Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 167434 dokumen yang sesuai dengan query
cover
Anifah
"ABSTRAK
Tingginya emisi gas buang dan ancaman kelangkaan pangan akibat pertambahan penduduk dunia menjadi masalah serius pada dekade terakhir. Mikroalga Spirulina sp. berpotensi mengatasi kedua masalah tersebut karena kemampuan fiksasi dan ketahanan terhadap kondisi stress CO2 yang cukup baik disamping kandungan nutrisinya yang berpotensi sebagai sumber pangan non-konvensional. Namun, resistansi mikroalga terhadap kadar CO2 yang tinggi masih menjadi tantangan dalam penggunaan mikroalga sebagai agen fiksasi CO2. Oleh karena itu, penelitian ini difokuskan untuk menginvestigasi bagaimana pengaruh peningkatan pengaliran konsentrasi karbon dioksida terhadap laju pertumbuhan, kemampuan fiksasi dan kandungan essensial dari Spirulina sp. Penelitian dilakukan dengan memvariasikan konsentrasi CO2 masukan sebesar 10%, 20%, 30%, 35% dan 40%vol udara secara kontinu selama 164 jam masa kultivasi pada fotobioreaktor plat datar dan intensitas cahaya tetap sebesar 2450 lux di dalam medium zarrouck. Hasil penelitian menunjukkan bahwa peningkatan konsentrasi CO2 sampai pada konsentrasi 30%vol udara meningkatkan laju pertumbuhan dan kemampuan fiksasi CO2 dari Spirulina sp. Pengaliran konsentrasi CO2 yang lebih pekat dari 30%vol udara menurunkan laju pertumbuhan dan kemampuan fiksasi CO2. Laju pertumbuhan terbaik terjadi pada konsentrasi CO2 masukan sebesar 30%vol udara. Produksi biomassa tertinggi sebesar 6,931 g/L terjadi pada pengaliran konsentrasi CO2 30%vol udara. Fraksi fiksasi CO2 terbesar mencapai 81,52% dengan fraksi fiksasi rata-rata sebesar 33,5% terjadi pada pemberian konsentrasi CO2 10%vol udara. Sementara itu, yield kandungan essensial semuanya meningkat dan lebih besar dari kontrol sampai pada pengaliran CO2 konsentrasi 40%vol udara pada yield protein, 30%vol udara pada yield klorofil dan 35%vol udara pada yield lipid. Yield lipid dan protein tertinggi berturut-turut sebesar 0,159 g/g dan 0,1237 g/g dan terjadi pada pengaliran konsentrasi CO2 masukan sebesar 30% dan 20%vol udara

ABSTRACT
High carbon-dioxide emission and threat of food scarcity is become seious problem in last decade. Spirulina sp. microalgae is potential to deal with both of those problems because of its good adaptation in high carbon dioxide concentration while its good essential contents. Unfortunately, the resistance of microalga in high carbon dioxide concentration still being the threat of using microalgae as CO2 fixation agent. By that reason, this research is purposed to investigate the effect of CO2 concentration enhancement to growth rate, CO2 fixation ability and essential contents of Spirulina.sp. This research was done by flowing some variations input CO2 concentration (10%, 20%, 30%, 35% and 40%vol air) during 164 hours cultivation time to the flat plate photobioreactor with 2450 lux continue light intensity in Zarrouck medium. The result of this research showed that CO2 concentration enhancement until 30%vol air increased the growth rate and CO2 fixation ability of Spirulina sp. Meanwhile CO2 concentration enhancement bigger than 30%vol air decreased the growth rate and CO2 fixation ability. The highest biomass production is 6,931 g/L that was occurred in 30%vol air of CO2 concentration. The highest CO2 fixation fraction reached 81,52% with 33,5% average CO2 fixation fraction was occurred in 10%vol air of CO2 concentration. Meanwhile, all of essential contents (lipid, protein and chlorophyll) yield was increased and bigger than control (without flowing CO2 concentration) until on flowing 40%vol air of CO2 concentration on protein yield, 35%vol air of CO2 concentration on lipid yield and 30%vol air of CO2 concentration on chlorophyll yield. The highest lipid yield is 0,159 g/g that occurred on flowing 30%vol air of CO2 concentration. The highest protein yield is 0,1237 g/g that occurred on flowing 20%vol air of CO2 concentration.
