Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81953 dokumen yang sesuai dengan query
cover
Nagib Muhammad
"Skripsi ini membahas tentang metode proteksi stator generator dari gangguan fasa-tanah. Hal ini dikarenakan gangguan hubung singkat yang terjadi pada stator generator dapat menimbulkan kerusakan yang serius. Metode proteksi umumnya tidak dapat melindungi keseluruhan dari belitan stator. Metode proteksi konvensional umumnya hanya dapat memproteksi sekitar 90-95% dari belitan stator. Oleh karena itu dibutuhkan metode yang mampu medeteksi gangguan pada keseluruhan belitan stator generator sinkron. Metode tegangan kurang harmonisa ketiga yang dikombinasikan dengan metode konvensional dapat melindungi keseluruhan dari belitan stator. Berdasarkan metode tersebut penulis bertujuan untuk mendapatkan nilai penyetelan rele tegangan kurang harmonisa ketiga(27TN) dan rele tegangan lebih(59N) yang akan diaplikasikan pada generator sinkron PT.X. Berdasarkan standar IEEE didapatkan nilai penyetelan tegangan pick-up untuk rele tegangan kurang harmonisa ketiga sebesar 1,1 Volt dengan waktu tunda sebesar 1 detik dengan nilai undervoltage inhibit sebesar 97 Volt, dan nilai penyetelan tegangan pick-up pertama untuk rele tegangan lebih (59N) sebesar 5 Volt dengan waktu tunda sebesar 1 detik dan penyetelan tegangan pick-up kedua sebesar 34,6 Volt dengan waktu tunda sebesar 0,1 detik. Berdasarkan simulasi yang dilakukan metode ini memiliki kelemahan yaitu ketika terjadi busur api gangguan tersebut tidak dapat dideteksi oleh metode ini.

This thesis discuss about protection method of stator ground fault, because short circuit that occurs in the stator can cause a very seriously damage. Conventional protection method cannot protect all of stator winding. Conventional protection method generally can protect about 90-95% of stator winding, because of conventional protection method cannot protect all of stator windings. So, this thesis use undervoltage third harmonic method which can protect the last 5-10% of stator winding . This tesis use this method for setting protection relay. Based on IEEE standart this tesis obtain value of third harmonic undervoltage relay setting is 1,1 Volt and time delay is 1 second ,and value for overvoltage relay (59N) is 5 Volt and time delay is 1 second, then the second setting is 34,6 Volt for time delay 0,1 second. Based on simulation result this method cannot detect the arcing fault near the neutral of stator winding."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S62692
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Risky Zachary
"Rele diferensial merupakan sistem proteksi tenaga listrik untuk mencegah gangguan internal. Namun, terjadi trip yang tidak diharapkan oleh rele diferensial akibat gangguan eksternal di jaringan transmisi. Gangguan tersebut didasari oleh layangan yang menyebabkan hubung singkat pada sisi jaringan transmisi. Sebagai mitigasi awal sistem proteksi PLTP, diperlukan pertimbangan ulang setelan eksisting untuk menjaga keandalan rele diferensial. Informasi komponen resistansi burden transformator arus dan setelan arus eksisting dibutuhkan sebagai basis kalkulasi setelan ulang rele. Berdasarkan kalkulasi dengan memperhitungkan faktor kesalahan, penggunaan kabel 4mmsq untuk CT lebih disarankan. Selain itu, nilai setelan 87#1 untuk arus pickup 1.125A, slope 17%, dan waktu tunda 2 siklus lebih disarankan akibat ditemukan faktor kesalahan pada komponen pendukung rele. Sehingga, beroperasinya rele diferensial diluar kehendak dapat diminimalisasi.

