Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 113217 dokumen yang sesuai dengan query
cover
Rivaldo Garchia
"Seperti kita ketahui, Indonesia memiliki banyak sumber energi yang dapat dimanfaatkan sebagai bahan bakar pembangkit listrik, antara lain Energi Air, Energi Surya, Energi Angin, Energi Panas Bumi dan Energi Gas. Pembangkit listrik tenaga gas memiliki banyak keunggulan dari energi yang laiinnya karena tidak bergntung pada kondisi cuaca seperti angin, intensitas cahaya atau laju aliran air. Potensi gas alam indonesia sebagai sumber bahan bakar Pembangkit Listrik Tenaga Gas (PLTG) sangat melimpah.
Menurut studi badan geologi kementerian Energi dan Sumber Daya Alam (ESDM), potensi gas alam yang ada di Indonesia pada tahun 2008 saja mencapai 170 TSCF, dengan komposisi tersebut Indonesia memiliki reserve to production (R/P) mencapai 59 tahun ke depan. Pembangkit listrik tenaga gas memiliki efisiensi yang cukup rendah akibat temperatur gas buang yang masih tinggi. Efisiensi dapat ditingkatkan dengan memanfaatkan sistem pendingin untuk menaikkan efisiensi kerjanya. Namun apabila pembangkit tersebut telah dibuat dengan siklus kombinasi menjadi gas dan uap maka ada sistem pendingin menjadi kurang optimum karena gas buangnya sudah terpakai sebagai sumber panas HRSG.
Dalam penelitian ini temperatur udara masuk gas diturunkan hingga temperatur 15o C. Untuk penurunan temperatur ambient hingga 150C terjadi kenaikan daya output turbin gas sebesar 15,14 MW dan kenaikan efisiensi themal siklus sebesar 3,9 %. Sumber panas yang didapatkan generator chiller berasal dari HRSG dengan laju aliran massa steam sebesar 6,37 kg/s. Hal ini mengakibatkan penurunan daya output turbin uap berkurang sebesar 3,27 MW. Akan tetapi, dengan adanya sistem pendingin pada absorption chiller ini daya output yang dihasilkan oleh turbin gas meningkat sebesar 11,87 MW.

As we know, Indonesia has many sources of energy that can be used as fuel for power generation, among others, Air Energy, Solar Energy, Wind Energy, Geothermal Energy and Energy Gas. Gas power plants have many advantages of energy because it does not bergntung laiinnya on weather conditions such as wind, light intensity or rate of water flow. The potential of Indonesian natural gas as a fuel source Gas Power Plant (power plant) is very abundant.
According to the study of geological bodies Ministry of Energy and Natural Resources (EMR), the potential of natural gas in Indonesia in 2008 alone reached 170 TSCF, with the composition of Indonesia has a reserve to production (R / P) reached 59 years into the future. Gas power plants have a fairly low efficiency due to the exhaust gas temperature is still high. Efficiency can be improved by utilizing the cooling system to increase its efficiency. However, if the plant has been made with a combined cycle gas and steam into the existing cooling system becomes less optimal because the exhaust gas has been used as a heat source HRSG.