"
Fakultas Teknik Universitas Indonesia, 2015
S59639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agusta Indahing Tyas
"ABSTRAK
Karbon dioksida merupakan gas yang diproduksi oleh aktivitas respirasi manusia dan akan terakumulasi di dalam ruangan. Batas maksimal paparan CO2 yang diperkenankan oleh OSHA adalah sekitar 5000 ppm. Konsentrasi CO2 di atas nilai tersebut dapat menyebabkan kesulitan bernapas, terganggunya konsentrasi, kantuk, gangguan pengelihatan, dan penurunan produktivitas individu. Penggunaan organisme fotosintetik mulai dipertimbangkan untuk mengatasi tingginya konsentrasi CO2 di dalam ruangan. Mikroalga merupakan salah satu organisme yang menjanjikan sebagai agen fiksasi CO2. Seperti halnya tanaman, mikroalga melakukan fotosintesis dengan bantuan cahaya, sehingga CO2 berkurang dan oksigen terbentuk sebagai produk samping. Mikroalga memiliki kelebihan sebagai agen fiksasi CO2 dibandingkan dengan tanaman tingkat tinggi karena pertumbuhannya yang dapat mencapai 50 kali lebih cepat dan parameter pertumbuhannya dapat diprediksi. Penelitian ini bertujuan untuk mendapatkan profil pertumbuhan, profil fiksasi CO2, dan profil produksi O2 dari mikroalga N. oculata pada berbagai densitas inokulum dengan umpan CO2 0,03 ; 5 ; dan 15 . Metode pengambilan data pertumbuhan, fiksasi CO2, dan konsentrasi O2 masing-masing dilakukan dengan instrumentasi spektrofotometer, Gas Chroatography TCD, dan Oxygen Meter. Hasil yang diperoleh menunjukkan bahwa pertumbuhan dan fiksasi CO2 terbaik terjadi saat N. oculata diberikan umpan CO2 sebanyak 5 pada densitas inokulum 0,15 g L-1. Produktivitas biomassa dan fraksi CO2 terfiksasi pada densitas 0,15 g L-1 pada umpan 5 CO2 masing-masing sebesar 0,1003 g L-1 hari-1 dan 31,5 Sementara itu, perolehan nilai oksigen tertinggi, 8,3 mg L-1 oksigen terlarut, ditunjukkan pada kultur dengan densitas inokulum sebesar 0,06 g L-1 pada pengaliran 5 CO2.

ABSTRACT
Carbon dioxide is a gas produced by human respiration activity and it will be accumulated in the room. The maximum limit of CO2 exposure allowed by OSHA is about 5000 ppm. CO2 concentration above that value can cause breathing difficulties, distraction concentration, drowsiness, visual impairment, and decreasing individual productivity. The use of photosynthetic organisms began to be considered to cope with the high concentrations of CO2 indoors. Microalgae is one of the promising organisms as a CO2 fixation agent. Like terrestrial plants, microalgae have the ability to do photosynthesis with the aid of light, so that CO2 is reduced and oxygen is produced as a by product. Microalgae have the advantage of being a CO2 fixation agent compared to terrestrial plants because its growth is about 50 times faster and the growth parameters can be predicted. The aim of this study was to obtain growth profile, CO2 fixation profile, and O2 production profile from microalgae N. oculata at various inoculum densities aerated with 0,03 , 5 and 15 CO2. Methods used to determine the growth, CO2 fixated fraction, and O2 produced were Spectrophotometer, Gas Chromatography, and Oxygen Meter respectively. The results show that the best growth and fixation of CO2 occurs when N. oculata is fed 5 CO2 at an inoculum density of 0.15 g L 1. The productivity of biomass and CO2 fixated fraction respectively was 0.1003 g L 1 day 1 and 31.5 . Meanwhile, the highest oxygen value produced was 8.3 mg L 1 of dissolved oxygen, shown in culture with inoculum density of 0.06 g L 1 aerated with 5 CO2. "