Differential relays are an electrical power protection system used to prevent internal fault. However, an unexpected trip occurred by the differential relay due to external fault in the transmission network. The fault was based on a kite which caused a short circuit on the transmission network side. As an initial mitigation for the PLTP protection system, it is necessary to reconsider the existing settings to maintain the reliability of the differential relay. Information on current transformer burden resistance components and existing current settings is needed as a basis for relay reset calculations. Based on the calculation that took account for error factors, the use of 4mmsq cable for CT is more recommended. Aside from that, the setting value of 87#1 for a pickup current of 1.125A, a slope of 17%, and a delay time of 2 cycles is recommended as a result of an error factor found in the relay supporting components. Thus, the operation of differential relays without intention can be minimized."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Edy Sofian
"Pada dasarnya unjuk kerja Generator Sinkron Magnet Permanen Fluks Aksial (GSMPFA) ditentukan oleh tegangan dan arus. Baik nilai maupun bentuk gelombang untuk tegangan dan arus tersebut ditentukan oleh konfigurasi desain geometris pada generator. Desain konstruksi rotor pada GSMPFA dapat dibedakan berdasarkan bentuk magnet permanennya.
Skripsi ini membandingkan pola perubahan tegangan keluaran empat jenis bentuk magnet permanen pada variasi kecepatan putaran dan lebar celah udara. Hasil simulasi dan analisis menunjukkan bahwa desain konstruksi rotor dengan bentuk trapezoidal memberikan nilai tegangan keluaran yang maksimum.

The performances of Axial Flux Permanen Magnet Synchronous Generator (AFPMSG) with Coreless Stator are basicly considered from the current and voltage. Either wave form or magbitude for that caurrent and voltage depend on geometric design configuration of generator. In AFPMSG with coreless stator, rotor construction design can be classified base on permanen magnet (PM) pole shapes.
This study presents the comparison of change in output voltage in four types of PM pole shapes in various rotating speed and air gap. The result shows that design construction of rotor with trapezoidal pole shape produce maximum output voltage.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S375
UI - Skripsi Open  Universitas Indonesia Library
cover
Naufalarizqa Ramadha Meisa Putra
"[Sistem pembangkitan merupakan sumber utama penghasil energi listrik ,baik untuk kebutuhan industri maupun kebutuhan publik lainnya. Dari pembangkit listrik didistribusikan ke sistem interkoneksi se-Jawa-Bali melalui saluran udara tegangan ekstra tinggi 500 kV. Namun dalam kenyataannya, sistem pembangkitan sering mengalami gangguan, salah satunya yaitu gangguan ketidakseimbangan beban dan gangguan sistem itu sendiri. Oleh karena itu, untuk mencegah gangguan tersebut diperlukan adanya sistem proteksi yang memenuhi persyaratan dan semuanya bergantung pada ketepatan penyetelan peralatan proteksinya. Peralatan proteksi untuk mencegah terjadinya ketidakseimbangan beban dan gangguan sistem itu sendiri yaitu rele urutan fasa negatif dan rele gangguan stator-ground. Penyetelan yang baik untuk rele urutan fasa negatif yaitu ketahanan generator untuk menahan arus urutan negatif secara kontinyu adalah 8% dan nilai K adalah 10,serta setting arus untuk definite time sebesar 0,827 kA dan setting arus untuk inverse time sebesar 0,946 kA. Rele 27TN memproteksi generator dari 0-30%. Pada generator ini, keluaran dari rele berupa alarm. Proteksi yang kedua adalah rele tegangan lebih netral 59N, rele ini memberikan proteksi 90% sehingga secara perhitungan bahwa kombinasi kerja dari rele 27TN dan 59N akan memberikan proteksi 100% pada stator. Penyetelan rele 59X sebagai proteksi backup adalah 28.95% yaitu 55 V dengan waktu tunda 6 detik ditujukan untuk berkoordinasi dengan rele 59N. Rele urutan fasa negatif dan rele gangguan stator ground mempunyai persentasi kesalahan yang sangat kecil, yaitu berkisar antara 0 -1.67%.