In this study the gas intake air temperature is reduced to a temperature of 15°C. To decrease ambient temperatures of up to 150C an increase in power output of 15.14 MW gas turbine and an increase in efficiency of 3.9% themal cycles. The heat source is obtained chiller generator comes from HRSG with steam mass flow rate of 6.37 kg / s. This resulted in a decrease in the steam turbine output power is reduced by 3.27 MW. However, the presence of the absorption chiller cooling system's power output generated by gas turbines increased by 11.87 MW.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59273
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ryan Geza
"Pembangkit Listrik Tenaga Gas di Indonesia memiliki potensi yang sangat baik, meskipun nilai efisiensinya sangat rendah karena tingginya temperatur ambient di Indonesia. Hal ini dapat diantisipasi dengan mengombinasikan turbin gas dengan turbin uap menjadi Pembangkit Listrik Tenaga Gas dan Uap (PLTGU) yang memiliki efisiensi yang tinggi. Namun demikian, upaya peningkatan efisiensi turbin masih perlu dilakukan mengingat sumber energi bahan bakar yang semakin menipis dan mahal. Dengan memanfaatkan laju aliran uap dari Heat Recovery Steam Generator (HRSG) sebagai sumber panas untuk sistem pendingin absorption chiller, temperatur udara masuk turbin gas dapat diturunkan hingga temperatur 20°C. Hal ini mengakibatkan peningkatan daya turbin gas sebesar 10,94 MW serta peningkatan efisiensi termal sebesar 2,98%, walaupun pengurangan laju aliran uap pada HRSG membuat turbin uap kehilangan daya sebesar 2,343 MW. Secara keseluruhan, total daya output yang dihasilkan PLTGU dengan pemasangan sistem pendingin absorption chiller dapat meningkat sebesar 8,597 MW.

The potential of gas power plant in Indonesia is very high though it has a very low efficiency due to high ambient temperatures in Indonesia. This condition can be anticipated by combining a gas turbine with a steam turbine into Gas and Steam Power Plant (GSPP) which has high efficiency. However, the effort to increase the efficiency of the turbine is still needed considering fuel energy sources is dwindling and becoming more expensive. By utilizing the flow rate of steam from the Heat Recovery Steam Generator (HRSG) as a heat source of absorption chiller cooling system, inlet air temperature of gas turbine can be lowered to a temperature of 20°C. This results the power of gas turbine and the thermal efficiency increases by 10.94 MW and 2.98% respectively, although the reduction of the steam flow rate in HRSG makes the steam turbine loss power by 2,343 MW. As a whole, the total power output generated by GSPP through the installation of absorption chiller cooling system can be increased by 8,597 MW"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59299
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hizbullah
"ABSTRAK
Skripsi ini membahas mengenai sistem pendinginan udara masuk turbin gas untuk menaikkan daya output PLTG Gilimanuk yang beroperasi pada waktu beban puncak pada pukul 18.00-22.00 WITA. Data yang diolah merupakan data cuaca dan karakteristik dari turbin gas yang digunakan di PLTG Gilimanuk. Hasil pengolahan data dijadikan bahan pertimbangan dalam memilih refrigerant dan
sistem pendingin. Data pengolahan lain berupa cooling load selanjutnya digunakan untuk merancang komponen-komponen sistem pendingin yaitu chiller, chilled water storage, pompa dan cooling coil.

ABSTRACT
This writing is to explain the refrigeration system air inlet gas turbine to increase power output of PLTG Gilimanuk’s turbine which operate at peak load time. Climatic data and characteristic gas turbine PLTG Gilimanuk is proccesed. The result of procces is become as consideration to choose refrigerant and refrigeration system. Cooling load is other result which used to design refrigeration system components. That is chiller, chilled water storage, pump and cooling coil."
