviour of Al 2024.
Results of anodizing were then tested by immerse the samples in 3,5% NaCl solution for 6 days. The thickness of the oxide layer is most effective with the parameters obtained in anodizing voltage of 15 V and 10 minutes. Most of samples show the similar trend and indications of pitting corrosion along with the presence of deposition on its surface. Anodizing proccess gives the protection layer aluminium oxide which is proved by the presence of α-Al2O3 and ɣ-Al2O3 phase in XRD testing. SEM and optical microscope observation show the surface appearence of Al 2024 after immersion test for 6 days in 3,5% NaCl solution.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65455
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sofian Prakarso Budi
"Alumunium paduan 7075 adalah paduan aluminium kekuatan tinggi yang digunakan untuk membuat berbagai macam komponen struktural untuk pesawat ruang angkasa, roket, pesawat dan berbagai amunisi. Meskipun sifat mekanik pada paduan aluminium lebih baik, ketahanan terhadap korosi pada aluminium tersebut relatif rendah, khususnya pada kondisi dimana paduan tersebut digunakan pada atmosfer yang cukup agresif, hal tersebut akan membatasi jangkauan aplikasi paduan tersebut. Oleh karena itu metode anodisasi dengan variasi tegangan dan waktu dilakukan dengan larutan elektrolit H2SO4 30% pada suhu ruang untuk memperlambat terjadinya korosi.
Hasil dari anodisasi diuji dengan perendaman dengan 0,6 M NaCl selama 6 hari. Dari pengujian memperlihatkan hasil yang baik dari metode anodisasi menggunakan tegangan 10 Volt selama 15 menit. Data tersebut didukung dari pengujian XRD yang menunjukan kehadiran fasa Al2O3 setelah dilakukan anodisasi yang mempengaruhi laju korosi. Selain itu morfologi permukaan juga dapat dilihat pada pengujian SEM dan mikroskop optik yang memperlihatkan lapisan oksida yang tidak merata serta serangan larutan NaCl yang digunakan menyebabkan terjadinya korosi sumuran (pitting corrosion).

Aluminium alloy 7075 is a high strength compound that used to make various structural components for spacecraft, rockets, planes and a variety of ammunition. Despite the good mechanical properties on alumunium, corrosion resistance on alumunium is realtive low. Especially in circumstances where the alloy used in aggressive atmospheres, it would limit the range of applications of these alloys. Therefore the anodization method with variation of voltage and time is done with 30% H2SO4 electrolyte solution at room temperature to slow corrosion.
Results from anodizing tested by soaking with 0.6 M NaCl for 6 days. Results show that anodizing method using a voltage of 10 volts is 15 minutes. The XRD results also show the presence of phase Al2O3 after anodizing which affect the rate of corrosion. Besides the surface morphology can also be seen on testing SEM and optical microscopy showing uneven oxide layer as well as attacks NaCl solution used cause pitting corrosion (pitting corrosion.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63688
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aditya Ibnu Islamsyah
"Paduan aluminium seri 7xxx merupakan kelompok paduan aluminium yang memiliki kekuatan paling tinggi dibandingkan dengan seri lainnya. Dalam penelitian ini digunakan paduan aluminium seri 7075. Paduan ini banyak digunakan pada industri pesawat terbang, seperti struktur rangka utama pesawat, dan bagian atas dari sayap pesawat. Bagian tersebut membutuhkan material dengan performa tinggi, karena menuntut kekuatan terhadap kompresi (compression) dan tarikan (tension) secara bersamaan atau dengan kata lain terjadi bending. Seiring tuntutan zaman dan kemajuan dunia industri, mengandalkan karakteristik aluminium murni saja tidak cukup. Oleh karena itu diperlukan adanya pencampuran atau paduan (alloying) dari unsur yang berbeda, untuk menambah kekuatan dari aluminium. Namun, pencampuran unsur serta penguatan tersebut akan mengurangi ketahanan aluminium terhadap korosi, terlebih seperti diketahui bahwa pesawat terbang dioperasikan pada berbagai perubahan suhu dan lingkungan yang cukup ekstrem. Dunia penerbangan menuntut setiap unsur apapun yang terlibat didalamnya bekerja dalam kondisi yang ‘sempurna’. Oleh karena itu, masalah korosi menjadi ancaman tersendiri bagi dunia penerbangan. Korosi dapat menyebabkan kegagalan struktur pada pesawat terbang, hingga menyebabkan kecelakaan. Oleh karena itu praktisi industri melakukan peningkatan ketahanan terhadap korosi material salah satunya dengan proses perlakuan panas (heat treatment). Tujuan perlakuan panas tersebut adalah mengubah keadaan mikrostruktur material. Pada paduan aluminium, sifat korosi sangat dipengaruhi oleh keadaan mikrostruktur, khususnya bentuk, ukuran, dan komposisi kimia partikel intermetallic. Salah satu faktor yang berperan penting pada hasil akhir keadaan mikrostruktur adalah bagaimana proses dan prosedur quenching dilakukan setelah proses perlakuan panas. Dengan melakukan variasi terhadap waktu delay quenching, maka akan menghasilkan material dengan mikrostruktur yang berbeda, sehingga menghasilkan perubahan sifat korosi yang berbeda pula dari paduan aluminium seri 7075.

