Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 73290 dokumen yang sesuai dengan query
cover
"Penelitian tentang baterai ion lithium telah berkembang dengan pesat, sehingga banyak material yang telah dikembangkan untuk meningkatkan performa baterai ion lithium. Pada penelitian ini material Li4Ti5O12/Si telah berhasil disintesis dengan penambahan berat silikon sebesar 20% dan penambahan lithium berlebih sebesar 3%. Proses sintering dilakukan pada suhu 750°C untuk mendapatkan serbuk Li4Ti5O12/Si, kemudian dikarakterisasi dengan SEM-EDS dan XRD. Variasi kadar acetylene black (5%, 10%, dan 15%) dilakukan pada fabrikasi baterai setengah sel dan diuji dengan EIS, CV, dan CD. Hasil yang didapat bahwa penambahan silikon dan lithium mempengaruhi morfologi pembentukan TiO2 dan Li4Ti5O12 serta meniadakan terbentuknya TiO2 rutile. Namun masih terdapat sedikit produk sampingan berupa Li2TiO3. Metode sol-gel dengan kombinasi teknik ball milling menghasilkan ukuran partikel sebesar 2,091-26,607 μm. Kadar acetylene black sebesar 15% memberikan nilai impedansi terendah sebesar 8,87 Ω dan konduktivitas 1,169x10-2 S/cm pada saat dalam bentuk lembaran. Sedangkan dalam bentuk baterai half cell, acetylene black sebesar 10% memberikan nilai impedansi terendah sebesar 40,01 Ω. Kapasitas spesifik charge/discharge semakin naik dengan meningkatnya kadar acetylene black, namun membuat puncak arus menurun.

Research on lithium ion batteries has grown rapidly so that a lot of material that has been developed to improve the performance of lithium ion batteries. In this research material Li4Ti5O12/Si has been successfully synthesized with the addition of 20 wt.% Si and Li excess 3%. Sintering process is carried out at a temperature of 750°C to obtain powder Li4Ti5O12/Si, then characterized by SEMEDS and XRD. Variations levels of acetylene black (5%, 10%, and 15%) is carried out on fabrication of half-cell battery and tested with the EIS, CV, and CD. The results that the addition of silicon and lithium affects the morphology formation of TiO2 and Li4Ti5O12 and negate the formation of rutile TiO2. However, there is little by products such Li2TiO3. Sol-gel method with a combination of ball milling techniques produce a particle size of 2.091 to 26.607 μm. Acetylene black levels by 15% gives the lowest value of 8.87 Ω impedance and conductivity 1.169x10-2 S/cm when in sheet form. Whereas in the form of half-cell battery, acetylene black of 10% gives the lowest value of 40.01 Ω impedance. Specific capacity charge/discharge further increase with rising levels of acetylene black, but it makes the current peak decreases."
Fakultas Teknik Universitas Indonesia, 2016
S62202
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puthut Bayu Murti
"ABSTRAK
Perkembangan teknologi energi ramah lingkungan seperti sel surya, wind energy,
dan lain-lain mendorong perkembangan media penyimpanan energi (baterai) yang
lebih efisien. Lithium Titanate atau Li4Ti5O12 merupakan salah satu material anoda
yang sedang dikembangkan guna menciptakan baterai yang efisien. Hal ini
dikarenakan Lithium Titanate memiliki sifat zero-strain yang menyebabkan
Li4Ti5O12 memiliki kestabilan yang baik. Di sisi lain, Lithium Titanate memiliki
konduktivitas yang rendah sehingga kemampuan baterai pada kondisi C-rate yang
tinggi menjadi berkurang. Pada penelitian ini dilakukan percobaan dengan variasi
kadar acetylen black yang bertujuan untuk mengetahui pengaruh kadar acetylen
black yang diberikan terhadap konduktivitas dan performa baterai lithium. Variasi
acetylen black dilakukan dengan mengubah rasio berat lembaran anoda Li4Ti5O12