2014
S55702
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Syifai
"ABSTRAK
Indonesia merupakan negara tropis yang memiliki temperatur udara rata-rata sebesar 27-33 °C dengan kelembaban udara yang cukup tinggi bahkan dapat mencapai 90%. Temperatur dan kelembaban udara yang tinggi ini berpengaruh kepada kinerja turbin gas PLTG-PLTG di Indonesia, salah satunya adalah di PLTG yang terletak di daerah Gilimanuk, Bali. Semakin tinggi temperatur inlet turbin, akan semakin menurun daya output yang dihasilkannya. Standar temperatur udara masuk kompresor yang ditetapkan oleh pabrik pembuat turbin adalah 15 °C dengan kelembaban udara 60% sesuai dengan kondisi ISO. Untuk negara-negara subtropis seperti negara-negara di eropa hal ini tidak terlalu menjadi masalah karena temperatur udara ambient rata-rata mereka yang rendah, efisiensi turbin di negara tersebut hanya akan jauh berkurang ketika musim panas. Namun bagi negara tropis, seperti Indonesia tentunya hal tersebut akan menjadi masalah, karena temperatur dan kelembaban udara negara kita yang tergolong tinggi. Maka untuk mengoptimalkan kinerja turbin gas dan meningkatkan daya output turbin perlu diadakan pengkajian mengenai pemasangan sistem pendingin pada PLTG tersebut. Skripsi ini membahas mengenai pemilihan sistem pendingin yang paling cocok untuk diterapkan di PLTG Gilimanuk yang beroperasi 24 jam, selain itu penulis juga akan menghitung kapasitas dari peralatan-peralatan pendingin tersebut, seperti: Kapasitas Chiller, kapasitas pompa, desain thermal energy storage, desain cooling coil dan pemilihan refrigeran. Selain itu akan dianalisis pula besarnya kenaikkan daya output ketika sudah dipasang sistem pendingin.

ABSTRACT
Indonesia is a tropical country with an average air temperature of 27-33 °C. Indonesia also has high humidity which can even reach 90%. From this aspects , It can affect the performance of gas turbine power plants like in the Gilimanuk power plant. The higher turbine inlet air temperature will decrease the power output of turbine. According to the ISO condition, the standard of inlet air temperature to the compressor specified by the manufacturer is 15 °C with 60% of humidity. For subtropical countries maybe it does not matter because they have low ambient temperature, except summer. But for the tropical countries, such as Indonesia of course it will be a problem, because the temperature and humidity of the tropical country is high. So to optimize and improve power output of gas turbine, there should be any review of the installation of the cooling system at the power plant. This essay discusses the selection of the most suitable cooling system to be applied in a Gilimanuk power plant which operates 24 hours, and the author also will calculate the capacity of the cooling equipment, such as: Chiller capacity, chilled water pump capacity, the design of thermal energy storage, cooling coil design and the selection of refrigerants."
2014
S55446
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erlangga Bin Rudy Sunaryo
"Bertambahnya penduduk di Indonesia menyebabkan meningkatnya kebutuhan pasokan listrik. Salah satu metode untuk pembagkit listik adalah turbin gas dan beroperasi dengan optimal dengan kapasitas 100% pada suhu ISO. Suhu ISO adalah 15°C yang jauh lebih rendah dari suhu ambien di Indonesia. Absorption chiller merupakan salah satu alat refrigerasi menggunakan larutan LiBr-Water dengan memanfaatkan panas untuk menciptakan laju refrigerasi.
Tujuan dari studi ini adalah untuk merancang system absorption yang pantas untuk menurunkan suhu yang akan meningkatkan performa gas turbin dan meningkankan pasokan listrik ke masyarakat.

Increase in population leads to huge demand of electricity supply. Gas turbine is one method to generate electricity. The equipment operates on its optimal capacity at ISO temperature. ISO temperature is 15°C which is much lower than ambient temperature in Indonesian Absorption chiller is one way to reduce temperature by utilizing heat source to generate a circulation of refrigerant. Fluid used for this parameter of temperature is LiBr-Water solution.
The propose of study is to design a suitable absorption cooling system to achieve ISO standard temperature in order to optimize the performance of gas turbine and allow more electricity supply to people.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59243
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jaya Wardhana
"Gas turbin banyak digunakan untuk membangkitkan energi listrik. Gas turbin ini umumnya dirancang untuk beroperasi pada suhu ISO, yaitu 15°C. Dengan temperatur ambien Indonesia yang senilai kurang lebih 30°C maka efisiensi gas turbin akan menurun sekitar 10 . Semakin kecil efektivitas turbin tersebut, semakin kecil pula listrik yang diproduksinya. Maka pada studi ini, penulis akan menggunakan TIAC Temperature Inlet Air Cooling untuk mendingingkan suhu udara masuk ke gas turbin dari sekitar 30°C menjadi 15°C dengan harapan efisiensi gas turbin akan meningkat. Sistem TIAC yang dipakai pada studi ini adalah absorption chiller. Pendingin tersebut menggunakan sumber panas untuk membuat refrigerant bersirkulasi. Fluida yang digunakan pada parameter temperature ini adalah LiBr-H2O solution.