7xxx aluminum alloy is a group of aluminum alloys that have a highest strength than any other series of aluminum alloy. This study uses 7075 aluminum alloy. This type of alloy is widely used in the aircraft industry, such as the aircraft's main frame structure, and the upper part of the aircraft's wings. This section requires high-performance material because it demands strength against compression (compression) and pulls (tension) simultaneously or in other words bending occurs. Along with the demands of the times and the progress of the industrial world, relying on the characteristics of pure aluminum is not enough. Therefore, mixing or alloying is needed from different elements, to increase the strength of aluminum. However, mixing elements and reinforcement will reduce the resistance of aluminum to corrosion, especially as it is known that airplanes are operated at various temperature changes and the environment is quite extreme. The world of aviation demands every element involved in working in 'perfect' conditions. Therefore, the problem of corrosion is a threat to the world of aviation. Corrosion can cause structural failure in aircraft, causing accidents. Therefore, industrial practitioners have been increasing material corrosion resistance, one of which through the heat treatment process. The goal of the heat treatment is to change the microstructure of the material. In aluminum alloys, the corrosion properties are strongly influenced by the microstructural condition, particularly the shape, size and chemical composition of the intermetallic particles. One of the factors that play an important role in the final result of the microstructural condition is how the quenching process and procedure is carried out after the heat treatment process. By varying the quenching delay time, it will produce a material with a different microstructure, resulting in changes of corrosion properties of the 7075 series aluminum alloy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Poki Agung Budiantoro
"Paduan aluminium banyak juga digunakan pada impeller (baling-baling) kapal karena kemudahan pabrikasi dan mempunyai lapisan pelindung pasif. Untuk meningkatkan proteksi terhadap ketahanan serangan korosi paduan aluminium 6061 T6 dilakukan proses pelapisan pada permukaannya. Pelapisan Ni-Mo dilakukan dengan cara elektroplating kodeposisi pada paduan aluminium 6061 T6. Pelapisan Ni-Mo pada paduan aluminium 6061 T6 dapat meningkatkan nilai impedansi sebesar 55 Ω dan meningkatkan nilai kekerasan sebesar sebesar 95 HV bila dibandingkan dengan pelapisan nickel (Ni) dan pada paduan aluminium 6061 T6 tanpa pelapisan. Pelapisan Ni-Mo pada paduan aluminium 6061 T6 memiliki ketahanan korosi erosi, korosi fretting dan korosi lubang (fitting corrosion) yang lebih baik dibandingkan dengan pelapisan nickel (Ni) dan tanpa pelapisan.

Aluminium alloys are also used in the impeller of the ship because is strong, easy for fabrication and has a passive protective layer. To improve protection against corrosion attack resistances of aluminium alloy 6061 T6 has coating process is carried out on the surface. Ni-Mo coating is to be done by electroplating codeposition in aluminium alloy 6061 T6. Ni-Mo coatings on aluminium alloy 6061 T6 can increased of the impedance 55 Ω and increased hardness value of 95 HV when compared also the nickel (Ni) plating and in aluminium alloy 6061 T6. Ni-Mo coating on aluminium alloy 6061 T6 has better erosion corrosion, fretting corrosion and fitting corrosion resistance than the Nickel (Ni) coating and without coating."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43730
UI - Tesis Membership  Universitas Indonesia Library
cover
Ignatius Haedjadi Widjaja
"Magnesium dan paduannya termasuk sebagai logam struktural teringan dengan ketahanan korosi yang paling rentan diantara logam struktural lainya. Lapisan MgO dibentuk pada permukaan paduan magnesium dengan proses anodisasi dalam larutan NaOH 3M untuk meningkatkan ketahanan korosi. Variasi tegangan (10 V, 15 V, 20 V) dan waktu (5 menit, 10 menit, 15 menit) dilakukan pada proses anodisasi untuk mengetahui hubungannya dengan laju korosi. Perubahan morfologi dan struktur lapisan oksida diamati dengan menggunakan mikroskop optik dan scanning electron microscope (SEM). Fasa lapisan oksida pada paduan magnesium diamati dengan menggunakan X-ray diffraction (XRD).