2017
S67003
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Larasati
"Karbon dioksida adalah senyawa yang banyak terdapat pada flue gas dan merupakan penyebab paling serius dari global warming. Teknologi pemisahan gas CO2 dari flue gas yang banyak digunakan hingga saat ini adalah kolom absorbsi konvensional. Teknologi alternatif baru yang potensial untuk pemisahan CO2 ini adalah kontaktor membran. Dalam penelitian ini akan diuji pengaruh konsentrasi pelarut dan laju alir gas serta jumlah serat membran pada kinerja penyerapan CO2 melalui kontaktor membran serat berongga superhidrofobik. Pelarut yang digunakan dalam penelitian ini adalah larutan polietilen glikol PEG . Variasi konsentrasi yang digunakan yaitu 5 , 10 , 15 , dan 20 -b/v. Variasi laju alir gas yang digunakan yaitu 134, 190, dan 288 mL/menit. Jumlah serat membran yang digunakan yaitu 1000, 3000, dan 5000. Setiap percobaan dilakukan pada laju alir pelarut sebesar 300 mL/menit. Sebelumnya, dilakukan uji hidrodinamik dimana rasio penurunan tekanan terbesar mencapai 1,67. Konsentrasi pelarut yang optimum yaitu pada rentang 5-10 -b/v. Parameter kinerja perpindahan massa yang dapat dicapai antara lain koefisien perpindahan massa 5,85x10-7 m/s, fluks perpindahan massa 2,18x10-5 mol/m2.s, acid loading 7,9x10-3 mol CO2/mol PEG, persentase penyerapan 25,82 , dan jumlah CO2 terabsorpsi 6,6x10-6 mol.

Carbon dioxide is a compound in flue gas and is the most serious cause of global warming. CO2 gas separation technology that is widely used is a conventional absorption column. A potential new alternative technologies for CO2 separation is a membrane contactor. In this research will be tested the effect of the concentration of the solvent, the gas flow rate and the number of membrane fibers in CO2 absorption performance through the superhydrophobic hollow fiber membrane contactor. The absorbent that we used in this research is polyethylene glycol PEG. The variation of solvent concentration used are 5 , 10 , 15 , and 20 w v. The variation of gas flow rate used are 134, 190, and 288 mL minute. The number of fibers used are 1000, 3000, and 5000. All experiments are being done with solvent flow rate of 300 mL minute. At first, hydrodynamic test was run and the biggest pressure drop ratio calculated is 1,67. The optimum range for solvent concentration is 5 10 w v. Mass transfer parameters reached in this experiments are 5,85x10 7 m s for mass transfer coefficient, 2,18x10 5 mol m2.s for mass transfer flux, 7,9x10 3 mol CO2 mol PEG for acid loading, 25,82 , for absorption efficiency, and 6,6x10 6 mol s for amount of absorbed CO2."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S62749
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reza Syandika
"Karbon dioksida adalah senyawa yang banyak terdapat pada flue gas dan merupakan penyebab paling serius dari global warming. Teknologi alternatif baru yang potensial untuk pemisahan CO2 ini adalah kontaktor membran. Penelitian ini akan meninjau pengaruh laju alir gas terhadap kinerja penyerapan gas CO2 dari flue gas melalui kontaktor membran serat berongga dengan bahan material membran bersifat super hidrofobik.
Penelitian ini bertujuan untuk mengetahui persen penyerapan gas karbon dioksida dari pelarut DEA serta untuk mengetahui pengaruh laju alir gas umpan terhadap perpindahan massa yang terjadi pada membran. Dari perpindahan massa yang terjadi, didapatkan kinerja kontaktor membran serat berongga superhidrofobik dalam proses absorbsi gas karbon dioksida.
