Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 145214 dokumen yang sesuai dengan query
cover
Tryan Aditya Putra
"Sistem pengenalan gerakan manusia penting bagi manusia karena dapat membantu dan mempermudah pekerjaan manusia dalam berbagai hal. Algoritma Artificial Neural Network (ANN) dan Support Vector Mechine (SVM) digunakan untuk mampu mengenali gerakan manusia. Dengan algoritma tersebut, telah dibuat sistem yang mampu mengenali gerakan manusia. Sistem secara garis besar terdiri dari perangkat pada pengguna dan server. Perangkat pada pengguna ditunjukan untuk mengirimkan data ke server. Sedangkan server akan melakukan komputasi dengan data yang diberikan. Jembatan komunikasi antara perangkat pengguna dan server akan menggunakan XBee. Untuk sensor, digunakan sensor Inertial Measurement Unit. Dari hasil pengujian, sistem dengan ANN memiliki tingkat akurasi sebesar 95.78%, sistem dengan SVM memiliki tingkat akurasi sebesar 98.39%, sedangkan sistem gabungan memiliki akurasi sebesar 100%.

Human motion recognition is essential because it can help people in doing many things. Artificial Neural Network (ANN) and Support Vector Mechine (SVM) algorithm is used in the system to recognize human motion. The system consists of user device and server. Devices on user are intended for sending user data to the server. On the other hand, server will compute the data which were sent. Comunication between user device and server was conducted by using Xbee module. For the sensor, Inertial Measurement Unit sensor was used to recognize human motion. From the result, system with ANN resulted in 95.78% recognition rate, system with SVM give 98.39% and system with combined algorithm give 100% recognition rate."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S58065
UI - Skripsi Membership  Universitas Indonesia Library
cover
Handison Jaya
"Sistem pengenalan gerakan manusia merupakan teknologi yang penting karena dapat mempermudah pekerjaan manusia dalam berbagai aspek dan membantu manusia yang memiliki keterbatasan. Adapun gerakan yang bisa dikenali adalah gerakan manusia dimana tangan lurus dan berayun, gerakan manusia dimana tangan ditekuk dan berayun, gerakan pergelangan tangan memutar kekanan dan kekiri, serta gerakan tangan ditarik mendekati tubuh dan gerakan tangan mendorong menjauhi tubuh. Salah satu algoritma dalam bidang Artificial Intelligence yang bisa digunakan adalah Hidden Markov Model (HMM).
HMM sendiri merupakan suatu permodelan statistika yang dimana sistem yang dimodelkan diasumsikan merupakan proses Markov yang memiliki state/keadaan yang tersembunyi (hidden). Pada penelitian ini digunakan sensor Inertial Measurement Unit sebagai pendeteksi gerakan manusia. Komunikasi antara sensor dengan komputer dilakukan secara nirkabel menggunakan XBee. Sistem yang dibuat dapat mengenali enam gerakan manusia tadi secara real time. Hasil pengujian menunjukkan bahwa HMM dapat mengenali gerakan manusia dengan tingkat akurasi sebesar 88% dalam waktu 0.004 detik.

Human motion recognition is an important technology to be developed, as it can facilitate human work and also help people with disabilities. As for motion, sytem could recognize six motion, which is human arms straight and swinging, human hand bent and swinging, hand twisting left, hand twisting right, hand push forward, and hand pull inward. One of Artificial Intelligence algorithm that can be used is HiddenMarkov Model (HMM).