menjadi 3, yakni 9:0,5:0,5 untuk LTO-HT2 AC 0.5, 8:1:1 untuk LTO-HT2 AC 1
dan 7:1,5:1,5 untuk LTO-HT2 AC 1.5. Li4Ti5O12 yang digunakan pada penelitian
ini merupakan Li4Ti5O12 hasil sintesa dengan metode Sol-gel yang diikuti oleh
metode hidrotermal-ballmill. Pengujian XRD, SEM dan BET dilakukan pada
serbuk Li4Ti5O12 guna mengetahui kualitas serbuk yang dihasilkan. Serbuk
Li4Ti5O12 kemudian di mixing, coating, stacking, filling dan crimping hingga
terbentuk baterai lithium setengah sel berbentuk koin. Baterai kemudian diuji
performa nya dengan EIS, CV dan CD. Dari pengujian maka akan terlihat
konduktivitas, kemampuan difusi ion lithium, reversibilitas reaksi, coulombic
efficiency dan rate capability dari baterai. Dengan penambahan acetylen black yang
sesuai, maka performa optimum dari baterai dapat dicapai

ABSTRACT
The development of green environmentally technology like solar cell, wind energy
and any others push (encourage) the development of more efficient storage energy
(battery). Lithium Titanate or Li4Ti5O12 is one of anode material that has been
developed to create more efficient battery. It?s because Lithium Titanate has zerostrain
properties that cause the Li4Ti5O12 have good stability. Other than that,
Lithium Titanate has low conductivity that makes the ability of battery at high crate
condition to be reduced. In this study will be done an experiment with variety
of acetylene black level that aim to know the effect of acetylene black level which
given to conductivity and perform of lithium battery. Variation of acetylene black
is done by changing the weight of anode sheet Li4Ti5O12 to 3, which is 9:0,5:0,5 for
LTO-HT2 AC 0.5, 8:1:1 for LTO-HT2 AC 1, and 7:1,5:1,5 for LTO-HT2 AC 1.5.
Li4Ti5O12 which used in this study is Li4Ti5O12 result from synthesis with sol-gel
method followed by hidrotermal-ballmill method. XRD, SEM and BET testing is
done at Li4Ti5O12 powder to know the result of powder quality. The Li4Ti5O12
powder and then do the mixing, coating, stacking, filling and crimping until lithium
battery formed a half cell like a coin. The Battery is tested it?s performance by doing
EIS, CV and CD. From that test can be seen the conductivity, the ability of lithium
ion difusion, reaction of reversibility, coulombic efficiency and rate capability of
battery. With the adding of appropiate acetylene black, the optimum performance
can be obtain;"
2016
S65630
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pardede, William Abednego
"Pada penelitian ini telah dibuat material komposit Li4Ti5O12/Si karena material ini memiliki karakteristik yang menjanjikan untuk digunakan sebagai material anoda baterai li-ion. Pembuatan komposit Li4Ti5O12/Si dengan penambahan 15%wt Si dan 20%wt Si serta digunakan material Li4Ti5O12 tanpa penambahan Si sebagai pembanding. Xerogel TiO2/Si dibuat dengan metode sol-gel. Serbuk TiO2/Si didapat setelah melakukan kalsinasi pada suhu 300oC dengan kondisi aerasi. Penghalusan dan pencampuran serbuk menggunakan High Energy Ball Mill. Sumber lithium yang digunakan berbentuk Li2CO3. Perlakuan panas diberikan pada campuran serbuk pada suhu 750oC kondisi aerasi untuk menghasilkan serbuk Li4Ti5O12/Si. Karakterisasi komposit Li4Ti5O12/Si didapat dengan melakukan pengujian XRD, BET, dan SEM-EDS. Ukuran kristalit Li4Ti5O12 yang didapatkan untuk penambahan 0%wt Si, 15%wt Si, dan 20%wt adalah 52,6nm; 40,98nm; dan 40,55nm. Luas permukaan yang didapatkan untuk penambahan 0%wt Si, 15%wt Si, dan 20%wt adalah 11,46m2/g; 3,26 m2/g; dan 0,256m2/g. Ukuran partikel untuk penambahan 0%wt Si, 15%wt Si, dan 20%wt adalah 1,62µm; 6,25µm; dan 8,91µm.