Magnesium and its alloys is the lightest of all structural metal with the most vulnerable corrosion resistance among other structural metal. MgO layer is formed on the surface of magnesium alloy with anodizing process in NaOH 3M solution to increase the corrosion resistance. Voltage variation (10 V, 15 V, 20V) and time variation (5 minutes, 10 minutes, and 15 minutes) is being done in anodization process to determine its relation with corrosion rate. Changes in morphology and structure of oxide layer is being observed with optik microscope and scanning electron microscope (SEM). The phase of oxide layer in magnesium alloy is being observed with X-ray Diffraction (XRD).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64065
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Faza Satrio
"Aluminium dan paduan Aluminium adalah bahan yang paling banyak digunakan kedua di dunia. Aluminium Silikon (Al-Si)  dipanaskan pada suhu 500 oC dengan 4 waktu berbeda 30, 60, 180, dan 240 menit untuk memodifikasi sifat korosinya. Paduan ini akan diterapkan sebagai rangkaian string, di mana ia mengalami berbagai lingkungan yang parah. XRD (X-ray Difraction) dan Potensiostat digunakan untuk menentukan fase dan struktur dan perilaku korosi masing-masing sampel. Hasil penelitian menunjukkan bahwa struktur sampel masih didominasi oleh struktur Aluminium Face Center Cubic, dan fasa yang diperoleh dimiliki oleh aluminium dan silikon. Ketahanan korosi juga dipengaruhi oleh waktu perlakuan panas yang bervariasi. Potensi korosi dan perubahan arus Korosi sebagai fungsi dari waktu perlakuan panas. Laju korosi diperoleh dengan melihat titik potong sumbu X dan Y pada kurva LSV. Paduan yang tidak diberikan perlakuan panas memiliki laju korosi 0,299 dan 0,201 mm/year pada suhu 10 dan 25oC. Perlakuan panas dengan variasi waktu 30, 60, 180, dan 240 menit merubah laju korosi paduan menjadi 0,75, 0,494, 0,387, dan 0,477 mm/year pada pengujian korosi dengan suhu 10oC, sementara pada pengujian dengan suhu 25oC laju korosi paduan berubah menjadi 0,175, 0,088, 3,36 , dan 1,74 mm/year pada pengujian korosi dengan suhu 25oC. Ukuran rata-rata kristal dan microstrain juga diperoleh dengan metode Williamson-Hall. Paduan yang tidak diberikan perlakuan memiliki ukuran rata-rata kristal 63,024 nm. Pemberian perlakuan panas dengan variasi waktu 30, 60, 180,dan 240 menit merubah ukuran rata-rata kristal menjadi 231,09 , 115,55, 90,47, dan  55,46 nm. Kesimpulannya bahwa perlakuan panas dan variasi waktunya sangat mempengaruhi struktur dan perilaku korosi paduan Al-Si karena rekristalisasi yang terjadi akibat perlakuan panas yang diberikan.