HMM itself is a statistical model where the system which being modelled was assumed as Markov process that has hidden state. This research used Inertial Measurement Unit sensor as human motion detector. Communication between sensor and computer was conducted wirelessly with XBee. This system can recognize six motion real time. From the results show that Hidden Markov Model can recognize human motion with an accuracy rate of 88% within 0.004 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S5806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahri Alamsyah
"Dunia digital khususnya image processing berkembang seiring waktu berjalan dikarenakan kebutuhan masyarakat dan pentingnya keamanan sistem berbasis digital. Salah satu teknologi yang sangat mengalami kemajuan pesat adalah pengenalan wajah (face recognition) menggunakan artificial intelligence. Wajah seseorang yang sudah terdaftar di dalam database akan dikenali oleh sistem untuk keperluan validasi atau verifikasi. Di dalam penelitian ini dirancang sistem pengenalan wajah (face recognition) menggunakan algoritma machine learning dan Principal Component Analysis (PCA) sebagai pereduksi dimensi. Pengujian dilakukan dengan menggunakan beberapa metode, yakni: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K- NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) dan Convolutional Neural network (CNN). CNN berfokus pada layer dan tidak memerlukan reduksi dimensi, sehingga hasilnya lebih akurat. Model machine learning yang digunakan untuk classifier selain CNN adalah standar/default, sedangkan CNN menggunakan arsitektur LeNet-5, dengan dropout rate sebesar 0.25. Training dilakukan selama 60 epoch dengan loss function crosscategorical entropy, optimizer Adam, dan batch size sebesar 20. Data masukan adalah citra wajah berukuran 64 × 64 × 1 yang diperoleh dari dataset olivetti faces. Akurasi tertinggi metode PCA, SVM, maupun LR sebesar 91.25%, sementara akurasi terbaik CNN mencapai 98.75%. Selain akurasi, pemakaian confusion matrix dan classification report digunakan untuk menguji performa metode yang ada melalui evaluasi model klasifikasi.

The digital world, especially image processing, is evolving due to the needs of society and the importance of digital-based system security. One of the technologies that are rapidly progressing is face recognition using artificial intelligence. The system will recognize a person's face already registered in the database for validation or verification purposes. A face recognition system was designed using machine learning algorithms and Principal Component Analysis (PCA) as dimension reduction in this study. Testing is conducted using several methods: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K-NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) and Convolutional Neural network (CNN). CNN focuses on layers and does not require dimensional reduction to increase the accuracy of the result. The machine learning model used for classifiers other than CNN is standard/default settings, while CNN uses the LeNet-5 architecture, with a dropout rate of 0.25. The training was conducted for 60 epochs with loss function cross-categorical entropy, optimizer Adam, and batch size of 20. Input data is a 64 × 64 × 1 facial image obtained from the Olivetti faces database. The highest accuracy of PCA, SVM and LR methods was 91.25%, while CNN's best accuracy reached 98.75%. In addition to accuracy, the use of confusion matrix and classification report is used to test the performance of existing methods through the evaluation of classification models."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhonan Lutfi Divanto
"Pengukuran kadar gula darah merupakan salah satu kebutuhan utama dalam penanganan diabetes. Namun, moda pengukuran kadar gula darah yang umum saat ini, dilakukan secara invasive atau perlu melukai bagian tubuh manusia untuk mendapat nilai kadar gula darahnya. Terdapat metode pengukuran non invasive tanpa melukai manusia, namun metode ini masih belum dapat diandalkan karena banyaknya factor yang mempengaruhi glukosa tersebut. Penelitian ini mencoba untuk menganalisis akurasi dan performa dari pengukuran gula darah secara non invasive menggunakan sensor infrared pada panjang gelombang 940 nm dengan dibantu oleh Artificial Neural Network dan juga untuk mengevaluasi hubungan komponen dasar dari sinyal analog dari sensor yang bersangkutan terhadap kadar gula darah menggunakan Multiple Regression. Akurasi prediksi gula darah dievaluasi menggunakan Clark Grid Error analysis Dalam analisis ini, 81% dari 97 sampel data berada pada zona yang dapat diterima secara klinis, sedangkan sisanya berada pada zona yang tidak. Hal ini belum mencukupi kebutuhan akurasi 95% yang dapat diterima berdasarkan dari standar ISO 15197, maka hasil daripada penelitian ini masih belum memberikan hasil yang baik. Evaluasi menggunakan multiple regression sendiri menghasilkan hubungan yang tidak signifikan antara komponen dari sinyal analog dengan kadar gula darah dengan nilai R-squared sebesar 0.0174, RMSE 66.9, dan P-value keseluruhan sebesar 0.801.