Having promising charateristics to be used as a substance for Li-Ion anode battery, the Li4Ti5O12/Si composite material has been conducted in this experiment. The addition of 15%wt Si and 20%wt Si are included in the making process of Li4Ti5O12/Si composite, and as for the comparison, Li4Ti5O12 material with no addition is also used. Xerogel TiO2/Si is conducted through sol-gel method. TiO2/Si powder is gained after the calcination process within 300oC temperature in aeration condition. The powder's rarefaction and mixing, are using the High Energy Ball Mill with Li2CO3 as the Lithium Source. Heat treatment is given to the powder mixing at 750oC temperature in aeration condition to conduct Li4Ti5O12/Si powder. As for the result, Li4Ti5O12/Si will be conducted through XRD, BET tests and SEM-EDS. The size of Li4Ti5O12 crystalite for the 0%wt Si, 15%wt Si, and 20%wt additions are 52,6nm; 40,98nm; and 40,55nm. The surface areas for 0%wt Si, 15%wt Si, and 20%wt are 11,46m2/g; 3,26 m2/g; and 0,256m2/g. The size of particles for the 0%wt Si, 15%wt Si, and 20%wt additions are 1,62µm; 6,25µm; and 8,91µm."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62174
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nita Dianova
"Litium titanat (Li4Ti5O12) merupakan salah satu alternatif elektroda anoda yang dapat menggantikan grafit pada baterai Li-ion. Kelebihan litium titanat dibandingkan grafit adalah kestabilan struktur kristal hampir tidak mengalami perubahan selama interkalasi dan de-interkalasi ion Li+. Namun seiring dengan kebutuhan akan baterai dengan kapasitas yang tinggi, kian mendorong untuk meningkatkan kapasitas baterai Li-ion. Salah satu cara yang dapat dilakukan untuk meningkatkanya adalah dengan menggabungkanya dengan material silikon yang memiliki kapasitas yang tinggi mencapai 4200 mAh/g. Namun ekspansi volume Si menyebabkan keruntuhan elektroda dan hilangnya kapasitas. Oleh karna itu digunakanlah Si nano untuk meminimalisir efek ekspansi volume. Penelitian ini dilakukan proses fabrikasi baterai dengan penambahan Si nano partikel dengan variasi berat 5%, 10% dan 15%. . Karakterisasi material awal Si nano dengan menggunakan TEM-EDS dan XRD menunjukan adanya unsur oksigen dan fasa SiO pada partikel Si nano. Baterai sel koin dibuat sel setengah dengan menggunakan Li4Ti5O12 sebagai katoda dan logam litium sebagai anoda. Uji performa sel baterai dengan electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) dan charge discharge (CD). Nilai konduktivitas semakin menurun seiring dengan peningkatan kadar Si nano, pada hasil pengujian CV menunjukan kapasitas paling tinggi pada penambahan 5% Si nano yaitu mencapai 197,09. Hasil pengujian CD menunjukan semakin meningkatnya kadar Si nano kapasitasnya semakin menurun

Lithium titanate (Li4Ti5O12) could be used as anode electrode in Li-ion battery, replaces graphite in Li-ion battery application. Crystal structure lithium titanate is more stable than graphite, it doesn?t changing during intercalation and de-intercalation process Li+ ions. but along with a high demand for batteries with high capacity, leading to increase the capacity of Li-ion batteries. that can be improved by combining LTO with the silicon material that has a high capacity reached about 4200 mAh/g, but the volume expansion properties of silicon led to collapse and lost its capacity. Therefore nanoscale silicon is used to minimize the effect of their expansion. This research carried out fabrication process li-ion battery with the addition of silicon nano material with variation weight 5%,10% and 15%. First, nano silicon initial material characterization using TEM-EDS and XRD, showed the presence of the element oxygen and SiO phase on Si nano particles. Then charaterized in coin cell types, half cell using Li4Ti5O12 as a cathode and lithium metal as the anode. Furthermore, battery performance tested with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). From EIS testing, the conductivity values descrease along with increasing weight of Si nano particles. The CV showed the highest capacity on the addition of 5% Si nano, reaching 197,09. The CD showed the increasing weight of Si nano, the capacity descrease.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64613
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Mochamad Abdurrahman
"ABSTRAK
