Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 197105 dokumen yang sesuai dengan query
cover
Darien Jonathan
"ABSTRAK
Distribusi normal adalah salah satu jenis persebaran kelompok data yang didefinisikan berdasarkan rata-rata dan standar deviasi dari sekelompok data, yang dapat digunakan untuk mengelompokkan data berdasarkan posisinya terhadap standar deviasi dari kelompok data tersebut. Learning Vector Quantization adalah salah satu jenis neural network yang bisa mempelajari sendiri masukan yang ia terima kemudian memberi keluaran sesuai dengan masukan tersebut, dengan metode supervised dan competitive learning. Skripsi ini membahas penerapan dan analisis dari kedua sistem tersebut untuk menguji hasil deteksi plagiarisme oleh sistem deteksi plagiarisme berbasis latent semantic analysis, yang berasal dari program Simple-O. Beberapa modifikasi dilakukan untuk meningkatkan akurasi pengujian, antara lain dengan melakukan variasi parameter-parameter dari metode distribusi normal, yakni dengan mengubah batas standar deviasi maupun dengan mengubah koefisien pengali batas nilai pada standar deviasi tertentu, dimana hasilnya adalah standar deviasi maupun koefisien pengalinya berbanding lurus dengan aspek relevansi program (recall) namun tidak pada akurasi (F-Measure). Modifikasi juga dilakukan pada parameter percepatan belajar dari algoritma learning vector quantization, dimana hasilnya adalah parameter percepatan belajar berbanding terbalik dengan relevansi program maupun akurasi. Kemudian variasi dan analisis dilakukan pada tujuh jenis besaran hasil keluaran sistem deteksi plagiarisme berbasis latent semantic analysis, yakni frobenius norm, slice, dan pad, beserta kombinasinya, dimana hasilnya keberadaan frobenius norm diwajibkan untuk melakukan evaluasi kemiripan antara dua teks. Kemudian hasil pengujian menggunakan kedua metode digabungkan menggunakan operasi AND yang memberikan hasil yang beragam, dengan catatan perlunya keseimbangan antara precision dan recall dari masing pengujian yang akan dilakukan operasi AND untuk memberikan hasil yang baik. Dengan menggunakan kombinasi metode dan parameter yang tepat, terdapat peningkatan akurasi sistem dari 35-46% pada penelitian sebelumnya hingga maksimal 65,98%.

ABSTRACT
Normal distribution is a type of data distributions which is defined from the average and standard deviation of the data cluster. It can be used to group datas based on its position from the standard deviation of the data cluster. Learning vector quantization is a type of neural networks that can learn from inputs it gets to give appropriate outputs, with supervised and competitive learning methods. This thesis discusses the implementation and analysis of both methods to verify the plagiarism detection results from detection plagiarism system based on latent semantic analysis, which is based on Simple-O program. Some modifications are made, such as by variating the parameters of normal distribution method, by changing the limits of standard deviation or by changing the factor of the number limit at a particular standard deviation. Both of them appear to be directly proportional to the relevance (recall), but not with accuracy (F-Measure). Modifications are also made at the learning acceleration parameters from the learning vector quantization algorithm, which sees the parameters being inversely proportional to both the relevance and accuracy. Then, variations and analysis are done to seven types of magnitude from the results of the plagiarism detection system, which are frobenius norm, slice, and pad, and their combinations, which suggest that frobenius norm is the most verifiable results, and must be included to be evaluated when text similarity analysis are conducted. Then, verification results using both methods are combined using AND operation which gives diverse results. However, it is needed to have a balance between precision and recall from each verifications to produce good results. With correct combinations of methods and parameters, system accuracy are increased from 35-46% of last research to maximum accuracy of 65,98%.
"
Fakultas Teknik Universitas Indonesia, 2016
S62578
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ihsan Ibrahim
"Di Indonesia yang mayoritas karya tulis di dunia akademiknya masih menggunakan bahasa Indonesia dan referensi yang digunakan mayoritas berbahasa Inggris, memudahkan terjadinya tindak plagiarisme daripada penggunaan bahasa yang sama. Departemen Teknik Elektro telah mengembangkan sistem pendeteksi plagiarisme dwibahasa berbasis Latent Semantic Analysis LSA . Lamanya eksekusi, membuat paralelisme menjadi solusi untuk mengurangi waktu eksekusi dari sistem. Pada penelitian ini dilakukan pengembangan dengan pemrosesan paralel terhadap sistem dengan menggunakan OpenMP. Proses yang diparalelkan adalah, yaitu Singular Value Decomposition SVD, operasi-operasi matriks, dan proses Learning Vector Quantization LVQ dengan melakukan pada pendekatan loop-loop-nya.
Pada pengujian yang dilakukan, akurasi dari proses paralel memiliki konsistensi yang baik karena hasil yang sama dengan proses serial dan didapatkan peningkatan kecepatan eksekusi sistem sebesar 4-7,9 . Dengan fenomena pemrosesan paralel dengan menggunakan 1 thread memiliki waktu eksekusi yang lebih lambat daripada proses serial. Sedangkan saat menggunakan 2 thread dan 4 thread, didapatkan hasil yang lebih cepat daripada proses serial meskipun penggunaan 4 thread hanya berbeda sedikit atau cenderung sama dengan 2 thread. Hal ini disebabkan adanya overhead OpenMP yang terjadi saat pemrosesan paralel berjalan sebesar 20 , dan overhead MySQL yang membuat proses menjadi sangat lama karena besarnya yang mencapai 70 saat proses serial dan 50 pada proses paralel.