Aluminum and aluminum alloys are the second most widely used materials in the world. Aluminum Silicon (Al-Si)  heated at 500 oC with 4 different times of 30, 60, 180, and 240 minutes to modify its corrosion properties. This alloy will be applied as a string set, where it experiences various severe environments. XRD (X-ray Difraction ) and Potentiostat are used to determine the phase and structure and corrosion behaviour of each sample. The results showed that the samples structure was still dominated by the Aluminium Face Center Cubic structure, and the phase obtained was owned by aluminium and silicon. Corrosion resistance is also affected by variated heat treatment times. Potential corrosion and change in current Corrosion as a function of heat treatment time. Corrosion rate is obtained by looking at the intersection points of the X and Y axes on the LSV curve. Alloys not given heat treatment have corrosion rates of 0.299 and 0.201 (mm/year) at temperatures of 10 and 25oC. Heat treatment with time variations of 30, 60, 180, and 240 minutes changes the alloy corrosion rate to 0.75, 0.494, 0.387, and 0.477 (mm/year) on corrosion testing at 10oC, while testing at 25oC at corrosion rate of alloys changed to 0.175, 0.088, 3.36, and 1.74 (mm / year) on corrosion testing with a temperature of 25oC. The average size of crystals and microstrains were also obtained by the Williamson-Hall method. The alloys that were not treated had an average crystal size of 63,024 nm. Provision of heat treatment with time variations of 30, 60, 180, and 240 minutes to change the average size of crystals to 231.09, 115.55, 90.47, and 55.46 nm. The conclusion is that heat treatment and time variation greatly affect the structure and corrosion behaviour of Al-Si alloys due to the recrystallization that occurs due to the heat treatment process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Dimas Luqman
"Korosi menjadi penyebab utama rusaknya suatu struktur yang terbuat dari beton dengan tulangan baja. Penggunaan beton geopolimer terbukti dapat meningkatkan ketahanan tulangan baja terhadap serangan korosi, namun perlu dilakukan penelitian lebih lanjut untuk meningkatkan ketahanan korosi baja tulangan dalam beton, dengan tetap memperhatikan aspek lingkungan. Pada penelitian ini dilakukan substitusi kaca yang berasal dari botol bekas, sebagai agregat kasar dalam beton geopolimer. Pengujian ini dilakukan dengan merendam beton ke dalam larutan NaCl 3,5 % selama 31 hari, perilaku korosi tulangan baja dalam beton geopolimer diamati dengan metode polarisasi tahanan linier dan ekstrapolasi tafel. Hasil pengujian pada saat mencapai hari 31, menunjukan bahwa substitusi agregat kasar menggunakan kaca tidak memperbaiki ketahanan beton geopolimer terhadap korosi. Dimana, tahanan polarisasi baja dalam beton geopolimer dengan agregat kaca adalah 2935 Ω, lebih rendah dibanding nilai tahanan tulangan baja dalam beton geopolimer dengan agregat batu yakni 5235 Ω. Sedangkan laju korosi tulangan baja pada beton geopolimer dengan agregat kaca adalah 5,00 x 10-3 mm/tahun , lebih tinggi dibanding tulangan baja dalam beton dengan agregat batu yaitu 2,35 x 10-3 mm/tahun. Analisa komposisi larutan rendam dilakukan menggunakan metoda Atomic Absorbance Spectroscopy. Awalnya, larutan NaCl 3,5% memiliki kadar natrium senilai 13770 μm/ml. Usai masa perendaman beton, larutan rendam milik beton dengan agregat batu memiliki kandungan natrium 2252 μm/ml. Nilai tersebut lebih tinggi dibandingkan dengan kadar natrium larutan rendam beton dengan agregat kaca yaitu 1910 μm/ml. Hal ini mengindikasikan bahwa beton geopolimer dengan agregat kaca lebih mudah menyerap unsur dari luar lingkungan ke dalam beton.

Corrosion is major cause damage to structure made of concrete with steel reinforcement. Using geopolymer concrete will increase the resistance of steel reinforcement against corrosion attack, further research needs to be done to improve the corrosion resistance of steel reinforcement, in regard to environmental aspects. In this research, waste glass is used as coarse aggregate in geopolymer concrete. Test was carried out by immersing concrete into 3,5% NaCl solution for 31 days, corrosion behavior of reinforcing steel in geopolymer concrete observed by linear polarization resistance and tafel extrapolation method. Test result on 31-day, showed that substitution of coarse aggregate with waste glass doesn?t improve the corrosion resistance of reinforce steel on geopolymer concrete. Which, polarization resistance value of steel reinforcement on geopolymer concrete with glass aggregate is 2935 Ω, less than polarization resistance value of steel reinforcement on geopolymer concrete with stone aggregate is 5235 Ω . On the other hand corrosion rate of steel reinforcement in geopolymer concrete with glass aggregate is 5,00 x 10-3 mm/year, were found to be higher than reinforcement steel on geopolymer concrete with stone aggregate that is 2,35 x 10-3 mm/year . Analysis of immersion solution composition were performed using Atomic Absorbance Spectroscopy method. Initially, the NaCl 3,5% solution, have sodium content worth of 13770 μm/ml. After immersion period, immersion solution belongs to concrete with stone aggregate has a sodium content 2252 μm/ml. These value is higher than the natrium content from immersion solution of concrete with glass aggregate which is 1910 μm/ml. This result indicates that geopolymer concrete with glass aggregate more easily absorb elements from the environment into the concrete."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55840
UI - Skripsi Membership  Universitas Indonesia Library
cover
Niken Anggraini
"Dalam penelitian ini dibahas mengenai perilaku korosi paduan Zr-xMo dan Zr-yNb yang diproduksi dengan metode metalurgi serbuk untuk aplikasi biomaterial. Pengujian polarisasi linear menunjukkan bahwa ketahanan korosi dari paduan zirkonium murni yang ditambahkan Nb lebih tinggi dibandingkan zirkonium murni yang ditambahkan Mo. Ketahanan korosi ini dibuktikan dengan nilai rapat arus korosi dan laju korosi yang lebih rendah di semua media elektrolit , yaitu larutan Kokubo SBF, larutan Ringer dan juga larutan NaCl 3 , 5%. Data EIS yang difitting dengan model [R (C [R (RQ)]) (RQ)], menunjukkan terbentuknya lapisan pasif berstruktur duplex pada permukaan hampir semua material percobaan terutama Zr-yNb. Mekanisme korosi paduan zirkonium ini terjadi karena korosi sumuran dan ketahanan korosi bergantung pada konsentrasi ion klorida di dalam elektrolit. Dapat disimpulkan bahwa paduan Zr-9Nb di antara paduan zirkonium yang lain menunjukkan hasil yang paling menjanjikan dari segi ketahanan korosi untuk aplikasi biomedis.

