Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 43576 dokumen yang sesuai dengan query
cover
"If you continue to struggle to understand and measure how information and its quality affects your business, this book is for you. This reference is in direct response to the new challenges that all managers have to face. Our process helps your organization to understand the "pain points" regarding poor data and information quality so you can concentrate on problems that have a high impact on core business objectives. This book provides you with all the fundamental concepts, guidelines and tools to ensure core business information is identified, protected and used effectively, and written in a language that is clear and easy to understand for non-technical managers."
Waltham, MA: Morgan Kaufmann, 2014
e20427921
eBooks  Universitas Indonesia Library
cover
Scherling, Mark, auhtor
New York: CRC Press, 2011
658.478 SCH p
Buku Teks SO  Universitas Indonesia Library
cover
Hadisurya Chandra Kusuma
"Bencana telah menjadi sebuah isu penting di sektor Teknologi Informasi (TI) yang dapat terjadi kapan saja tanpa peringatan. Bencana pandemi yang terjadi saat ini, berdampak kepada kebutuhan akan mobilisasi dalam bekerja meningkat. Banyaknya instansi yang mengadopsi sistem outsourcing membuat jaringan informasi menjadi rentan terhadap ancaman serangan yang dapat berasal dari pihak luar atau pihak ketiga yang bertindak sebagai penyedia jasa, pihak internal, serta lingkungan dan ancaman yang bersifat fisik lainnya. Studi ini mengukur tingkat kesadaran, kesiapan, pelaksanaan Disaster Recovery Plan dengan menggunakan survei pada perusahaan di Indonesia. Penggunaan metodologi kuantitatif dalam studi ini ditambah dengan penggunaan SPSS Statistical Software yang berfokus pada perhitungan nilai rata-rata pada setiap bagian di setiap organisasi yang dibagi berdasarkan sektor industrinya. Hasil studi menunjukkan bahwa dari 3 aspek Disaster Recovery Plan yang dinilai, yaitu Disaster Recovery Plan Awareness, Disaster Recovery Plan Readiness, dan Disaster Recovery Plan Practices yang berdasarkan kepada hasil uji t-Test yang dilakukan menunjukkan bahwa nilai tingkat kesadaran, kesiapan, dan pelaksanaan pada organisasi di Indonesia masih rendah yang dipengaruhi oleh beberapa faktor, seperti kurangnya kesadaran individu terhadap keamanan data yang dimiliki, kurangnya pelatihan yang dilakukan kepada staff yang terkait, kurangnya peninjauan secara berkala dan dokumentasi yang jelas

Disaster has become an important issue in the Information Technology (IT) sector which can happen at any time without warning. The current pandemic disaster has increased the need for mobilization at work. The number of agencies adopting the outsourcing system makes information networks vulnerable to attack threats that can come from outside parties or third parties acting as service providers, internal parties, as well as the environment and other physical threats. This study measures the level of awareness, readiness, and implementation of the Disaster Recovery Plan using a survey of companies in Indonesia. The use of the quantitative methodology in this study is coupled with the use of SPSS Statistical Software which focuses on calculating the average score for each section in each organization divided by industry sector. The study results show that of the 3 assessed aspects of the Disaster Recovery Plan, namely the Disaster Recovery Plan Awareness, Disaster Recovery Plan Readiness, and Disaster Recovery Plan Practices which are based on the results of the t-Test conducted, it shows that the value of the level of awareness, readiness, and implementation at Organization in Indonesia is still low which is influenced by several factors, such as the lack of individual awareness of the security of the data they have, the lack of training provided to related staff, the lack of periodic reviews and clear documentation."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ismail Yusuf
"Pusat Data dan Statistik Pendidikan dan Kebudayaan (PDSPK) merupakan unit kerja di Kementerian Pendidikan dan Kebudayaan yang bertugas dalam mendukung tugas Kementerian di bidang data dan statistik pendidikan dan kebudayaan. PDSPK melakukan proses verifikasi dan validasi terhadap data dari hasil pendataan DAPODIK yang bersifat data referensi. Proses verifikasi dan validasi ini dilakukan untuk menjamin kualitas data yang memenuhi persyaratan identitas tunggal untuk dapat melakukan integrasi data pendidikan. Integrasi data wajib menjamin unsur kelengkapan dan kebenaran data. Berdasarkan observasi data dan wawancara menunjukan bahwa kualitas data belum memenuhi sasaran strategis organisasi.