Berdasarkan penelitian yang dilakukan, jumlah gas karbon dioksida yang terserap sebesar 0,565 - 1,310 mmol/min untuk modul dengan jumlah serat 5000; untuk modul dengan jumlah serat 2000 menyerap gas CO2 sebesar 0,465 ? 1,167 mmol/min, dan 0,308 - 0,954 mmol/min untuk modul dengan jumlah serat 1000. Nilai koefisien perpindahan massa yang didapatkan untuk modul dengan jumlah serat 5000 adalah sebesar 6,278×10-5 - 0,000186 cm/s, modul dengan jumlah serat 2000 sebesar 9,45×10-5 - 0,00292 cm/s, dan modul dengan jumlah serat 1000 sebesar 9,45×10-5 - 0,000366 cm/s untuk variasi laju alir gas sebesar 120, 170, dan 260 cm3/min dengan laju alir pelarut DEA yang tetap sebesar 300 cm3/min.

Carbon dioxide is a compound that exist in large amount in flue gas and is the most serious cause of the global warming. A new potential alternative technology for this CO2 separation is the membrane contactor. This riset will reviewing the effects of the gas flowrate to the CO2 absorption performance from flue gas through hollow fiber membrane contactor with superhydophobic membrane material.
This riset aims to know the percent absorption of CO2 of the solvent DEA and to know the effects of feed gas flowrate to the mass transfer that occurs in the membrane. From the mass transfer that occurs, we will obtain the superhydophobic hollow fiber membrane contactor performance in the CO2 absorption process.
According to this riset, the rates of CO2 absorption are 0,565 - 1,310 mmol/min for module with amount of fiber of 5000; for module with amount of fiber 2000 absorps CO2 of 0,465 - 1,167 mmol/min, and 0,308 - 0,954 mmol/min for module with amount of fiber 1000. The values of mass transfer coefficient for module with amount of fiber 5000 are 6,278×10-5 - 0,000186 cm/s, module with amount of fiber 2000 are 9,45×10-5 - 0,00292 cm/s, and module with amount of fiber 1000 are 9,45×10-5 - 0,000366 cm/s for gas flowrate variation of 120, 170, and 260 cm3/min with constant solvent DEA flowrate of 300 cm3/min.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62652
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hibban Mubarak
"Karbon dioksida (CO2) salah satu komponen utama gas rumah kaca yang merupakan penyumbang total terbesar terhadap perubahan iklim. Oleh karena itu, perlu dilakukan pengurangan emisi gas CO2, baik dengan menyimpan maupun memanfaatkan CO2 sebagai sumber penghasil bahan kimia yang lebih bermanfaat melalui reaksi katalitik heterogen. Dalam penelitian ini, Ni(0) yang disangga pada karbon mesopori (MC) digunakan sebagai katalis untuk mengonversi CO2 menjadi gas metana dalam reaksi Sabatier. Karbon mesopori berhasil disintesis dengan metode cetakan lunak menggunakan phloroglucinol, Pluronic F127, dan formaldehida sebagai prekursor. Karbon mesopori hasil sintesis dikarakterisasi menggunakan instrumen FTIR, XRD, SEM-EDS, TEM, SAA, dan Raman kemudian dimodifikasi menggunakan nanopartikel Ni(0) dari prekursor Ni(NO3)2.6H2O dan Ni(acac)2 dalam jumlah tertentu. Katalis Ni(0)/MC yang disintesis kemudian diberi label sebagai Ni/MC(5)(Ni(NO3)2) dan Ni/MC(30)(Ni(NO3)2) untuk 5% dan 30% Ni(0) dari Ni(NO3)2.6H2O dan Ni/MC(30)(Ni(acac)2) untuk 30% Ni(0) dari Ni(acac)2. Katalis Ni(0)/MC dikarakterisasi menggunakan instrumen FTIR, XRD, SEM-EDS, TEM, SAA, dan Raman. MC dan Ni(0)/MC hasil sintesis digunakan sebagai katalis untuk reaksi konversi CO2 menjadi CH4 menggunakan tubular furnace pada T = 873 K selama 9 menit. Produk hasil reaksi diukur menggunakan kromatografi gas dengan detektor TCD. %yield produk dari hasil reaksi adalah 0%; 1,33%; 1,63%; dan 1,9% untuk MC, Ni/MC(5)(Ni(NO3)2), Ni/MC(30)(Ni(NO3)2), dan Ni/MC(30)(Ni(acac)2). Hasil penelitian menunjukkan bahwa %yield setelah percobaan ke-2, ke-3, dan ke-4 secara bertahap menurun. Hasil ini menunjukkan bahwa nanopartikel Ni(0) memiliki peran penting untuk mengaktifkan CO2 serta penurunan kapasitas reaksi seiring dengan pengujian berkala dapat disebabkan oleh transformasi Ni(0) menjadi nanopartikel Ni(II).