Majority of academic environment in Indonesia is still using Indonesian language and its references are in English. This condition led to ease the plagiarism acts when compared to same language environment. Due to this problem, Department of Electrical Engineering has developed bilingual plagiarism detection system based on Latent Semantic Analysis LSA . Parallelism becomes a solution to duration of execution problem. Development of parallel processing on the system with using OpenMP was conducted in this research. The parallelized processes were Singular Value Decomposition SVD , matrices operations, and Learning Vector Quantization LVQ with approach on loops.
In the testing process, accuracy of the parallel process had the same accuracy with the serial process. It is mean that the parallel process has good consistency. Then, the result of execution time has 4 7.9 of improvement compared to the serial one. There was a phenomenon that 1 thread of parallel process had worse performance than the serial process. Furthermore, use of 2 threads and 4 threads in the parallel process had a better execution time, even 4 threads is only slightly better or tend to be the same with 2 threads. These happened due to overhead presences. OpenMP overhead appeared at 20 when parallel executed and MySQL had more with 70 of system computation process in serial and 50 when executed in parallel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50881
UI - Tesis Membership  Universitas Indonesia Library
cover
Dian Rismawati
"Departemen Teknik Elektro Universitas Indonesia telah mengembangkan suatu sistem berbasis Latent Semantic Analysis (LSA) untuk mendeteksi plagiarisme pada karya tulis berbahasa Indonesia dan Inggris. Data keluaran sistem deteksi plagiarisme berbasis LSA adalah nilai frobenius norm, slice, dan pad. Pada skripsi ini akan menjelaskan serta memberikan analisis pada pengembangan sistem deteksi plagiarisme yang telah ada yaitu dengan menerapkan algoritma Support Vector Machine (SVM).
Support Vector Machine (SVM) adalah suatu Learning Algoritm yang bertujuan untuk menemukan suatu hipotesis berupa bidang pemisah (hyperplan) terbaik dari sekumpulan data yang dapat dipisahkan secara linear maupun tidak linear. SVM akan memisahkan data hasil keluaran sistem deteksi plagiat bebasis LSA menjadi dua kelas yaitu "plagiat" dan "tidak plagiat" dengan menggunakan 2 metode yaitu kombinasi data input dan kombinasi data output dengan metode AND. Beberapa modifikasi terhadap imput program dilakukan diantaranya memvariasikan parameter-parameter pembelajaran dan memvariasikan data hasil keluaran program deteksi plagiarisme berbasis LSA.
Hasil dari analisis serta pengujian yang telah dilakukan yaitu jika menggunakan parameter serta kombinasi data yang tepat, SVM mampu untuk meningkatkan akurasi sistem dari sistem yang menggunakan metode Learning Vector Quantization (LVQ) pada penelitian sebelumnya hingga menghasilkan akurasi sebesar 63,15% hal ini dilihat jika mempertimbangkan keseimbangan terhadap aspek presisi dan relevansi program sedangkan jika dilihat melalui presentase jumlah data yang berhasil diklasifikasikan dengan tepat, SVM mampu menghasilkan akurasi sebesar 97,04%.