Penelitian ini membahas pengaruh kadar aditif Acetylene Black terhadap performa baterai lithium ion dengan anoda Li4Ti5O12. Material aktif Li4Ti5O12 untuk anoda baterai ion litium telah berhasil dibuat dari xerogel TiO2 yang dibuat menggunakan metode sol-gel, dilanjutkan dengan proses ball-milling, dan sintering. Identifikasi fasa, morfologi, dan luas permukaan material dikarakterisasi menggunakan pengujian XRD, SEM-EDS, dan BET. Terbentuk fasa spinel Li4Ti5O12 dan TiO2 rutile pada hasil XRD. Morfologi Li4Ti5O12 yang terbentuk menunjukkan adanya aglomerasi. Hasil sintesis Li4Ti5O12 dibuat lembaran elektrodanya dan dicampur dengan binder PVDF (10%wt) dan aditif AB sebesar 10%wt (LTO2 AC-1), 12%wt (LTO2 AC-2), dan 15%wt (LTO2 AC-3). Baterai sel koin dibuat secara setengah sel (half cell) menggunakan elektroda litium. Pengujian performa baterai dilakukan menggunakan cyclic voltammetry (CV), Electro-impendance spectroscopy (EIS), dan charge discharge (CD). Nilai tahanan yang paling tinggi didapatkan pada sampel LTO2 AC-3. Penyebabnya diperkirakan karena terbentuknya produk samping reaksi pada permukaan elektroda di siklus awal karena reaktivitas elektroda LTO2 AC-3 yang tinggi. Kapasitas awal tertinggi didapatkan pada sampel dengan kadar AB 10%wt (LTO2 AC-1) pada pengujian CV dan CD pada rate awal dikarenakan kadar material aktifnya yang paling tinggi. Pada pengujian performa baterai menggunakan Charge-discharge, Rate-capability terbaik didapatkan pada sampel dengan kadar AB 15% dimana terdapat kapasitas sebesar 24,12 mAh/g pada rate 10C dengan kapasitas yang hilang sebesar 71,34%. Dalam penelitian ini disimpulkan bahwa penambahan kadar AB dapat meningkatkan ketahanan siklus dari baterai dan juga akan meningkatkan rate-capability-nya. Peningkatan reaktivitas, luas permukaan, dan konduktivitas dari elektroda diperkirakan menjadi penyebab fenomena ini. Hal ini didukung oleh hasil pengujian EIS, CV, dan CD dari ketiga sampel yang diujikan

ABSTRACT
This research was talking about the influence of Acetylene Black additives content in Li-ion Batteries performance with Li4Ti5O12 anode. Li4Ti5O12 active material for Li-ion batteries anode was successfully made using sol-gel method to form TiO2 xerogel continued with ball-milling and sintering process. XRD, SEM-EDS, and BET, was performed to identify the phase, morphology, and surface area of LTO powder. Spinel Li4Ti5O12 and TiO2 rutile was detected in XRD test. Li4Ti5O12 morphology show presence of agglomerates structure. Electrode sheet then be made with Li4Ti5O12 from previous process and mixed with PVDF binder (10%wt) and AB additives 10%wt (LTO2 AC-1), 12%wt (LTO2 AC-2), and 15%wt (LTO2 AC-3) of total weight solid content. Half cell coin battery was made with lithium counter electrode. Cyclic voltammetry (CV), Electro-impendance spectroscopy (EIS), and charge discharge (CD) test used to examine the battery performance. Highest resistance value obtained in LTO2 AC-3 sample. It may be caused by the formation of side reaction product on electrode surface at initial cycle due to high reactivity of LTO2 AC-3 electrode. Greatest initial capacity at CV test and CD test was obtain in LTO2 AC-1 (10%wt AB) sample, due to highest active material content. When charge-discharge test, the best sample rate-capability performance falls to LTO2 AC-3 sample (15%wt AB), where there was still have 24.12 mAhg of discharge capacity at 10 C with 71.34% capacity loss. In this research, writer conclude that Increasing AB content could lead to rate-capability and cycling performance improvement. Reactivity, surface area, and conductivirty enhancement in electrode may be caused by this phenomenon. This fact supported by charge-discharge, cyclic voltammetry, and electro-impendance spectroscopy data.;"
2016
S65655
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salivian Selwyn
"Penelitian ini dimaksudkan untuk mengetahui proses sintesis Li4Ti5O12 dengan struktur nanorod dan metode pembuatan komposit dari LTO nanorod dan unsur Sn dengan variasi jumlah Sn sebesar 5 , 10 , 15 . Sintesis LTO dilakukan dengan mensintesis TiO2 prekursor menggunakan proses sol ndash; gel, kemudian prekursor sol ndash; gel yang diperoleh akan dilakukan perlakuan hidrotermal dengan larutan NaOH 10M pada suhu 180oC selama 24 jam untuk memperoleh struktur nanorod, prekursor TiO2 nanorod akan dicampur dengan LiOH agar membentuk LTO nanorod. LTO nanorod kemudian dicampur dengan Sn untuk meningkatkan konduktivitas dan kapasitas LTO. Serbuk ini akan menjadi material aktif untuk anoda baterai litium ion. Untuk mengkarakterisasi produk sintesis dilakukan pengujian XRD, SEM EDS, dan pengujian performa baterai EIS, CV, dan CD.