Tujuan dari studi ini adalah untuk merancang sebuah absorption cooling system supaya suhu ambien pada turbin gas dapat mencapai suhu ISO dan berfungsi secara efektif. Perancangan absorption cooling system ini akan dilakukan dengan perhitungan heat and mass balance menggunakan Engineering Equation Solver EES . Hasil dari studi ini adalah peningkatan dari power output turbin gas dikarenakan oleh penurunan suhu masuk udara dari sekitar 30°C menjadi 15°C.

Turbine gas is commonly used in power plant to get electricity. This turbine usually designed to operate in ISO Temperature, that is 15°C. With the ambient temperature of Indonesia that is around 30°C, the efficiency of turbine will take around 10 drop. If the effectivity of the turbine drops, the electricity that it produces will drop too. On this thesis, writer will use TIAC Temperature Inlet Air Cooling to cool down the inlet air of turbine gas from around 30°C to 15°C with hope of raising the efficiency. TIAC that will be used on this study is the absorption chiller system. This type of chiller used heat source to make refrigerant circulate. Fluid that is used on this system is LiBr H2O solution.
The goal of this thesis is to design an absorption cooling system to make the inlet air of gas turbine has ISO temperature. Design process of the absorption chiller will be done with heat and mass balance with the help of Engineering Equation Solver EES. The outcome of this study is a raise in power output of the gas turbine that is caused by inlet air temperature that is lowered from 30°C to 15°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68694
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rajagopal, Sanjeevi, editor
"The abstracted water is treated with chemicals to combat operational problems like biofouling and corrosion. Such withdrawal and subsequent discharge of large amounts of water have the potential to have an impact on the ecology of the recipient water body. Previously, there have been a few attempts to address the operational issues with primary emphasis on biofouling and its control. Likewise, there have been a few attempts to highlight the environmental issues arising out of cooling water abstraction and discharge. However, there have been no attempts to comprehensively address the operational and environmental issues together, although they happen to be two sides of the same coin. This book is an attempt to integrate these two aspects and present the state-of-art knowledge."
New York: Springer, 2012
e20405537
eBooks  Universitas Indonesia Library
cover
Mohammad Luthfi Setyana
"Penilitian ini membahas tentang retrofit sistem pendingin mesin untuk kapal coaster 1200GT dengan menggunakan sistem keel cooler. Dimana proses untuk mengganti suatu sistem yang sudah ada yang disebut retrofiting. Kapal coaster 1200GT merupakan kapal pengangkut barang untuk pelayaran pantai. Kapal ini memiliki spesifikasi panjang keseluruhan ( ), panjang diantara garis tegak lurus ( ), lebar kapal ( ), tinggi kapal ( ), sarat kapal ( ), tenaga mesin utama ( ), kecepatan maksimum kapal ( ) dan dapat menampung penumpang sebanyak 400 orang. Tujuan penelitian ini adalah merancang kebutuhan keel cooler untuk kapal coaster 1200GT. Langkah-langkah kegiatan perancangan dan perhitungan keel cooler ini adalah sebagai berikut: menghitung kebutuhan keel cooler dengan variasi diameter ½ - 2 ½ inch untuk mengetahui berapa panjang (L) minimal dan nilai optimal dari nilai pelepasan panas (q). Variasi diameter menghasilkan beberapa nilai panjang dan nilai koefisien perpindahan panas yang bervariasi. Pada diameter 2½ inch memiliki nilai panjang minimal dan nilai pelepasan panas yang optimal.