Department of Electrical Engineering, University of Indonesia has developed a system based on Latent Semantic Analysis (LSA) to detect plagiarism between two paper written in different languages, which are Indonesian and English. The output data of plagiarism detection system are frobenius norm, slice, and pad. This thesis will explain and provide analysis of the development of plagiarism detection system that already exist by applying Support Vector Machine (SVM) algorithm.
Support Vector Machine (SVM) is a Learning Algorithm that aims to find a best hypothetical form called hyperplan to separated a set of data that can be separated linearly and nonlinearly. SVM will separate output data of plagiarism detection system into two classes, "plagiat" class and "tidak plagiat" class by using two methods: combination of input data method and output data combined with AND method. Some modifications to input program are made, such as variating the parameters of learning and variating the output data of plagiarism detection program.
The results of analysis and test that has been done are: if the system use correct parameters and correct combinations of the data, SVM is able to improve accuracy of the system from the last research that using Learning Vector Quantization (LVQ). The accuracy of SVM is 63,15% if considering the balance of precision and relevance of the program, while when viewed through a percentage of the amount of data that appropriately classified, the accuracy of SVM is 97.04%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65023
UI - Skripsi Membership  Universitas Indonesia Library
cover
Paskalis Nandana Yestha Nabhastala
"Penelitian yang dilakukan berupa pengembangan terhadap sistem pendeteksi plagiarisme otomatis sehingga dapat menerapkan jaringan saraf tiruan Self-Organizing Map SOM untuk melakukan klasifikasi terhadap hasil keluaran Latent Semantic Analysis. SOM dipilih untuk melakukan klasifikasi karena algoritma ini tidap perlu melakukan supervisi pada proses pembelajarannya sehingga dapat secara otomatis menentukan tingkat plagiarisme antar paragraf yang tidak mudah ditentukan secara langsung oleh manusia. Selain itu dilakukan perbandingan akurasi penentuan tingkat plagiarisme yang dimiliki oleh sistem apabila hanya menggunakan LSA saja, penggunaan LSA dengan SOM, dan penggunaan LSA dengan Learning Vector Quantization LVQ.
Penggunaan SOM dan LVQ dilakukan untuk melakukan klasifikasi tingkat plagiarisme dari hasil keluaran LSA. Penentuan tingkat plagiarisme sudah cukup dilakukan apabila hanya menggunakan LSA saja, dimana sudah dapat menghasilkan tingkat akurasi paling tinggi yaitu 86,24. Namun, penggunaan SOM dengan jumlah kelas sebanyak 2 dengan 3 parameter memberikan rata-rata tingkat akurasi yang sedikit lebih rendah, yaitu sebesar 82,00. Sedangkan penggunaan LVQ dengan jumlah kelas sebanyak 2 dengan 3 parameter juga memberikan rata-rata tingkat akurasi yang sedikit lebih tinggi dibandingkan, yaitu sebesar 82,10.

This research has concern on deployment of neural network algorithm Self Organizing Map SOM in automatic plagiarism detector so it could be used to classify the output from Latent Semantic Analysis. SOM is chosen because it is an unsupervised neural network algorithm. With unsupervised neural network, it could determine the plagiarism level between paragraf automatically, which hard for human to determine it. Other than deployment of SOM, this research also focusses on the comparison of accuracy of the system if the system only deploys pure LSA, combination of LSA and SOM, and combination of LSA and Learning Vector Quantization LVQ.
SOM and LVQ are used to do classification for the output from LSA. Plagiarism level could be determined by the result of LSA only. It has 86,24 as the highest accuracy level. But, the usage of SOM with 2 classes and 3 parameters gives lower average of accuracy, which is 82,00 . Therefore, usage of LVQ with 2 classes and 3 parameters gives slight better accuracy than SOM, which is 82,10.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
Spdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Yusuf Irfan Herusaktiawan
"Penelitian ini mengembangkan dan menganalisa sistem pendeteksi plagiarisme dua bahasa berbasis Latent Semantic Analysis untuk karya tulis berbahasa Indonesia dan referensi berbahasa Inggris. Sistem pendeteksi plagiarisme menggunakan algoritma backpropagation neural network untuk melakukan klasifikasi pasangan karya tulis berbahasa Indonesia dan Inggris yang sudah dinilai tingkatan plagiarismenya secara manual. Sistem dapat memperoleh klasifikasi akurasi F-measure sampai dengan 92.75.
Hasil percobaan menunjukkan bahwa akurasi tertinggi dapat diperoleh jika menggunakan metode term frequency binary dalam penghitungan jumlah kata dan penggunaan frobenius norm, vector angle slice, dan vector angle pad sebagai pilihan fitur untuk masukan backpropagation neural network.