Untuk mengatasi hal tersebut, perlu dibangun perancangan manajemen kualitas data yang sesuai dengan kebutuhan PDSPK dalam mengelola data pendidikan. Perancangan manajemen kualitas data mengacu pada panduan dari Data Management Body of Knowledge (DMBOK) dalam kategori plan dan development yang dikeluarkan DAMA Internasional. Penelitian berhasil merumuskan rancangan manajemen kualitas data yang terdiri dari mendefinisikan kebutuhan, menilai kondisi kualitas data saat ini, menyusun metrik, menetapkan aturan bisnis kualitas data, menetapkan tingkat layanan kualitas data, dan menyusun prosedur operasional manajemen kualitas data.

Data Center and Statistic of Education and Culture (PDSPK) is a unit in the Ministry of Education and Culture which is tasked with supporting the Ministry's duties in the fields of education and culture data and statistics. PDSPK conducts a verification and validation process of data from the results of DAPODIK data that are reference data. This verification and validation process is carried out to ensure data quality that meets the requirements of a single identity to be able to integrate educational data. Data integration must guarantee the elements of data completeness and correctness. Based on data observations and interviews shows that the quality of data has not met the organization's strategic objectives.
To overcome this problem, it is necessary to build a data quality management planning that is in line with the PDSPK requirements in managing education data. Data quality management planning refers to the guidelines of the Data Management Body of Knowledge (DMBOK) in the plan and development category issued by DAMA International. The research succeeded in formulating a data quality management design consisting of defining requirements, assessing current data quality conditions, define metrics, define data quality business rules, establishing data quality service levels, and developing data quality management operational procedures.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nori Wilantika
"Setiap perguruan tinggi di Indonesia bertanggung jawab atas kelengkapan, kebenaran, ketepatan, dan kemutakhiran data pendidikan tinggi di perguruan tinggi masing-masing. Data pendidikan tinggi digunakan untuk pelaksanaan sistem penjaminan mutu pendidikan tinggi dan digunakan sebagai landasan dalam penyusunan kebijakan terkait program studi dan perguruan tinggi di Indonesia. Hasil pengukuran kualitas data menunjukkan bahwa terdapat permasalahan pada data pendidikan tinggi di Politeknik Statistika STIS yaitu belum memenuhi kriteria kelengkapan, kebenaran, ketepatan, dan kemutakhiran. Pengukuran tingkat kematangan manajemen kualitas data telah dilakukan dengan menggunakan Loshins Data Quality Maturity Model dimana hasilnya berada pada kisaran level 1 dan 2. Hanya komponen dimensi kualitas data yang telah mencapai target yang diharapkan.
Untuk itu, rekomendasi disusun berdasarkan kerangka kerja DAMA-DMBOK. Adapun aktivitas yang perlu dilakukan adalah mengembangkan dan mempromosikan kesadaran terhadap kualitas data; mendefinisikan kebutuhan kualitas data; melakukan profiling, analisis, dan penilaian kualitas data; mendefinisikan aturan bisnis (business rules) kualitas data; menetapkan dan mengevaluasi tingkat layanan kualitas data (data quality service levels); mengelola permasalahan terkait kualitas data; merancang dan mengimplementasikan operasional prosedur untuk manajemen kualitas data; dan memantau operasional dan performa prosedur manajemen kualitas data.

Every varsity in Indonesia is responsible for ensuring the completeness, the validity, the accuracy, and the currency of its educational data. The educational data is used for the implementation of the higher-education quality assurance system and is used as a basis to formulate policies related to universities and majors in Indonesia. Data quality assessment result indicates that educational data in Statistics Polytechnic STIS did not meet completeness, validity, accuracy, and currency criteria. Data quality management maturity has been measured using Loshins Data Quality Maturity Model which the result are in level 1 to level 2 of maturity. Only data quality dimensions component has achieved the expected target.