, Generation system is the main source of electrical energy producer, both for industry and other public needs. From distributed power generation systems to interconnect Java-Bali through extra high voltage overhead line 500 kV. But in fact, the generation system is often disturbance, one of which is a load imbalance disorders and disorders of the system itself. Therefore, to prevent such disturbance is necessary to meet the requirements of the protection system and everything depends on the precision of protection equipment settings. Protection equipment to prevent the occurrence of load imbalance and disturbance of the system itself that is negative phase sequence relay and stator ground fault relay. The good setting to relay negative phase sequence generator that resistance to withstand the continuous negative sequence current is 8% and the value of K is 10, and the current setting for the definite time of 0.827 kA and the current setting for inverse time amounted to 0,946 kA. 27TN relay protects the generator from 0-30%. At this generator, the output of an alarm relay form. The second protection is more neutral voltage relay 59N, these relays provide protection of 90% so that the calculations that combined the work of rele 27TN and 59N will provide 100% protection on the stator. Setting relay 59x as backup protection is 28.95%, ie 55 V with 6 seconds delay time is intended to coordinate with the relay 59N. Rele rele sequence and negative phase stator ground disturbance has the percentage of error is very small, ranging between 0 -1.67%.
]
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62246
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanda Febriadi
"Salah satu ciri motor induksi adalah arus start yang beberapa kali dari arus nominal motor. Kondisi normal ini jangan menyebabkan bekerjanya system pengaman arus lebih yang berarti setting waktu kerja rele harus lebih besar dari waktu start motor. Rele arus lebih dan gangguan tanah perlu dikoordinasikan dengan baik sehingga diwujudkan sistem pengaman yang sensitif dan selektif sehingga melindungi kabel dan trafo ketika terjadi gangguan hubung singkat. Pada skripsi ini dibahas mengenai teori dan metodologi untuk menghitung arus gangguan yang mungkin terjadi pada sistem, serta koordinasi rele arus lebih dan rele gangguan tanah untuk menjaga sistem dari arus gangguan tersebut.

One of the induction motor characteristic has starting current which many times from motor nominal current. This condition don?t cause the overcurrent relay work so the relay operation time setting must longer than motor starting time. Overcurrent relay and groundfault relay must be coordinated carefully so we can get protection system sensitively and selectively so that to protect cable and transformator when short circuit fault has done. In this paper will be explained about theory and methodology to calculate fault current which may be done in the system and to get relay setting."
Depok: Fakultas Teknik Universitas Indonesia, 2008
R.03.08.154 Feb a
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Armiya
"Jaringan distribusi merupakan bagian sistem tenaga listrik yang paling sering mengalami gangguan. Hal ini terjadi karena jaringan ini merupakan jaringan yang paling besar dan kompleks. Perlindungan terhadap kelangsungan jaringan ini penting untuk melindungi konsumen. Pada jaringan distribusi primer 20kV, proteksi terhadap arus gangguan dilakukan oleh rele arus lebih dan rele gangguan tanah. Fungi rele ini sangat penting agar gangguan tidak terjadi. Parameter rele ditentukan agar fungsi koordinasi dari rele ini dapat bekerja dengan baik dalam hubungan proteksi utama-cadangan. Parameter yang paling susah ditentukan adalah time multiplier setting (TMS).
Pada penelitian ini, perhitungan TMS akan dianalisis berdasarkan metode analitik dan perbandingannya terhadap metode big-M untuk mencapai kinerja rele arus lebih dan rele gangguan tanah yang diinginkan. Penggunaan metode big-M memiliki kelebihan dimana pengguanaan iterasi menjadikan metode ini lebih cocok untuk perhitungan berbasiskan mesin, sedangkan metode analitik lebih cocok untuk perhitungan manual. Sedangkan berdasarkan nilai galat, rata-rata galat menggunakan metode big-M bernilai 2,54% sedangkan metode analitik menghasilkan galat rata-rata sebesar 2,66%. Hal ini menunjukkan secara efisiensi, metode big-M lebih efisien daripada penggunaan metode analitik. Sedangkan berdasarkan pada proses kerja, big-M lebih lama dalam menentukan hasil sebesar 87% berdasarkan pada perhitungan manual. Secara hasil, tidak terdapat perbedaan yang terlalu signifikan antara metode big-M dan metode analitik.

Distribution is the most sensitive part of an electric power system, because of its complexity and as far as he has. Protection of such a system is very important for electricity consumer. The 20kV main distribution is protected only by relays and overcurrent ground fault relay, thus its function is considered very important. Utilization is necessary adjusting for failure points is not acceptable. Parameter settings are set to ensure relay coordination in the backup-primary relationship. The time multiplier (TMS) setting is one the most difficult parameter to measure.