Measuring blood sugar levels is one of the main needs in managing diabetes. However, the current common method of measuring blood sugar levels is carried out invasively or requires injuring parts of the human body to obtain blood sugar levels. There are non-invasive measurement methods without injuring humans, but this method is still not reliable because of the many factors that influence glucose. This research attempts to analyze the accuracy and performance of non-invasive blood sugar measurements using an infrared sensor at a wavelength of 940 nm assisted by an Artificial Neural Network and also to evaluate the relationship of the basic components of the analog signal from the sensor in question to blood sugar levels using Multiple Regression. The accuracy of blood sugar predictions was evaluated using Clark Grid Error analysis. In this analysis, 81% of the 97 data samples were in the clinically acceptable zone, while the rest were in the zone that was not. This does not meet the acceptable 95% accuracy requirement based on the ISO 15197 standard, thus the results of this research still do not provide relatively good results. Evaluation using multiple regression itself produced an insignificant relationship between the components of the analog signal and blood sugar levels with an R-squared value of 0.0174, RMSE 66.9, and an overall P-value of 0.801."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rendra Satya Wirawan
"Dengan terus bertambahnya industri pada berbagai bidang, membuat konsumen memiliki banyak pilihan ketika memilih barang atau jasa. Oleh karena itu dibutuhkan suatu cara agar dapat menghasilkan barang dengan tepat. Hal inilah yang menjadi peranan dari sebuah metode peramalan permintaan. Terdapat banyak cara dalam melakukan peramalan, namun cara manakah yang dapat memberikan hasil yang terbaik. ANN dan SVR merupakan salah satu cara yang memberikan hasil peramalan terbaik. Dalam penelitian ini, dibandingkan antara metode ANN dan SVR dengan metode tradisional. Dari enam jenis data yang digunakan empat menunjukan ANN memberikan peramalan terbaik, dan satu menunjukan SVR memberikan peramalan terbaik.

With the continuous increase of industry in many fields, making consumers to have many choices when choosing goods or services. Because of that, we need some way to produce good with the correct amount. This is the role of a demand forecast method. There are many methods in demand forecast, but which method that give the best result. ANN and SVR are one of many methods that will give the best forecast result. In this research, ANN and SVR method will be compared to the traditional methods. From six kinds of data that is used, four show that ANN give the best forecast result, and one shows SVR give the best forecast result."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S775
UI - Skripsi Open  Universitas Indonesia Library
cover
Brahmana, Jane Eva Aurelia Sembiring
"Di dunia kesehatan, tenaga medis dituntut untuk mengatasi berbagai jenis penyakit dengan gejala yang beragam. Oleh karena itu, diperlukan suatu teknologi untuk membantu mereka menyelesaikannya dengan baik. Penelitian ini mendukung mereka dengan menggunakan machine learning sebagai pemecah masalah. Penelitian ini membahas kanker payudara yang merupakan salah satu penyakit dengan angka kematian tertinggi di dunia, khususnya bagi wanita. Berdasarkan patologisnya, ada beberapa jenis kanker payudara yang dikelompokkan menjadi dua kategori utama, yaitu invasif dan non-invasif. Penelitian ini menggunakan dataset MRI payudara penderita kanker payudara dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Dataset berupa citra MRI akan diimplementasikan pada algoritma yang telah dikonstruksikan. Pada tahap awal, metode Convolutional Neural Network akan digunakan untuk bagian konvolusi. Berikutnya, pada bagian klasifikasi, metode yang akan diterapkan sebagai metode klasifikasi adalah Support Vector Machine. Dengan mengevaluasi hasil kinerja metode pembaharuan yang digunakan (Convolutional Neural Network–Support Vector Machine) dari dataset yang dimiliki, kita akan mengetahui apakah metode Convolutional Neural Network–Support Vector Machine lebih akurat dibandingkan dengan metode Convolutional Neural Network dalam membantu klasifikasi dataset MRI penderita kanker payudara yang dimiliki. 