Carbon dioxide (CO2), a major component of greenhouse gases, is the largest total contributor to the climate change. Therefore, it is necessary to reduce the CO2 gas emissions, either by storing or utilizing CO2 as a source to produce value-added chemicals through heterogenous catalytic reactions. In this work, Ni(0) supported on mesoporous carbon (MC) was used as catalyst to convert CO2 to methane gas in Sabatier reaction. Mesoporous carbon was successfully synthesized by a soft template method using phloroglucinol, Pluronic F127 and formaldehyde as precursors. The as-synthesized mesoporous carbon was characterized using FTIR, XRD, SEM-EDS, TEM, SAA, and Raman instruments and then modified with Ni(0) nanoparticles using certained amount of Ni(NO3)2.6H2O or Ni(acac)2 as precursor. The prepared Ni(0)/MCs then were label as Ni/MC(5)(Ni(NO3)2) and Ni/MC(30)(Ni(NO3)2) for 5% and 30% Ni(0) from Ni(NO3)2.6H2O, and Ni/MC(30)(Ni(acac)2) for 30% Ni(0) from Ni(acac)2, respectively. The Ni(0)/MC catalysts was characterized using FTIR, XRD, SEM-EDS, TEM, SAA, and Raman instruments. Both as-synthesized MC and Ni(0)/MC then used as the catalysts for CO2 conversion reaction to CH4 using tubular furnace at T = 873 K for 9 minutes. The product reaction was measured using gas-chromatography with thermal conductivity detector. The % yield of products from reaction are 0%; 1.33%; 1.62%; and 1.9% for MC, Ni/MC(5)(Ni(NO3)2), Ni/MC(30)(Ni(NO3)2) and Ni/MC(30)(Ni(acac)2) respectively. The CO2 conversion reaction capacity was also conducted using Ni/MC(30)(Ni(acac)2) to evaluate the catalyst performance. The results shows that the % yield of the reaction after 2nd, 3rd, and 4th attempt were gradually decreased. These results shows that Ni(0) nanoparticles have an important role for activating the CO2 and the decreases of the reaction capacity along periodic test may be caused by the transformation of Ni(0) into Ni(II) nanoparticles.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ghiyats Raditya
"Permasalahan lingkungan yang terjadi secara global saat ini sangat mengkhawatirkan. Emisi gas dari polutan yang diakibatkan oleh pertumbuhan industri dan meningkatnya aktivitas manusia merupakan salah satu hal yang menyebabkan pencemaran lingkungan terjadi. Peningkatan emisi gas rumah kaca global atau disebut Global Greenhouse Gas (GHG) karena aktivitas manusia telah menyebabkan tanda dari peningkatan konsentrasi GHG di atmosfer, dengan gas CO2 menjadi salah satu penyumbang terbesar pada meningkatnya emisi gas rumah kaca. Salah satu metode untuk mengurangi emisi gas CO2 adalah dengan mengimplementasikan penangkapan dan penyimpanan gas karbondioksida. Material kristal berpori baru, yaitu Metal Organic Frameworks (MOFs) menjadi material fungsional baru yang dapat dijadikan kandidat potensial sebagai jenis adsorben yang menjanjikan dikarenakan kestabilan termal yang baik, serta sifat permukaan yang dapat diatur. Digunakan dua jenis lantanum-MOFs dalam penelitian adsorpsi gas karbondioksida ini untuk disintesis dengan variasi ligan, yaitu BDC (Asam 1,4-benzena dikarboksilat) dan NDC (Asam 2,6-naftalena dikarboksilat) menggunakan metode solvotermal. Karakteristik dan sifat material La-MOFs hasil sintesis seperti struktur, morfologi, stabilitas termal, dan fungsi kimia diuji dengan menggunakan instrumentasi Fourier transform infrared spectroscopy (FTIR), X-ray Difraksi (XRD), Brunaur, Emmett and Teller (BET), analisis termogravimetri (TGA), serta Scanning Electron Microscopy (SEM). Serapan volumetrik dari CO2 diukur dalam suhu 300-308 K dan pada tekanan hingga 15 bar.