In this study, the time multiplier settings were analyzed based on on the comparison between analytic calculations and the big-M method to meet the desired criteria for overcurrent relays and ground fault relays. The nature of the big-M method makes it the most suitable for machine-based calculations because it utilizes the use of iteration, whereas Analytical calculations are best used for manual calculations. In case of errors, the big-M method produces an average error of 2.54% while analytical methods produce 2.66% an error in general. Based on this fact, the big-M method is done more efficiently than analytically calculation. While based on the steps used to find a solution, the big-M method is proven 87% longer value when compared based on manual calculations. Based on the results, there are there is no significant difference between the big-M method and the analytic method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhowi Purwanti
"Rele sebagai alat pendeteksi adanya gangguan yang selanjutnya memberi perintah trip kepada pemutus tenaga (PMT). Rele digunakan pada daerah pengaman Gardu Induk disisis 20 kV di Penyulang untuk mengatasi adanya gangguan hubung singkat yang terjadi karena adanya gangguan yang bersifat temporer atau permanen. Oelh karena itu pentingnya kinerja settingan koordinasi rele antara Over Current Relay (OCR) dan GFR (Ground Fault Relay) agar tidak menyebabkan kerusakan pada peralatan akibat gangguan hubung singkat terjadi. Arus gangguan hubung singkat yang terjadi di Penyulang Banteng adalah sebesar 3835,086 Ampere pada arus gangguan tiga fasa, sedangkan arus gangguan terkecil terjadi saat arus gangguan satu fasa ke tanah di saluran penyulang sebesar 231,0788 Ampere. Sedangkan set PLN didapat, arus setelan (Iset) sebesar 231,079 A dengan Tms 0,10 sedangkan untuk setelan rele diisi incoming di dapat arus setelan (Iset) sebesar 37 A dengan Tms 0,26 dari data set PLN arus setelan (Iset) disisi penyulang 241,5 A dengan Tms 0,122 dan sisi incoming arus setelan (Iset) 573,3 A. Berdasarkan hasil diatas dapat disimpulkan bahkan kooridnasi antara OCR dan GFR sudah cukup selektifitas dan hadnal dalam kinerja rele. Dan dari hasil perhitungan terjadi perbedaan selisih waktu kerja rele yang cukup lama dan mempengaruhi kinerja rele unutk mentripkan dalam jeda waktu 1.33 detik. BErdasarkan perhitungan tersebut semakin besar arus gangguan terjadi akan semakin lama pula waktu rele tersebut bekerja mentripkan ke PMT. Jika dibiarkan arus gangguan tersebut membesar terllau lama maka arus gangguan tersebut merusak peralatan pada transformator."
Palembang: Fakultas teknik Universitas tridinanti palembang, 2016
600 JDTEK 4:1 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Abdul Multi
"Pada penelitian ini dilakukan rancang bangun generator sinkron fluks aksial rotor belitan (AFWR) tiga fasa dengan pengaturan arus eksitasi. Generator yang dirancang mempunyai kapasitas skala kecil dengan tegangan, daya dan kecepatan masing-masing 380 V, 1 kW dan 750 rpm. Stator dan rotornya terbuat dari inti besi laminasi yang mempunyai alur. Generator ini mempunyai satu stator dua sisi alur yang dililit yang diletakkan diantara rotor ganda. Mesin fluks aksial pada umumnya menggunakan magnet permanen yang terpasang pada rotor. Penggantian magnet permanen dengan belitan yang terletak pada rotor akan menjadikan fluksnya dapat diatur dengan mengatur arus yang melalui kumparan medan.
Pada prinsipnya perancangan elektromagnetik dan mekanik mesin fluks aksial rotor belitan hampir sama dengan mesin fluks radial. Mesin yang satu berbentuk piringan dan lainnya berbentuk silinder. Mesin fluks aksial mempunyai keuntungan-keuntungan dibandingkan dengan mesin fluks radial.
