Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 63455 dokumen yang sesuai dengan query
cover
cover
Jihan
"ABSTRAK
Multiple Travelling Salesman Problem (M-TSP) adalah masalah pencarian rute perjalanan optimal dari n kota oleh m salesman dengan m < n, dengan tiap kota hanya dapat dikunjungi satu kali dan oleh satu orang salesman saja. M-TSP merupakan perkembangan dari TSP dengan salesman lebih dari satu. Dalam tugas akhir ini akan dibahas M-TSP Single Depot yaitu M-TSP dengan kota awal perjalanan semua salesman berada di kota yang sama. Untuk menyelesaikan M-TSP digunakan Algoritma K-Means Clustering-Genetika, yaitu dengan membagi n kota yang ada menjadi m kluster kemudian tiap kluster akan diterapkan algoritma genetika dan pada akhirnya seluruh hasil yang didapat akan dijumlahkan untuk mengetahui total jarak tempuh seluruh salesman.

ABSTRACT
Multiple Travelling Salesman Problem (M-TSP) is a problem of finding an optimal travel route from n cities by m salesmen with m < n, the condition is that each city can only be visited once and only by one salesman. M-TSP is a development of the TSP problem which involves more than one salesman. M-TSP Single Depot, where all the salesmen start travelling from the same city, will be discussed in this final project. M-TSP will be solved by using the K-Means Clustering-Genetic Algorithm that divides n cities to m clusters and applies the genetic algorithm to each cluster, then all the results obtained will be summed to determine the total mileage of the whole salesman."
2015
S59601
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ajeng Dwi Andina
"Penjemputan dan Pengantaran Traveling Salesman Problem dengan aturan first-in-first-out (TSPPDF) merupakan suatu masalah pencarian rute untuk melayani sejumlah pelanggan dalam penjemputan dan sekaligus pengantaran dimana penjemputan dan pengantaran tersebut harus mengikuti aturan first-in-first-out (FIFO). Dimulai dari tempat asal (depot), mengunjungi semua tempat penjemputan dan tempat pengantaran, kemudian kembali ke tempat asal dengan total biaya atau jarak perjalanan minimal. Dalam tugas akhir ini, algoritma FIFO Nearest Neighbor (FNN) akan digunakan untuk menyelesaikan TSPPDF. Kemudian akan dibandingkan hasil penyelesaian TSPPDF yang menggunakan algoritma FNN dengan TSP solver. Setelah itu, hasil TSPPDF dari algoritma FNN akan dioptimalkan secara manual menggunakan algoritma Iterated Local Search (ILS).

The pickup and delivery traveling salesman problem with first-in-first-out (TSPPDF) is a routing problem to service n customers in the pickup and delivery which is the pickup and delivery operations must be executed in a first-in-first-out (FIFO). Starting from an origin vertex (depot), visiting all the pick-up and delivery, then returned to an origin vertex with minimum total cost or distance. In this undergraduate thesis, the FIFO Nearest Neighbor algorithm (FNN) will be used to solve TSPPDF. Then the results of TSPPDF which uses an FNN algorithm will be compared with TSP solver. After that, the results of the FNN algorithm will be optimized manually using the Iterated Local Search (ILS) algorithm."
Depok: Universitas Indonesia, 2015
S59644
UI - Skripsi Membership  Universitas Indonesia Library
cover
O`Dea, Thomas F.
Jakarta: Salemba Empat, 2004
310 Suh s
Buku Teks  Universitas Indonesia Library
cover
Ita Wulandari
"One of most popular techniques of binary data classification in machine learning is support vector machine (SVM). SVM can be applied extensively in many fields such as pattern recognition regression analysis and probability estimation. SVM uses optimization wth quadratic programming which become unefficient when applied in a high dimensioal large dataset. Hence researchers develop"
Jakarta: Sekolah Tinggi Ilmu Statistik (STIS-Statistics Institute Jakarta, 2015
600 JASKS 7:1 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
"Berbagai penelitian tentang aliran daya (power flow) telah banyak dilakukan dengan variasi model pendekatan dan algoritma model solusi matematiknya."
Artikel Jurnal  Universitas Indonesia Library
cover
Andri Priyono
"ABSTRAK
Knapsack Problem (KP) merupakan masalah optimisasi dalam menentukan objek
dari sekumpulan objek yang memiliki nilai dan bobot yang akan ditempatkan ke
dalam media penyimpanan dengan tujuan memaksimumkan nilai barang dengan
syarat kapasitas bobot media penyimpanan terbatas. Dalam tugas akhir ini, akan
dibahas {0-1} Knapsack Problem ({0-1} KP) yang direpresentasikan dalam
bentuk graf berarah. Setelah direpresentasikan dalam bentuk graf berarah,
kemudian dilakukan transformasi pada nilai busur pada graf berarah tersebut dan
dicari lintasan terpendek antar dua node. Untuk mencari lintasan terpendek,
digunakan Algoritma Amoeboid Organism dengan inputnya adalah matriks
adjacency dari graf berarah yang telah ditransformasi nilai busurnya dan matriks
konduktivitas. Output dari algoritma ini adalah menghasilkan matriks
konduktivitas yang elemen-elemennya bernilai mendekati 0 atau 1. Entri yang
bernilai mendekati 1 merepresentasikan lintasan terpendek pada graf. Lintasan
terpendek yang diperoleh akan menjadi solusi yang optimal pada {0-1} KP.

ABSTRACT
Knapsack Problem (KP) is optimization problem to choose object from set of
objects which have profit and weight and the object will be placed in limited
storage with total of profit is maksimum. First, will be explained about
representing {0-1} Knapsack Problem ({0-1} KP)to directed graph. After {0-1}
KP is represented in directed graph, so transforming value of edge on directed
graph and dicari lintasan terpendek antar dua node. To search shortest path, use
Amoeboid Organism Algorithm with adjacency matrices from directed graph and
conductivity matrices as input. Output from this algorithm is produce conductivity
matrices with element which have value approach 0 and . Element which have
value approach 1 represent shortest path on graph. Shortest path on graph is
optimal solution in {0-1} KP."
2016
S70138
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Yulikuspartono
Yogyakarta : Andi, 2004
005.115 YUL p
Buku Teks SO  Universitas Indonesia Library
cover
Radhietya
"One of the problems faced in applying neural network to some real
world application is related to difticulties in finding an optimum set of weights
and thresholds during the training phase. A general most method in tinding
these solutions for these problems is backpropagation.
A different method to tind the solutions of the same problems is
Genetic Algorithms. Genetic algorithm is relatively new search algorithm that
has not been fully explored in this area. ln this thesis, genetic algorithms are
applied to train neural networks and to evolve an optimum set of weights and
thresholds. Process begin with encode neural networks parameters to binary
chromosomes, and evaluate. The Spinning wheel selections are using to
produce offspring with high titness_ then recombinate with crossover and
mutation as genetic operator.
The proiect carried out investigates whether genetic atgonthms can be
applied to neural networks to solve pattem classitication and function
approximation problems. This thesis describes tl1e simulation works that
have been perfomwed. It describes the design ofa genetic algorithm and the
results obtained. ln pattem classilication problem that use feedforward
network show, that genetic algorithm is superior to backpropagation training
rule in error and speed calculation. ln function approximation, the result
shows that genetic algorithm approach is very much slower than the
backpropagation method. Results' show that even for relatively simple
network, genetic algorithm requires a much longer time to Uain neural
networks-"
Fakultas Teknik Universitas Indonesia, 2000
T6440
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>