Environmental issues that occur globally today are very worrying. Gas emissions from pollutants caused by industrial growth and enhancement of human activities are among the things that lead to environmental pollution occur. The increase of global greenhouse gas emission (GHG) caused by human activities has led to a sign of an enhancement in the concentration of GHG in the atmosphere, with CO2 gas become one of the biggest contributors to the escalation of greenhouse gas emissions. One of the example to reduce CO2 gas emissions is by implementing the capture and storage of carbon dioxide method. New porous crystalline materials, namely Metal-Organic Frameworks (MOFs) were introduced as new functional materials that can be used as potential candidates as a promising type of adsorbent, due to its good thermal stability, and manageable surface properties. Two types of Lanthanum-MOFs were used in the study of carbon dioxide gas adsorption to be synthesized with ligand variations, which is BDC (1,4-benzene dicarboxylic) and NDC (2,6-naphthalene dicarboxylic acid) using the solvothermal method. Characteristics and properties of La-MOFs synthesized materials such as structure, morphology, thermal stability and chemical functions were tested using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Brunaur, Emmet and Teller (BET), Thermogravimetric Analysis (TGA), as well as Scanning Electron Microscopy (SEM). Volumetric uptake of CO2 is measured at temperature of 300-338 K and at pressures up to 15 bar."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khairunnisa
"Kegiatan antropogenik merupakan penyebab emisi gas rumah kaca. Salah satu gas rumah kaca utama adalah CO2 dimana dihasilkan dari gas buang kendaraan bermotor. Tingginya konsentrasi CO2 di udara dapat dikurangi dengan melakukan fiksasi CO2 oleh organisme fotosintetik. Salah satu organisme fotosintetik yang digunakan adalah mikroalga karena mikroalga memiliki efisiensi fotosintesis yang lebih tinggi daripada tanaman terrestrial dan tidak memerlukan lahan yang luas dalam proses kultivasinya.
Pada penelitian ini, mikroalga Chlorella vulgaris dikultivasi dalam reaktor 3,5 L selama 120 jam dengan variasi konfigurasi lampu dan variasi konsentrasi CO2. sebesar 24,9 g/jam dan 87,3 g/jam. Konfigurasi lampu yang digunakan menghasilkan intensitas cahaya yang berbeda yaitu 29100 lux dan 34990 lux.
Kultivasi mikroalga pada konfigurasi lampu dengan intensitas cahaya sebesar 34990 lux menghasilkan produktivitas biomassa tertinggi sebesar 0,0498 g.l-1.hari-1 dengan laju fiksasi karbondioksida sebesar 6,194 g.l-1.jam-1 23,6 pada pengaliran karbon dioksida 24,9 g.jam-1. Kultivasi mikroalga pada konfigurasi lampu dengan intensitas cahaya sebesar 29100 lux menunjukan hasil yang lebih tinggi dimana menghasilkan produktivitas biomassa tertinggi sebesar 0,5586 g.l-1.hari-1 dengan laju fiksasi karbondioksida sebesar 8,280 g.l-1.jam-1 31,5 pada pengaliran karbon dioksida 24,9 g/jam.