Hasil pengujian SEM menunjukan produk yang diperoleh memiliki struktur nanopartikel hasil struktur nanorod yang rusak akibat proses sintesis yang dilakukan, sedangkan pengujian CV menunjukan terjadi pergeseran nilai tegangan dan peningkatan nilai kapasitas LTO dibanding penelitian sebelumnya, peningkatan ini disebabkan struktur nano yang dimiliki sampel, sedangkan pergeseran nilai tegangan mengindikasikan terjadi microalloying yang akan meningkatkan voltase sel baterai.

This research purpose is to know the process for synthesizing Li4Ti5O12 with nanorod structure and the method to create the composite of this Li4Ti5O12 with Sn powder with variation in the added amount of Sn powder is 5 , 10 , and 15 wt. Synthesis of Li4Ti5O12 is done through synthesizing TiO2 precursor with sol gel method, then these obtained precursors is treated hydrothermally in NaOH 10M solution for 24 hours at 180oC. This treatment purpose is to obtain nanorod structure in TiO2. The obtained nanorod precursor then mixed with LiOH to obtain Li4Ti5O12 with nanorod structure. These nanorod is mixed with Sn to improve the conductivity and capacity of Li4Ti5O12. The obtained powder then become the active material for Lithium Battery Anode. To characterize the synthesis products, several testing is done, which include XRD characterization, SEM EDS characterization, and battery performance testing, which consist of EIS, CV, and CD.
The result of SEM characterizations shows that the obtained product has nanoparticle structure which originated from damaged nanorod structures, this damage is caused by synthesis process done to the samples. Meanwhile the cyclic voltammetry testing shows a shift in reaction voltage and improvement in capacity compared to previous research, this improvement is caused by nano structure owned by the samples in current research, meanwhile the shift in voltage indicate microalloying is happened and will result in bigger battery cell voltage.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizal Rusita
"Skripsi ini meneliti tentang pengaruh temperatur ambien terhadap karakteristik baterai Lithium ion. Perancangan sistem uji mencakup perancangan pengkondisi temperatur ruangan, perancangan media charge-discharge, perancangan alat ukur tegangan dan arus, serta instalasi alat ukur temperatur dengan menggunakan data acqusition. Baterai yang digunakan sebagai sampel merupakan baterai Lithium ion silinder tipe CGR18650CG dari produsen Panasonic yang memiliki kapasitas tipikal 2250 mAh dan tegangan nominal 3,6 V. Percobaan dilakukan dengan memberikan variasi temperatur ambien pada 25, 45, dan 6 C sesuai standar baterai Panasonic pada saat baterai melakukan proses charging dan discharging.
Hasil percobaan menunjukan bahwa pada temperatur yang lebih tinggi, nilai konduktansi elektrik baterai menurun yang ditandai denga peningkatan resistansi internal baterai sehingga menyebabkan waktu untuk proses charge-discharge menjadi lebih lama dibandingkan dengan kondisi normal. Pemberian tempertatur ambien tinggi menyebabkan potensi atau kemampuan baterai untuk mentransfer kalor ke lingkungan menjadi menurun dan beresiko terhadap timbulnya mekanisme thermal runaway.

This research is about to comprehending the effect of thermal imposition to Lithium ion battery’s characteristic. Testing system contains designing temperature simulator, charge-discharge medium, current and voltage measurer, also installation of temperature measurer using data acquisition. The Panasonic CGR18650CG cylindrical Lithium ion battery is used in this expermient as a battery sample. That type of battery has typical capacity of 2250 mAh and nominal voltage of 3.6 V. Later, the thermal imposition is given at temperature of 25, 45, and 60 C appropriate to the Pnasonic battery standard charge-discharge when the battery is in the charge and discharge condition.