This research aims to develop and analyse dual language plagiarism detection system based on Latent Semantic Analysis for papers with Indonesian language and reference text with English language. The plagiarism detection system uses backpropagation neural network algorithm to classify pairs of Indonesian and English papers which plagiarism levels has been graded manually. The system has reached classification accuracy using F measure metric up to 92.75.
Experiment results show that the highest accuracy obtained when using term frequency binary method in counting frequency of words and using frobenius norm, vector angle slice, and vector angle pad features for backpropagtion neural network input.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emily Lomempow
"ABSTRAK
Latent Semantic Analysis (LSA) adalah metode yang dapat digunakan untuk membandingkan kesamaan antar teks dengan memanfaatkan representasi kata ke dalam komputasi statistik berdasarkan konteksnya dalam teks tersebut. Pada skripsi ini dirancang sistem yang dapat mendeteksi plagiarisme antara paper bahasa Indonesia dengan paper bahasa Inggris. Sistem dirancang berdasar pada metode LSA, tetapi dengan beberapa modifikasi untuk meningkatkan kecepatan komputasi serta keakuratan program. Metode LSA yang digunakan adalah hasil penelitian yang berasal dari program Simple-O. Dimana, metode ini memiliki keunggulan di waktu proses yang lebih cepat karena mengurangi vector space dalam proses SVD. Beberapa modifikasi dirancang untuk memperoleh hasil yang paling akurat, antara lain menghilangkan stopwords sebelum pemrosesan dan pembentukkan matriks term-document dengan keywords dari paragraf referensi saja. Gabungan dari kedua modifikasi tersebut memberikan hasil yang paling akurat dengan persentase 81,82% sampai dengan 90,91%. Kemudian nilai dari pengujian akan dicek berdasarkan batas mutlak, system ranking, maupun perhitungan distribusi normal untuk menentukan adanya indikasi plagiarisme. Hasil pengecekan plagiarisme paling akurat diperoleh menggunakan perhitungan distribusi normal, dengan persentasi 79,49% sampai dengan 87,81%.

ABSTRACT
Latent Semantic Analysis (LSA) is a method to find the similarity between two texts using the statistical representation of the words based by its contextual means in each text. The system in this thesis is designed to be able to detect plagiarism between two paper written in different languages, which are Indonesian and English. The system is designed using modified version of LSA which is first developed for Simple-O program. This modified version of LSA excel in fast computation as the effect of vector space reduction in SVD process. Several forms of modification are developed to bring forward the most accurate algorithm for the program, for instances are excluding stopwords from LSA processing and creating term-document matrix using words from reference paragraph only. The algorithm composed using the two modifications produces the best result with 81,82% to 90,91% accuracy. The value obtained from the test will be used to decide if there is an indication of plagiarism between two paragraphs using an absolute threshold, ranking system, or based by normal distribution calculation. The most accurate results are obtained from normal distribution calculation based detection with 79,49% to 87,81% rate of success."
2014
S59618
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanda Girindratama
"Pada penelitian ini, dikembangkan HPC yang menerapkan multicore processing pada program Sistem Pendeteksi Plagiarisme dengan memanfaatkan infrastruktur komputasi awan berbasis OpenStack. Sistem Pendeteksi Plagiarisme merupakan program yang dikembangkan untuk mendeteksi tingkat plagiarisme dari suatu karya ilmiah. Algoritma program yang digunakan untuk penelitian kali ini adalah latent semantic analysis (LSA). Implementasi HPC dilakukan dengan bantuan library OpenMP yang didesain untuk bahasa pemrograman C. Diterapkan dua jenis paralelisme pada program, yaitu paralelisme fungsi dan paralelisme data. Setelah dilakukan pengujian, didapati hasil bahwa kedua metode paralelisme ini mempercepat eksekusi program. Paralelisme fungsi mempercepat waktu eksekusi hingga sebesar 1,03 kali waktu eksekusi serial dan paralelisme data mempercepat waktu eksekusi hingga 1,34 kali waktu eksekusi serial.