Thus, recommendations have been proposed based on the DAMA-DMBOK framework. The activities needed to be carried out are developing and promoting awareness of data quality; defining data quality requirements; profiling, analyzing, and evaluating data quality; define business rules for data quality, establish, and evaluate the data quality services levels, manage problems related to data quality, design and implement operational procedures for data quality management, and monitor operations and performance of data quality management procedures.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Surya Astana
"Politeknik Keuangan Negara STAN (PKN STAN) sebagai perguruan tinggi diwajibkan untuk memenuhi Standar Nasional Pendidikan Tinggi dalam rangka menjaga mutu pendidikan tinggi. Hasil penjaminan mutu digunakan oleh BAN-PT dalam menetapkan akreditasi Perguruan Tinggi. Penilaian akrediatasi, salah satunya, dilaksanakan dengan mengambil data dari Pangkalan Data Perguruan Tinggi (PDPT). 
Perguruan Tinggi wajib menyampaikan data dan informasi penyelenggaraan pendidikan ke PDPT. Data pendidikan tinggi meliputi data pokok, data referensi, dan data transaksional pendidikan tinggi. Data yang disampaikan ke PDPT harus memenuhi syarat kelengkapan, kebenaran, ketepatan, dan kemutakhiran.
Hasil pengukuran data mahasiswa sebagai salah satu data pokok pendidikan tinggi di PKN STAN padadimensi kualitas data yang disyaratkan, yaitu Kelengkapan50.38%, Kebenaran/Ketepatan14.16%, dan Kemutakhiran100% diukur dari waktu pembuatan/pemutakhiran. Hasil tersebut belum memenuhi kriteria yang disyaratkan organisasi sebesar 90% untuk setiap dimensi data yang disyaratkan.
Berdasarkan hal tersebut, penelitian ini menyusun rekomendasi peningkatan kualitas data pokok pendidikan di PKNSTAN. Rekomendasi disusun dengan melakukan penilaian manajemen kualitas data saat ini yang meliputi penilaian dimensi kualitas data padadata pokok pendidikan (dosen, mahasiswa, kurikulum, dan mata kuliah) dan penilaian tingkat kematangan manajemen kualitas data. 
Rekomendasi yang diberikan meliputi delapan komponen dalam Data Quality Frameworkdari David Loshin dengan menerapkan praktik terbaik manajemen kualitas data dariData Management Book of Knowledge dari DAMA Institute. Terdapat 66 rekomendasi peningkatan kualitas data pokok pendidikan di PKN STAN untuk dapat mencapai tingkat kematangan manajemen kualitas data yang diinginkan. Dari 66 rekomendasi tersebut, terdapat delapan rekomendasi yang dinilai berdampak signifikan dalam awal pelaksanaan program manajemen kualitas data di PKN STAN. Rekomendasi tersebut diharapkan dapat digunakan sebagai acuan dalam melaksanakan program peningkatan kualitas data pokok pendidikan di PKN STAN.

State Finance Polytechnic STAN, as a higher education institution (HEI), is required to meet the National Standards of Higher Education in order to maintain the quality of higher education. The quality assurance results are used by BAN-PT in establishing university accreditation. Accreditation assessment, one of which, is carried out by taking data from the Pangkalan Data Perguruan Tinggi (PDPT).
HEIs must submit data and information on the implementation of education to PDPT. Higher education data includes basic data, reference data, and higher education transactional data. Data submitted to PDPT must meet the requirements for completeness, truth, accuracy, and currency.
The measurement results of student data as one of the primary data of higher education in PKN STAN on the required data quality dimensions, namely Completeness 50.38%, Truth/Accuracy 14.16%, and Update 100% measured from the time of creation/updating. These results do not meet the criteria required by the organization by 90% for each dimension of data required.
Based on this, the research composes recommendations for improving the quality of the basic data of education in PKN STAN. The recommendations are prepared by evaluating the current data quality management, which includes evaluating the dimensions of data quality in the basic education data (lecturers, students, curriculum, and courses) and assessing the maturity level of data quality management.