The result of experiment shows that at higher ambient temperature, conductace value of the battery is decrease that implied to the increasing of internal resistance of the battery. Finally, time to exceed maximum charged or discharged condition is also increase. At higher ambient temperature, capability of battery in transfering heat to the surrounding is decrease so that the thermal runaway mechanism may occur.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46671
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
"Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.

The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Chandri Egieara
"SiOC@C adalah kandidat anoda lithium ion LIB yang diharapkan dapat menekan ekspansi volume tinggi silikon Si melalui penambahan karbon aktif sebagai lapisan penyangga. Silicon oxycarbide SiOC diperoleh dari minyak silikon kaya fenil melalui pirolisis pada 900 C dalam mengalirkan gas Ar. Variasi sampel yang digunakan adalah 4, 7, 10 wt. SiOC dan sampel karbon murni juga disiapkan untuk perbandingan. Dari melakukan tes karakterisasi, ditemukan bahwa puncak ditampilkan dalam hasil XRD milik SiOC.
Gambar SEM menunjukkan mikro berpori dengan pemetaan unsur Si, C, dan O. Menurut tes Brunner-Emmet-Teller BET, luas permukaan terbesar 542.738 m2g-1 diperoleh pada 10 berat SiOC. Berdasarkan hasil pengujian kinerja, kapasitas discharge yang diperoleh pada kondisi prima 10 wt SiOC adalah 223,3 mAh g-1.

SiOC C is a lithium ion battery LIB anode candidate that is expected to suppress the high volume expansion of silicon Si through the addition of activated carbon as a buffer layer. Silicon oxycarbide SiOC was obtained from phenyl rich silicone oil through pyrolysis at 900oC in flowing Ar gas. The variation of samples used were 4, 7, 10 wt SiOC and a pure carbon sample was also prepared for comparison. From conducting the characterisation tests, it is discovered that the peaks displayed in XRD result belong to SiOC.
SEM images show a porous microstructure with a few agglomerates present and the EDS result exhibits an elemental mapping of Si, C, and O. According to Brunner Emmet Teller BET test, the largest surface area of 542.738 m2g 1is obtained at 10 wt SiOC. Based on the performance test result, the discharge capacity obtained at the prime condition of 10 wt SiOC is 223.3 mAh g 1.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahran Mizuya Kusmana
"Kendaraan Listrik merupakan solusi untuk mengatasi permasalahan keterbatasan energi fosil saat ini. Kendaraan Listrik menggunakan Baterai sebagai sumber energi dalam sistem propulsi. Efisiensi Kendaraan Listrik menjadi faktor yang penting karena kendaraan membutuhkan efisiensi dan jarak tempuh yang tinggi. Baterai menjadi faktor utama yang mempengaruhi efisiensi Kendaraan listrik. Baterai memiliki tingkat kerapatan energi yang tinggi dan kapasitas penyimpanan energi yang besar. Kebutuhan untuk melepaskan energi secara cepat dalam kendaraan listrik membuat baterai harus memiliki Current Discharge yang besar. Current discharge mengacu pada laju aliran arus listrik dari baterai saat baterai digunakan untuk memberikan daya pada motor listrik kendaraan. Current discharge yang rendah dapat menyebabkan kinerja motor listrik menjadi kurang optimal dan jarak tempuh kendaraan menjadi lebih pendek. Selain itu, kapasitas energi pada baterai mempengaruhi seberapa jauh kendaraan listrik dapat berjalan. Kapasitas energi pada baterai mengacu pada jumlah energi listrik yang dapat disimpan oleh baterai, dan semakin besar kapasitas energi, semakin banyak energi listrik yang dapat disimpan oleh baterai.

Electric vehicles are a solution to overcome the current limitations of fossil fuels. Electric vehicles use batteries as a source of energy in the propulsion sistem. Efficiency of electric vehicles is an important factor because vehicles require high efficiency and long range. Batteries are the main factor that affects the efficiency of electric vehicles. Batteries have a high energy density and large energy storage capacity. The need to release energy quickly in electric vehicles requires batteries to have a high current discharge. Current discharge refers to the rate of flow of electrical current from the battery when the battery is used to power the electric motor of the vehicle. Low current discharge can cause the electric motor performance to be suboptimal and the vehicle range to be shorter. In addition, energy capacitance in batteries affects how far electric vehicles can travel. Energy capacitance in batteries refers to the amount of electrical energy that can be stored by the battery, and the larger the energy capacitance, the more electrical energy can be stored by the battery."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>