In this research, HPC with multicore processing is developed on Plagiarism Detection System using OpenStack based cloud computing infrastructure. Plagiarism Detection System is a software developed to detect plagiarism level of a scientific papers. The algorithm used in this program is latent semantic analysis (LSA). HPC implementation is done using OpenMP library which is designed to be used in C programming language. There are two types of paralelism in this program, which are function paralelism and data paralelism, both accelerate the execution time. Function paralelism accelerates program by up to 1,03 times of serial execution while data paralelism decreases the execution time by up to 1,34 times serial execution time."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mardiyah
"Pada skripsi ini telah dilakukan modifikasi metode untuk membangun sistem pendeteksian plagiarisme yang disebut dengan LSA atau Latent Semantic Analysis. Metode ini bekerja dengan mengekstrak dan merepresentasikan konteks yang digunakan sebagai sebuah arti kata dengan memanfaatkan komputasi statistik untuk sejumlah korpus yang besar dari teks. Modifikasi yang diterapkan yaitu mengubah panjang definisi dokumen pada Term-Document Matrix serta mengubah metode pengisian matriks pada Term-Document Matrix dari metode frekuensi ke metode biner. Hasil keluaran LSA yang dapat menentukan keakurasian sistem akan bervariasi sebagai akibat modifikasi sistem. Skripsi ini juga akan membahas metode dan alur yang digunakan untuk menganalisa perbedaan hasil keluaran LSA serta menampilkan hasil pengolahan data keluaran LSA yang kemudian akan memberikan nilai keakuratan masing-masing variasi sistem.

This thesis has been modified method to build plagiarism detection system called LSA or Latent Semantic Analysi. This method works by extracting and representing context is used as a meaning of the word by using statistical computing to a large corpus of text. Modifications are applied by changing the length of the document definitions Term-Document Matrix and change the method of charging matrix in Term-Document Matrix of frequency to the binary method. The output of the LSA to determine the accuracy of the system will vary as a result of modifications to the system. This thesis will also discuss the methods and flow of used to analyze differences in the output of the LSA as well as displaying the data processing LSA output which will then provide the value of the accuracy of each of the various systems.
"
Depok: Unversitas Indonesia. Fakultas Teknik, 2016
S64942
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanifah Khairunnisa
"ABSTRAK
Dalam penelitian ini, Sistem Penilaian Esai Ototmatis (Simple-O) dirancang menggunakan algoritma Latents Semantic Analysis (LSA), Term Frequency-Inverse Document Frequency, dan algoritma Support Vector Machine (SVM). Algoritma LSA digunakan untuk mengolah kata-kata yang merepresentasikan kata-kata dalam teks menjadi matriks. Algoritme SVM digunakan untuk mengklasifikasikan esai jawaban siswa berdasarkan topiknya. TF-IDF digunakan untuk menimbang setiap kata dalam teks yang akan menjadi input SVM. Dari penelitian ini ketepatan penggunaan jawaban dosen sebagai jawaban referensi adalah 72,01% dan ketepatan penggunaan kata kunci sebagai jawaban referensi adalah 69,5%.

ABSTRACT
In this study, the Automatic Essay Assessment System (Simple-O) was designed using the Latents Semantic Analysis (LSA) algorithm, Term Frequency-Inverse Document Frequency, and the Support Vector Machine (SVM) algorithm. The LSA algorithm is used to process words that represent words in the text into a matrix. The SVM algorithm is used to classify student essays based on their topic. TF-IDF is used to weigh each word in the text that will become SVM input. From this research, the accuracy of using lecturers' answers as reference answers was 72.01% and the accuracy of using keywords as reference answers was 69.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aaliyah Kaltsum
"ABSTRAK
Pada penelitian ini dilakukan penerapan Support Vector Machine dan LSA
Metode tersebut dibahas dan dipelajari lebih lanjut untuk merancang Sistem Penilaian Esai Otomatis (Simple-O). Simple-O merupakan sistem yang saat ini dikembangkan oleh UI Jurusan Teknik Elektro yang bertujuan untuk menilai esai secara otomatis. Support Vector Machine, yang merupakan algoritma pembelajaran yang diawasi, dipelajari selanjutnya untuk meningkatkan tingkat akurasi dalam Simple-O bersama dengan metode LSA yang digunakan Bahasa pemrograman Python. Dari hasil tes rata-rata tertinggi skor akurasi yang diperoleh sistem sebesar 88.06% dengan masukan kalimat kanji, katakana, hiragana dan nilai TDM siswa jawaban yang mencerminkan frekuensi kemunculan kata kunci dalam dokumen.

ABSTRACT
In this study, the implementation of Support Vector Machine and LSA was carried out These methods are discussed and studied further to design an Essay Assessment System Automatic (Simple-O). Simple-O is a system currently being developed by the UI Department of Electrical Engineering which aims to assess essays automatically. Support Vector Machine, which is a supervised learning algorithm, is learned furthermore to increase the level of accuracy in Simple-O along with the LSA method used Python programming language. From the highest average test results the accuracy score obtained by the system is 88.06% with input the kanji, katakana, hiragana and TDM scores of the students answers that reflect the frequency with which keywords appear in the document."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>