Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9701 dokumen yang sesuai dengan query
cover
Sagarin, Rafe
"Observation and ecology documents that transformation, exploring how scientists and researchers are expanding their methodological toolbox to incorporate an array of new and reexamined observational approaches-from traditional ecological knowledge to animal-borne sensors to genomic and remote-sensing technologies-to track, study, and understand current environmental problems and their implications."
Washingto, D.C.: Island Press, 2012
e20405523
eBooks  Universitas Indonesia Library
cover
Caper, Robert
London: Routledge, Taylor & Francis Group, 2009
616.891 7 CAP b
Buku Teks SO  Universitas Indonesia Library
cover
Allwright, Dick
London: Longman, 1993
418.007 ALL o
Buku Teks SO  Universitas Indonesia Library
cover
Podmore, Valerie N.
New York: McGraw-Hill, 2012
371.102 POD o (1)
Buku Teks  Universitas Indonesia Library
cover
New York: Random House, 1969
300.723 ISS
Buku Teks SO  Universitas Indonesia Library
cover
"During three months period observations (November 16 to January 13, 2001) in coral reefs of Pramuka Island
Indonesia, the nudibranch Phyllidia varicosa was observed while feeding on the sponge Axinyssa cf. aculeata. During
feeding, P. varicosa extended externally the pharyngeal bulb onto the sponge causing visible somatic damage. The
behaviors of contracting the body and retracting the rhinopores inside the rhinotube were also observed while feeding.
Observations on the feeding of Phyllidia varicosa on the sponge Axinyssa cf. aculeata and the presence of a visible
somatic damage on the prey due to predation are reported for the first time."
Lembaga Penelitian Universitas Indonesia, 2003
Artikel Jurnal  Universitas Indonesia Library
cover
New York: Oxford University Press, 2018
301.01 APP
Buku Teks SO  Universitas Indonesia Library
cover
Rodriguez, Noelie
London: Sage Publications, 2001
150.72 ROD s
Buku Teks SO  Universitas Indonesia Library
cover
Gandung Bayu Wanugroho
"ABSTRAK
Kondisi cuaca merupakan faktor yang signifikan untuk berbagai sektor seperti keselamatan transportasi, pembangunan, kesehatan dan lain-lain oleh karena itu dibutuhkan akurasi yang tinggi dalam melakukan peramalan keadaan cuaca kedepannya. Banyak cara yang digunakan untuk memprakirakan kondisi cuaca, seiring berkembangnya teknologi, prakiraan Hujan dapat dilakukan dengan menggunakan teknologi Artificial Intelligence (AI) atau kecerdasan buatan sehingga hasil yang diperoleh lebih optimal. Dalam penelitian ini, jaringan saraf tiruan yang digunakan memiliki algoritma feedforward neural network dengan data pelatihan berupa suhu, tekanan udara, kelembaban udara, titik embun, kecepatan angin tiap 3 (tiga) jam di Stasiun pengamatan BMKG di Jawa Timur dari tahun 2019 dengan target adalah intensitas curah hujan. Data pelatihan dilakukan pada periode 1 Januari 2019 sampai 28 Februari 2019 dan selanjutnya, data diuji pada periode 1 sampai 31 Maret 2019. Berdasarkan hasil analisis, model Jaringan Saraf Tiruan memiliki performa yang cukup baik dalam prakiraan intensitas curah hujan di Jawa Timur. Model terbaik ditunjukkan oleh model dengan arsitektur 7-60-1 dengan tingkat korelasi yang dihasilkan sebesar 0,87 dengan nilai error sebesar -0.03 serta akurasi 76 persen dengan lokasi penelitian di Stasiun Meteorologi Bawean. Dengan adanya model ini, diharapkan dapat menjadi salah satu pertimbangan forecaster dalam membuat prakiraan hujan khususnya prakiraan jangka pendek dengan interval tiap 3 (tiga) jam.