The recommendations include eight components in the David Quality Quality Framework by implementing data quality management best practices from the Data Management Book of Knowledge from DAMA Institute. PKN STAN needs to make the 66 recommendations to be able to reach the desired level of data quality management maturity. There were eight recommendations which considered to have a significant impact at the beginning of the implementation of the data quality management program in PKN STAN. This recommendation is expected to be used as a reference in implementing the basic data quality improvement program in PKN STAN.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Javier Lopez, editor
"The present volume aims to provide an overview of the current understanding of the so-called Critical Infrastructure (CI), and particularly the Critical Information Infrastructure (CII), which not only forms one of the constituent sectors of the overall CI, but also is unique in providing an element of interconnection between sectors as well as often also intra-sectoral control mechanisms. The 14 papers of this book present a collection of pieces of scientific work in the areas of critical infrastructure protection. In combining elementary concepts and models with policy-related issues on one hand and placing an emphasis on the timely area of control systems, the book aims to highlight some of the key issues facing the research community."
Berlin: [, Springer-Verlag], 2012
e20410495
eBooks  Universitas Indonesia Library
cover
Maengkom, Sera K.
"Notaris adalah pejabat publik yang diberi wewenang untuk membuat perbuatan autentik dan otoritas lainnya, otoritas yang mensertifikasi transaksi yang dilakukan secara elektronik, yang dikenal sebagai notaris dunia maya sebagaimana dijelaskan dalam penjelasan pasal 15, UU No. 2/2014 tentang Pejabat Notaris ( Revisi UU No. 30/2004). Kewenangan tersebut diikuti oleh kewajiban notaris untuk menyimpan, memelihara dan memelihara protokol karena itu adalah arsip negara. Saat ini, notaris telah menggunakan teknologi informasi dan komunikasi baik untuk pekerjaan, sistem kantor, dan yang terkait dengan administrasi negara (misalnya Sistem Administrasi Badan Hukum SABS. Sementara, ada Undang-Undang Arsip yang menyediakan ruang bagi keberadaan catatan elektronik di mana arsip harus memiliki fungsi keaslian dan kepercayaan. Dengan metode penelitian yuridis normatif, menggunakan referensi pada aturan dan prinsip yang berlaku di masyarakat, ada kebutuhan untuk penelitian tentang sistem keamanan informasi untuk arsip negara yang dikelola oleh Notaris.

Notaries are public officials authorized to make authentic deeds and other authorities, one if which is the authority to certify transactions carried out electronically, known as cyber notaries as stated in explanation of article 15, Law No. 2/2014 concerning Notary Officials (Revised Law No. 30/2004). The authority is followed by the notary's obligation to store, maintain and maintain the protocol because it is a state archive. At present, the notary has used information and communication technology both for jobs, office systems, and those related to state administration for example Legal Entity Administration Systems SABH. While, there is an Archive Law that provides space for the existence of electronic records where the archive must have the function of authenticity and trustworthiness. With a normative juridical research method, using reference to the rules and principles that apply in the community, there is a need for research on information security systems for state archives managed by Notaries."
Depok: Fakultas Hukum Universitas Indonesia, 2019
T53930
UI - Tesis Membership  Universitas Indonesia Library
cover
""This book investigates different protocols and architectures that can be used to design, create, and develop security infrastructures by highlighting recent advances, trends, and contributions to the building blocks for solving security issues"-- Provided by publisher."
Hershey, P.A.: Igi Global, 2014
005.8 ARC
Buku Teks  Universitas Indonesia Library
cover
"Information security analytics gives you insights into the practice of analytics and, more importantly, how you can utilize analytic techniques to identify trends and outliers that may not be possible to identify using traditional security analysis techniques.
Information security analytics dispels the myth that analytics within the information security domain is limited to just security incident and event management systems and basic network analysis. Analytic techniques can help you mine data and identify patterns and relationships in any form of security data. Using the techniques covered in this book, you will be able to gain security insights into unstructured big data of any type.
The authors of information security analytics bring a wealth of analytics experience to demonstrate practical, hands-on techniques through case studies and using freely-available tools that will allow you to find anomalies and outliers by combining disparate data sets. They also teach you everything you need to know about threat simulation techniques and how to use analytics as a powerful decision-making tool to assess security control and process requirements within your organization. Ultimately, you will learn how to use these simulation techniques to help predict and profile potential risks to your organization."
Waltham, MA: Syngress, 2015
e20427024
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>