This research discusses about retrofit of the engine cooling system for coaster ship 1200GT with a keel cooler system. Where the process to replace an existing system called Retrofitting. 1200GT coaster ship is a freighter ship to cruise the beach. This ship has the following specifications: length overall specification ( ), the length between perpendiculars ( ), the breadth ( ), height ( ), draft ( ), the main engine power ( ), the maximum speed of the ship ( ) and can accommodate as many as 400 passengers. The purpose of this research is to design requirements for ship's keel cooler coaster 1200GT. Step-by-step activities keel cooler design and calculation are as follows: calculate the keel cooler needs to variation in diameter ½ - 2 ½ inch to know how long ( ) minimum and the optimal value of the heat release ( ). Variations in diameter produced some length value and the value of heat transfer coefficient varies. At a diameter of 2½ inch has a minimum long value and optimal value of the heat release.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57716
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gusti Agung Ayu Desy Wulandari
"Sistem pendingin dengan tenaga surya adalah teknologi dengan peluang yang besar dalam upaya mengurangi biaya terutama pada pemakaian listrik, dampak terhadap lingkungan, dan emisi gas rumah kaca, salah satunya adalah teknologi absorption chiller dengan bantuan energi surya untuk mendukung kerja pada komponen generator. Pada penelitian ini, simulasi termodinamika dilakukan sebagai tahapan awal desain sistem single-effect ammonia-water absorption chiller yang dimodelkan menggunakan media pendingin udara lingkungan (air-cooled) dan sumber panas berasal dari sistem kolektor termal surya, disesuaikan dengan aplikasi rumah tangga (residential) berkapasitas pendinginan rendah di negara beriklim tropis Indonesia. Kinerja sistem berupa nilai COP yang diperoleh dari simulasi sistem berdasarkan parameter input yang telah disesuaikan dengan batasan permasalahan penelitian adalah sebesar 0.554. Karakterisasi yang dilakukan terhadap dua parameter input pada sistem menunjukkan bahwa kenaikan temperatur kondensasi meningkatkan temperatur outlet generator, namun menurunkan nilai COP sistem. Hal ini bertentangan dengan pengaruh temperatur evaporasi yang menurunkan temperatur outlet generator, namun COP sistem menjadi meningkat. Sedangkan peningkatan kadar air pada solution menurunkan COP sistem. Jumlah solar collector dengan tipe ETC yang diperlukan untuk sistem single-effect ammonia-water absorption chiller adalah sebanyak lima buah kolektor dengan rangkaian seri, dan dengan kapasitas rata-rata masing-masing kolektor sebesar 1,52 kW.

Solar-powered cooling system is a technology with great opportunities to reduce operation costs, especially on electricity consumption, impact on the environment, and greenhouse gas emissions, one of which is by the use of absorption chiller technology with the help of solar energy to support the work of generator components. In this study, the thermodynamic simulation was carried out as an early stage in designing a single-effect ammonia-water absorption chiller system which is modeled using air-cooled system and the heat source comes from solar thermal collector system, adapted for residential applications with low cooling capacity in the tropical country of Indonesia. System performance in the form of COP value obtained from the system simulation based on input parameters that have been adjusted to the limits of the research problem is 0.554. System characterization was carried out on the two input parameters in the system shows that the increase in condensation temperature increases the generator outlet temperature but decreases the COP value of the system. This is contradicting to the effect of the evaporation temperature which decreases the generator outlet temperature, but the COP system increases. Meanwhile, increasing the water content of the solution decreases the COP of the system. The number of solar collectors with ETC type required for the single-effect ammonia-water absorption chiller system is five collectors in series arrangement, with an average collector capacity of 1.52 kW."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhany Harmeidy Barus
"Pembangkit Listrik Tenaga Bayu (PLTB) merupakan salah satu energi terbarukan yang cukup populer dan sudah banyak dikembangkan karena kelebihannya sebagai energi bersih, berbahan bakar murah, serta biaya investasinya yang cenderung semakin ekonomis. Tetapi di sisi lain PLTB termasuk pembangkit bersifat intermiten yang disebabkan adanya fluktuasi alami (variability) dan kesalahan prediksi (uncertainty) dari daya keluaran PLTB tersebut. Kondisi ini berpotensi menyebabkan gangguan sistem serta pemadaman listrik konsumen yang cukup besar, bahkan sampai terjadi blackout. Untuk itu diperlukan model integrasi PLTB yang tepat dalam menentukan kebutuhan tambahan cadangan operasi yang optimal sebagai antisipasi sifat intermiten PLTB tersebut, sehingga sistem tenaga listrik dapat tetap beroperasi secara andal dan ekonomis.