ABSTRACT
Weather conditions are a significant factor for various sectors such as transportation safety, development, health, etc. Therefore, high accuracy is needed in forecasting future weather conditions. Many methods are used to predict weather conditions, as technology develops, Rain forecast can be made using Artificial Intelligence (AI) technology so that the results obtained are more optimal. In this study, the artificial neural network used has a feedforward neural network algorithm with training data in the form of temperature, air pressure, humidity, dew point, wind speed every 3 (three) hours at the BMKG observation station in East Java from 2019 with the target being rainfall intensity. The training data was conducted in the period January 1 2019 to February 28 2019 and subsequently, the data were tested in the period 1 to 31 March 2019. Based on the results of the analysis, the Artificial Neural Network model performed reasonably well in the forecast of rainfall intensity in East Java. The best model is shown by a model with 7-60-1 architecture with a resulting correlation level of 0,87 with an error value of -0.03 and an accuracy of 76 percent with the research location at the Bawean Meteorological Station. With this model, it is expected to become one of the forecaster considerations in making rain forecasts, especially short-term forecasts at intervals of every 3 (three) hours.
"
2020
T55052
UI - Tesis Membership  Universitas Indonesia Library
cover
Noval Saputra
"

Analisis triclustering merupakan teknik analisis pada data 3D (observasi – atribut – konteks). Analisis triclustering dapat mengelompokkan observasi pada beberapa atribut dan konteks secara bersamaan. Analisis triclustering telah sering diterapkan untuk menganalisis data ekspresi gen microarray. Penelitian ini menggunakan metode δ-Trimax untuk melakukan analisis triclustering pada data ekspresi gen microarray. Metode δ-Trimax bertujuan untuk menemukan tricluster yang memiliki mean square residual kecil dari δ dan volume maksimal. Tricluster diperoleh dengan cara melakukan penghapusan node dari data 3D dengan menggunakan algoritma multiple node deletion dan single node deletion. Kandidat tricluster yang telah didapatkan, dilakukan pengecekan  kembali dengan menambahkan beberapa node yang telah dihapus sebelumnya menggunakan algoritma node addition. Pada penelitian ini dilakukan perbaikan program pada metode δ-Trimax dan juga menambahkan penghitungan evaluasi tricluster yang dihasilkan.  Implementasi metode δ-Trimax dilakukan pada data ekspresi gen dari proses diferensiasi human induced pluripoten stem cell (HiPSC) dari pasien penyakit jantung. Ekspresi gen diukur pada 12 titik waktu dan 3 replikasi. Dari beberapa simulasi yang dilakukan, metode δ-Trimax memberikan hasil terbaik ketika δ=0,0068 dan λ=1,2. Berdasarkan tricluster yang dihasilkan dari simulasi terbaik tersebut, dipilih 5 tricluster yang diduga sebagai ciri-ciri penyakit jantung. Lima tricluster ini dapat menjadi pertimbangan bagi ahli medis untuk melakukan tindakan lebih lanjut terhadap pasien.


Triclustering analysis is an analysis technique on 3D data (observation - attribute - context). Triclustering analysis can group observations on several attributes and contexts simultaneously. Triclustering analysis has been frequently applied to analyze microarray gene expression data. This study used the δ-Trimax method to perform triclustering analysis on microarray gene expression data. The δ-Trimax method aims to find a tricluster that has a mean square residual smaller than δ and a maximum volume. Tricluster is obtained by deleting nodes from 3D data using multiple node deletion and single node deletion algorithms. The tricluster candidates that have been obtained are checked again by adding some previously deleted nodes using the node addition algorithm. In this research, the program improvement of the δ-Trimax method was carried out and also the calculation of the resulting tricluster evaluation. The implementation of the δ-Trimax method was carried out on gene expression data from the differentiation process of human induced pluripotent stem cells (HiPSC) from patients with heart disease. Gene expression was measured at 12 time points and 3 replications. From several simulations performed, the δ-Trimax method gives the best results when δ = 0.0068 and λ = 1.2. Based on the tricluster generated from the best simulation, 5 tricluster were selected which were suspected as a characteristic of heart disease. These five tricluster can be a consideration for medical experts to take further action on patients.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>