The anthropogenic activities have caused intensive greenhouse gases emission. One of the main greenhouse gases is CO2 which is produced by exhaust gas of self powered motor vehicle. The high concentration of CO2 in the air can be reduced by utilizing photosynthetic organism to fix CO2. One of the photosynthetic organism which can be used to fix CO2 is microalgae, because microalgae has higher photosynthetic efficiency and require smaller land to be cultivated.
In this research, C.vulgaris is cultivated in 3,5 L reactor for 120 hours with varying lamp configuration and carbondioxide concentration. Photobioreactor has two types of lamp configuration which is resulting different light intensity.
Cultivation using lamp configuration with light intensity of 34990 lux results in the highest biomass productivity of 0.0498 g.l 1.day 1 with carbondioxide fixation rate 6.194 g.l. 1.day 1 using carbondioxide flow at 24.9 g.hour 1. Whereas, Cultivation using lamp configuration with light intensity of 29100 lux results in the highest biomass productivity of 0.5586 g.l 1.day 1 with carbondioxide fixation rate 8.280 g.l. 1.day 1 using carbondioxide flow at 24.9 g.hour 1. The purposes of this research is to get the optimum condition which is needed C.vulgaris in biofixation lamp to fix CO2 by adjusting the concentration of CO2 and initial cell density.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67047
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ainu Safira Corni
"[ABSTRAK
Penelitian ini mengevaluasi kinerja absorpsi gas CO2 dari campurannya dengan
CH4 melalui membran kontaktor superhidrofobik. Kinerja kontaktor membran
superhidrofobik ini ditinjau dari empat parameter utama dengan variasi laju alir
pelarut DEA (100, 300 dam 500 mL/menit) dan jumlah serat membran kontaktor
(2000 dan 8000). Hasil penelitian ini menunjukkan bahwa kenaikan laju alir pelarut
DEA meningkatkan kinerja kontaktor membran superhidrofobik, dalam hal
koefisien perpindahan massa, fluks dan efisiensi penyerapan CO2. Sedangkan
kenaikan jumlah serat membran akan menurunkan koefisien perpindahan massa
dan fluks CO2. Namun, meningkatkan efisiensi penyerapan CO2 dan acid loading.
Koefisien perpindahan massa dan fluks CO2 tertinggi yang didapatkan pada
penelitian ini berturut-turut adalah 2,31 x 10-4 cm/s dan 7,15 x 10-6 mmol/cm2s pada
laju alir DEA 500 mL/menit dan jumlah serat membran 2000. Sedangkan efisiensi
penyerapan CO2 tertinggi adalah 72% pada laju alir DEA 500 mL/menit dan jumlah
serat membran 8000.
ABSTRACT
This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000.;This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000.;This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000., This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000.]"
Fakultas Teknik Universitas Indonesia, 2016
S62292
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pemanasan global merupakun isu ulumu dalam bcrbugai jumal pcngclnhuun dan pemberitaan akhir-akhir ini. Carn~cara pencegahan dan penanggulangan sudah mulai dikembangkaln unluk menghindari efek yang lebih berbahaya. Salah satu cam pcnang&_»ulang,z|nnyz| ndalah dengan Eksasi CO2 oleh mil-croalgn. Fiksasi CO3 selain dapat mcngurangi kadar CO; di udara juga dapat menghasilkan biomassa milcroalga yung mcmiliki nilui ckonomis scperti protein dan glukosa. Hasil biomassu ini kini lclah banyzlk dioluh untuk dikonsumsi mzmusia.
l’|‘o:sus llnlosinlcsis |\u.:ru|'mk;|u pruscs ulamm l`|CI'll|l\Q,$l1|\g,ll}'ll |)(.‘l'l\hCl'll\ll~I1ll'l biomassa selain proses enzimatis (tanpa cahaya). Penelitian sebelumnya telah mcmhuklikan scmznkin hcsaar inlcnsilus culmya yang, dibcrikzm pudn kullur nnkrnalga scmakin besur pula biomassa yang dihasilkan. Pcncliliun ini diharanpkun Llupzxl mcmuliukkzm pcngmuh \'lll'l£lSl ll\lC|lSilL|S culmyn Llun _ilunluh inukulum icrlmdup pmduksi biomalssa dun liksusi CO; olch mikroulgn.