Penelitian ini bertujuan menentukan model algoritma untuk menghitung kebutuhan tambahan cadangan operasi harian yang dinamis dan optimal pada integrasi PLTB di sistem Sulawesi bagian Selatan (Sulbagsel). Dengan menggunakan usulan algoritma Multi-Stage Statistical Approach (MSSA) maka dapat diketahui karakteristik daya keluaran PLTB pada sistem Sulbagsel. Kemudian hasil analisa tersebut diolah dengan menggunakan usulan algoritma Seasonal Daily Variability and Uncertainty (SDVU) berbasis Hybrid Artificial Intelligence (Hybrid AI) untuk memprediksi pola variability dan uncertainty dari data yang ada untuk menghitung parameter Dynamic Confidence Level (DCL). Hasil DCL tersebut kemudian digunakan untuk menghitung kebutuhan optimal tambahan cadangan operasi harian yang dibutuhkan.
Dari beberapa alternatif Hybrid AI yang digunakan, diketahui bahwa kombinasi Seasonal Auto Regressive Moving Average (SARIMA) dan Long Short-Term Memory (LSTM) menghasilkan prediksi yang paling akurat dan konsisten, baik untuk data variability maupun uncertainty. Dampak signifikan dari penelitian ini ditunjukkan dengan adanya potensi penghematan biaya bahan bakar pembangkit rata-rata sekitar 250 milyar rupiah per tahun untuk kebutuhan tambahan cadangan operasi saat dibandingkan dengan metoda eksisting yang menggunakan parameter Static Confidence Level (SCL) dengan tingkat keandalan yang sama.

Wind Power Plant (WPP) is part of renewable energy which is quite popular and has been widely developed due to its advantages as clean energy, cheap fuel, and decreasing trend of its investment cost. But on the other hand, WPP is part of Variable Renewable Energy (VRE) due to natural fluctuation (variability) and forecast errors (uncertainty) of the wind power output. This situation has the potential to cause significant system disturbance and costumer power outages, even blackouts. For this reason, a WPP integration model is needed in determining the optimum operational operating reserve to anticipate of the intermittent nature of the WPP, so that the electric power system can be operated reliably and economically.
This study aims to determine the algorithm model to calculate the need for additional dynamic and optimal daily operational reserves for the integration of WPP in the Southern Sulawesi power system. By using the first proposed method, Multi-Stage Statistical Approach (MSSA) algorithm, the characteristics of the wind power output can be discovered. Then the results of the analysis are processed using the second proposed method, Seasonal Daily Variability and Uncertainty (SDVU) algorithm based on Hybrid Artificial Intelligence (Hybrid AI) to forecast variability and uncertainty patterns of the observed data in calculating Dynamic Confidence Level (DCL) parameters. The DCL results are then used to determine the optimal daily additional operating reserve.
Among the Hybrid AI variants, it is concluded that the combination of Seasonal Auto Regressive Moving Average (SARIMA) and Long Short-Term Memory (LSTM) produces the most accurate and consistent forecast, both for variability and uncertainty data. The significant impact of this research is indicated by the potential cost savings of around 250 billion rupiah per year on average for additional operational reserves when compared to the existing method using Static Confidence Level (SCL) parameters with the same level of reliability.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>