Ditemukan 16768 dokumen yang sesuai dengan query
"There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “Data mining : foundations and intelligent paradigms : volume 2 : core topics including statistical, time-series and Bayesian analysis” introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field."
Berlin: Springer, 2012
e20410771
eBooks Universitas Indonesia Library
"Focuses on data mining theory and applications. This title intends to introduce some of the developments to a broad audience of both specialists and non-specialists in this field."
Berlin: Springer-verlag, 2012
e204118691
eBooks Universitas Indonesia Library
"Data mining is one of the most rapidly growing research areas in computer science and statistics. Areas of application covered are diverse and include healthcare and finance. We wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field."
Berlin: Springer-Verlag, 2012
e20425701
eBooks Universitas Indonesia Library
Hancock, Monte F., Jr.
Boca Raton: CRC Press, 2012
006.312 HAN p
Buku Teks SO Universitas Indonesia Library
Han, Jiawei
"Summary:
Equips you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets. This title focuses on important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data."
Burlington: Elsevier, 2012
006.312 HAN d
Buku Teks SO Universitas Indonesia Library
Angelina Prima Kurniati
"Process Mining adalah bidang ilmu yang relatif baru dan masih terus berkembang. Bidang ini menarik dan dibutuhkan dalam berbagai domain karena dapat digunakan untuk menggali informasi tentang proses bisnis dari sekumpulan besar data yang dimiliki perusahaan dalam bentuk event log.
"
Bandung: Informatika, 2023
006.312 ANG p
Buku Teks SO Universitas Indonesia Library
Kantardzic, Mehmed
Hoboken: NJ IEEE Press, 2020
006.312 KAN d
Buku Teks SO Universitas Indonesia Library
Yogi Kurnia
"Algoritma data mining membutuhkan sumber data yang berkualitas untuk mendapatkan hasil yang optimal. Kualitas sumber data dapat ditingkatkan kualitasnya dengan menggunakan teknik preprosessing data yang tepat. Kemampuan dalam menampilkan output dari proses data mining yang mudah dimengerti sangat penting untuk mendapatkan pengetahuan. Penelitian ini bertujuan untuk mengembangkan aplikasi yang bisa menjawab kebutuhan dari algoritma data mining. Hasil dari penelitian ini adalah aplikasi yang dapat melakukan keseluruhan proses baik preprocessing data dalam hal pemilihan data dan pengolahan data awal, penyediaan metadata, sampai dengan analisis data menggunakan algoritma data mining. Sehingga, analisis jumlah data yang besar dapat dilakukan dengan efisien dan efektif, tetapi hasil prediksi yang didapatkan tetap optimal.
Data mining algorithms require high quality data sources to obtain optimal results. Quality of data sources can be enhanced by using appropriate data preprocessing techniques. Ability to display easily understood output of the data mining process is essential to gain knowledge. This study aims to develop applications that can address the needs of data mining algorithms. The results of this study is an application that can do the whole steps from data preprocessing until data analysis using data mining algorithms. Data processing itself includes data and preliminary data processing and provision of metadata.. So, analyzing large amount of data can be done in efficient and effective fashion without disregarding necessary need of optimal prediction result."
Depok: Universitas Indonesia, 2012
S43461
UI - Skripsi Open Universitas Indonesia Library
Elis
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1999
S25642
UI - Skripsi Membership Universitas Indonesia Library
Witten, I.H. (Ian H.)
"Part I. Machine Learning Tools and Techniques: 1. What?s iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what?s been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer."
Amsterdam: Elsevier , 2011
006.312 WIT d
Buku Teks SO Universitas Indonesia Library