Perancangan generator sinkron ini dimulai dengan menentukan spesifikasi dari mesin. Untuk selanjutnya dilakukan pemilihan bahan dan pemilihan parameter disain. Sebelum proses perancangan terhadap rangkaian listrik, rangkaian magnetik dan mekanik dilakukan, terlebih dahulu diasumsikan parameter optimisasi terkait dengan spesifikasi mesin. Perancangan dihitung dengan perangkat lunak Matlab dan digambar dengan SolidWorks.
Pada akhir dari proses perancangan ini diharapkan performansi mesin terpenuhi. Bila performansinya belum terpenuhi, maka proses perancangan perlu diulangi dengan mengubah parameter optimisasi. Bila performansi telah terpenuhi, maka lembar data perancangan dapat dicetak. Proses optimisasi dalam perancangan mesin bertujuan agar diperoleh efisiensi yang lebih tinggi dengan berpatokan pada daya output yang telah ditentukan sebelumnya.
Dalam perancangan generator AFWR, efisiensi dapat dioptimalkan dengan mengubah parameter optimisasi seperti celah udara, tegangan eksitasi, jumlah lilitan stator per fasa dan diameter konduktor stator. Sedangkan dalam prakteknya parameter optimisasi yang dapat diubahubah adalah celah udara dan tegangan eksitasi. Dengan melakukan optimisasi diperoleh solusi terbaik pada celah udara 0,5 mm dan tegangan eksitasi 10 V dengan efisiensi 85%. Mesin sinkron AFWR tiga fasa ini mempunyai efisiensi yang lebih tinggi dibandingkan dengan mesin jenis lainnya yang mempunyai daya output 1 kW.
Jumlah konduktor per alur pada stator dan rotor dijadikan patokan untuk dilakukan penggulungan. Perubahan jumlah lilitan dan diameter konduktor masih memenuhi persyaratan untuk faktor pengisian alur. Dari beberapa jenis pengujian menunjukkan bahwa perancangan generator ini telah sesuai dengan parameter-parameternya. Hasil pengujian hambatan kumparan pada satu sisi alur stator diperoleh gambar ketiga gelombang tegangan kumparan fasa tersebut berimpit. Hal ini menunjukkan keseimbangan hambatan antara ketiga kumparan stator.
Pada pengujian perubahan celah udara diperoleh bahwa semakin besar celah udara, maka semakin besar tegangan eksitasi yang dibutuhkan, untuk menghasilkan tegangan terminal 380 V pada beban nol dengan celah udara 0,3 mm, 0,5 mm dan 0,7 mm diperlukan tegangan eksitasi masing-masing 5,5 V, 5,61 V dan 6,94 V.
Berdasarkan hasil pengujian berbeban, diperoleh celah udara yang optimal adalah 0,5 mm. Efisiensi generator sinkron AFWR dari hasil pengujian pada celah udara 0,5 mm diperoleh 61,61 % pada beban penuh dengan tegangan eksitasi 10,85 V. Efisiensi yang rendah tersebut disebabkan oleh tiga faktor: hambatan kumparan stator dan arus eksitasi yang tinggi, laminasi inti besi yang tidak terisolasi dengan cukup baik dan ketidakrataan celah udara.

The generator designed in this research is three phase axial flux wound rotor (AFWR) synchronous generator with controlling the field current. It is small-scale capacity with terminal voltage, power and speed are 380V, 1 kW and 750 rpm respectively. The stator and the rotor are made from slotted lamination core. The generator has a single double-sided slotted wound stator sandwiched between twin rotor. The axial flux machine generally uses permanent magnets mounted on the rotor. Replacing the permanent magnet with a winding in the rotor, makes it possible to control the flux by varying the current flowing into the field winding.
In principle, the electromagnetic design of AFPM machines is similar to its radial flux PM (RFPM) counterparts with cylindrical rotors. One of the machines is a disc-type mechine and the other is cylindrical-type machine. The axial flux (AF) machines have a number of distinct advantages over radial flux machines (RFM).
The design of synchronous generator is started with determining the specifications of the machine, then selecting materials and assigning design parameters. Before processing the design of the electrical circuit, the magnetic circuit and the mechanics, it is first assumed the parameter optimizations associated with the specification of the machine. The design is calculated by Matlab program and drawn by Solidwork software.