Penelitian ini akan menggunakan Chlorella Sp. Chiorelia merupakan alga hijau A( C/ziorophyta) dan rnerupakan mikroalga yang paling banyak dikembangkan.
Mikroalga ini nkan dilihat pertumbuhannya dalam fotobioreaktor. Sistern reaktor yang digunakan adalah fotolgioreaktor kolom gelembung."
Fakultas Teknik Universitas Indonesia, 2004
S49421
UI - Skripsi Membership  Universitas Indonesia Library
cover
Finny Chrisnardy
"ABSTRACT
Karbon mesopori berhasil disintesis menggunakan metode soft template dengan Pluronic F-127 sebagai agen pembentuk struktur; phloroglucinol dan formaldehida sebagai prekursor karbon. Karbon mesopori hasil sintesis dikarakterisasi dengan XRD, BET, SEM-EDX, dan FTIR. Aktifasi karbon mesopori hasil sintesis dilakukan dengan menggunakan HCl 1M dengan tujuan untuk meningkatkan loading trietilentetraamina TETA sebagai senyawa bergugus amina dalam karbon mesopori. Karbon mesopori dan karbon mesopori teraktifasi dimodifikasi menggunakan TETA dengan variasi konsentrasi di bawah 50 wt. Karbon mesopori termodifikasi kemudian dikarakterisasi dengan SEM-EDX dan FTIR. Uji adsorpsi CO2 dengan adsorben karbon mesopori, karbon mesopori teraktifasi, karbon mesopori termodifikasi TETA, dan karbon mesopori teraktifasi termodifikasi TETA dengan variasi waktu pengaliran CO2 selama 5, 10, 15, 20, 25, dan 30 menit dengan waktu kontak 15 menit dan laju alir gas CO2 20 mL/menit. Sebagai perbandingan, uji adsorpsi dilakukan juga dengan karbon aktif komersial. Uji adsorpsi juga dilakukan pada laju alir 60 mL/menit selama 2,5, 5, 7,5, 10, 12,5, dan 15 menit untuk melihat pengaruh laju alir terhadap kemampuan adsorpsi CO2. Gas CO2 yang teradsorpsi dilkuantisasi dengan metode titrasi asam basa. Berdasarkan uji adsorpsi CO2, aktifasi asam berhasil meningkatkan loading TETA ke dalam karbon mesopori sehingga meningkatkan kemampuan adsorpsi CO 2.

ABSTRACT
Mesoporous carbon was successfully synthesized using soft templated method with Pluronic F 127 as structure directing agent phloroglucinol and formaldehyde as carbon precursor. The as synthesized mesoporous carbon was characterized using XRD, BET, SEM EDX, and FTIR. Activation of as synthesized mesoporous carbon was done using HCl 1 M to increase triethylenetetraamine TETA as amine group compound loading within mesoporous carbon. Mesoporous carbon and activated mesoporous carbon was modified using TETA with concentration varation under 50 wt. The modified mesoporous carbon was then characterized with SEM EDX and FTIR. Adsorption test was performed using adsorbent mesoporous carbon, activated mesoporous carbon, mesoporous carbon modified by TETA, and activated mesoporous carbon modified by TETA with flow time CO2 gas variation 5, 10, 15, 20, 25, and 30 minutes, contact time 15 minutes, and flow rate 20 mL minute. As comparison, adsorption test was performed with activated carbon. Adsorption test was also performed with flow rate 60 mL minute for 2,5, 5, 7,5, 10, 12,5, and 15 minutes to observe the effect of flow rate on adsorption ability of CO2. Adsorbed CO2 gases was quantified with acid base titration method. From CO2 adsorption test, acid activation was successfully increased TETA loading within mesoporous carbon which increased CO2 adsorption ability."
2016
S66243
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>