In this work, corrosion behavior Zr-xMo and Zr-yNb alloys produced by powder metallurgy for biomaterial application were investigated. Linear polarization tests revealed a nobler electrochemical behavior of the zirconium alloys after alloying Nb to pure Zr than alloying Mo to pure Zr as indicated by lower corrosion current densities and corrosion rate in all electrolyte mediums which are ringer solutions, Kokubo SBF solutions and also NaCl 3,5%. The EIS data, fitted by model [R(C[R(RQ)])(RQ)], suggested a duplex passive film formed on the most of experimental material surfaces especially Zr-yNb. Corrosion mechanism of this alloy happen due to pitting corrosion and corrosion resistance depends on chloride concentration in the electrolyte. All of these above results suggested that the Zr–9Nb alloy, among the experimental alloys, showed a promising material for biomedical applications."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60033
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Amadeo Christoffer
"Casting Aluminium telah menjadi salah satu material terpenting dalam industri. AC4C adalah salah satu dari banyak paduan Silikon-Aluminium yang digunakan ketika ketahanan terhadap korosi, kemampuan castability yang baik dan rasio kekuatan-terhadap-berat yang tinggi diperlukan. Paduan aluminium AC4C yang digunakan sebagai string set dibuat dengan komposisi Al 92,69% berat, Si 6,76% berat, Mn 0,25% berat, Fe 0,21% berat, Ag 0,09% berat. Terdapat penelitian tentang peningkatan ketahanan korosi dari casting aluminium yang sangat bervariasi dari metode casting yang digunakan, perawatan, penambahan impuritas, dan perlakuan pada permukaan. Dalam penelitian ini, sampel AC4C dianodisasi dalam larutan H2SO4 7,5 °C 5 M dalam 30, 60, dan 90 menit dengan sumber listrik DC 5V yang mengalirkan rapat arus 22,6mA/cm2 . Setelah itu, sampel disegel (sealing) dalam air mendidih selama 15 menit sebelum diuji perilaku korosinya. Pengujian dilakukan dengan melakukan polarisasi potensiodinamik dalam larutan NaCl 3,5% untuk setiap sampel. Difraksi sinar-X digunakan untuk menentukan fase dan struktur kristal sampel. Hasil penelitian menunjukkan bahwa dengan meningkatkan waktu anodisasi, didapatkan perubahan pada perilaku korosi material AC4C. Hasil menunjukkan bahwa dengan peningkatan waktu anodisasi, laju korosi menurun dari nilai awal yaitu 2,01 x 10-1 mm/tahun menjadi 2,72 x 10-2 mm/year.

Al-Si is one of many Silicon-Aluminium alloy used when corrosion resistance, good castability and high strength-to-weight ratio are required. This Al-Si alloy were used as string set were made with composition of Al 92.69 wt%, Si 6.76 wt%, Mn 0.25 wt%, Fe 0.21 wt%, Ag 0.09 wt%. There have been many studies on improving corrosion resistance of casting aluminium vary widely from the casting methods used, treatments, adding impurities, and surface finishing. In this research, AC4C samples were anodized in 7.5 °C H2SO4 solution in 30, 60, and 90 minutes with DC of 5V potential. Afterwards, samples were sealed in boiling water for 15 minutes before being tested for its corrosion behavior. Tests were carried out by performing potentiodynamic polarization in 3.5% NaCl solution for each sample. X-ray diffraction were used to determine the phases and crystal structure of the samples. The results show that by increasing the anodization time, the corrosion rate decreases from the initial of 2,01 x 10-1 mm/year to 2,72 x 10-2 mm/year.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>