It is expected at the end of the design process, the performance of the machine meets the requirements. If the performance has not met yet, then the design process should be repeated by changing optimization parameters. If the performance has been met, the design data sheet can be printed. The process of optimization in the design of the machine aims to obtain higher efficiency with power output fixed previously.
In the design of AFWR generator, the efficiency can be optimized by changing optimization parameters such as air gap, excitation voltage, number of stator turns per phase and stator conductor diameter. While in practice, parameters which can be varied are the air gap and the excitation voltage. Varying the parameter optimization, it results the best solution in the air gap and the exctation voltage of 0,5 mm and 10 V respectively with the efficiency of 85%. Three phase AFWR synchronous machine has higher efficiency than the other machine types having the output power of 1 kW.
The number of conductors per slot in the stator and the rotor becomes a reference for winding. The change of the number of turns and conductor diameter still meets the requirement for slot fill factor. From some type of tests, they show that the generator design matches their parameters. The result of winding resistance test in one side of stator slot shows the three waves of phase winding voltage coincide with each other. It shows that the resistance of the three stator windings are balanced.
In the test of air gap changes, it is obtained that the wider the air gap, the higher the excitation voltage is needed. In order for the terminal voltage to be 380 V in the air gap of 0,3 mm, 0,5 mm and 0,7 mm, the excitation voltage supplied to the rotor must be 5,5 V, 5,61 V and 6,94 V respectively.
According to the load test, the optimal air gap is 0,5 mm. From the result of test, the efficiency of AFWR synchronous generator at the air gap of 0,5mm is 61,61 % at full load with the excitation voltage of 10,85 V. This low efficiency of the machine is caused by three factors: the high stator winding resistance and field current, inedequately isolated core laminations and the nonuniform air gap."
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1946
UI - Disertasi Membership  Universitas Indonesia Library
cover
Kezia Sherlita
"Perlindungan pada sistem tenaga listrik harus dirancang untuk memenuhi prinsip kehandalan, selektivitas, dan prinsip kestabilan, yang dapat dicapai melalui zonasi dan koordinasi proteksi. Dalam hal deteksi dan koordinasi proteksi gangguan tanah, sistem harus mempertimbangkan alokasi pentanahan dan kesesuaian hubungan, seperti pentanahan solid atau impedansi. Oleh karena itu, pemilihan lokasi dan koneksi pentanahan yang tidak tepat dapat menyebabkan gangguan yang tidak diinginkan dan kegagalan yang bertingkat. Studi ini menyajikan desain korektif untuk deteksi dan koordinasi proteksi gangguan hubung singkat satu fasa ke tanah. Sistem pentanahan dievaluasi dengan menggunakan rangkaian urutan nol untuk memperkirakan gangguan yang dapat terjadi pada sistem. Implementasi dari Standar IEEE 142-2007 digunakan untuk menyediakan sistem yang terhubung secara efektif, yang menghasilkan lokasi dan koneksi yang sesuai untuk pentanahan. Simulasi dilakukan dengan menggunakan perangkat lunak analisis sistem tenaga untuk membandingkan kinerja sebelum dan setelah desain korektif yang diusulkan. Hasilnya menunjukkan bahwa desain yang diusulkan dapat mengoreksi kesalahan operasi proteksi kesalahan tanah.

Power system protection must be designed to meet the reliability, selectivity, and stability principle, which can be achieved through zoning and coordination. In the case of ground fault protection detection and coordination, the appropriate grounding allocation and connection, i.e. solid or impedance, shall be considered throughout the system. Hence, inaccurate selection for grounding location and connection may lead to undesirable disturbances and cascaded failure. This paper presents a corrective design for ground fault protection detection and coordination in an actual 34.5 kV power system network which has faced several misoperation of the ground fault protection. For this, the system’s grounding is assessed by using zero sequence network and the issues are summarized. The implementation of IEEE 142-2007 Standard is utilized to provide an effectively grounded system, resulting in the suitable location and connection for the grounding. The simulation is carried out by using power system analysis software to compare the performances before and after the proposed corrective design. The results shows that the proposed design can solve the misoperation of the ground fault protection."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>