In the world of health, medical personnel are required to deal with various types of diseases with various symptoms. Therefore, a technology is needed to help them solve it well. This research supports them by using machine learning as a problem solver. This research discusses breast cancer, which is one of the diseases with the highest mortality rate in the world, especially for women. Based on the pathology, there are several types of breast cancer which are grouped into two main categories, namely invasive and non-invasive. This study used the breast MRI dataset of breast cancer patients from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The dataset in the form of an MRI image will be implemented in the algorithm that has been constructed. In the early stages, the Convolutional Neural Network method will be used for the convolution section. Next, in the classification section, the method that will be applied as a classification method is the Support Vector Machine. By evaluating the performance results of the renewal method used (Convolutional Neural Network–Support Vector Machine) from our dataset, we will find out whether the Convolutional Neural Network–Support Vector Machine method is more accurate than the Convolutional Neural Network method in helping to classify the MRI dataset for breast cancer patients which are owned."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mayank Sharma
"ABSTRACT
Crack detection in concrete structures is an important task in the inspection of buildings to ensure their safety and serviceability. Previous studies relating to crack detection via image-processing and machine learning techniques generally involve the complex modelling of cracks and the extraction of hand crafted crack features. This approach often fails to apply to images from a real environment. This paper proposes a new image-based crack detection system using a combined model of classifiers, namely a Convolutional Neural Network (CNN) and a Support Vector Machine (SVM), which was proven to perform better than the methods involving the handcrafted features. In the proposed technique, a CNN is used in extracting deep convolutional features from the RGB images of cracks and an SVM classifier is used as an alternative to a softmax layer to enhance classification ability. The combined model automatically extracts features and determines whether or not an image patch belongs to a crack class. A dataset of 550 images are collected by a digital camera from various locations, and from the results, it is concluded that the proposed method is able to identify cracks on concrete surface with an accuracy of 90.76 %"
Pathum Thani: Thammasat University, 2018
670 STA 23:2 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
Widya Amalia Dewi
"Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa sebab atas berkah rahmat dan karunia-Nya, penulis dapat menyelesaikan skripsi ini. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mendapatkan gelar Sarjana Teknik, Program Studi Teknik Komputer, Fakultas Teknik, Universitas Indonesia. Penulis menyadari skripsi ini tidak dapat diselesaikan tanpa bantuan dari Bapak F. Astha Ekadiyanto, S.T., M.Sc., selaku pembimbing skripsi yang telah menyediakan waktu, tenaga, dan pikiran selama penulis mengerjakan skripsi ini serta Bapak Ardiansyah, S.T., M.Eng. dan Ibu Prima Dewi Purnamasari, S.T., M.T., M.Sc. yang telah mengarahkan dan memberi saran dalam penulisan skripsi ini.
Perkembangan teknologi saat ini tidak hanya berisi informasi positif, informasi yang negatif pun mudah diperoleh melalui media internet. Untuk mengatasi dampak negatif yaitu gambar pornografi, salah satunya adalah pemfilteran gambar porno. Disini penulis mencoba menerapkan pengenalan pola untuk mengklasifikasi apakah gambar itu termasuk porno atau non porno. Proses klasifikasi konten gambar porno dilakukan melalui tiga tahapan utama. Pada tahap awal dilakukan pra-proses untuk memodifikasi resolusi data kualitas citra dilanjutkan dengan ekstraksi fitur menggunakan dekomposisi wavelet haar bertingkat tiga dan empat agar ukuran citra tidak terlalu besar.
Setelah itu dilakukan proses reduksi dimensi menggunakan Principal Component Analysis (PCA). PCA menentukan komponen penting dari citra dengan melihat dari varians yang direpresentasikan oleh nilai eigen, sehingga jumlah komponen yang akan dimasukkan ke proses pembelajaran tidak terlalu banyak, untuk menghindari curse of dimentionality. Baru setelah itu dilakukan proses klasifikasi. Pada penelitian ini telah dilakukan perbandingan algoritma SVM dengan BP untuk klasifikasi konten gambar porno. Untuk proses ekstraksi ciri digunakan metode wavelet pada masing-masing kedua metode tersebut. Pada penelitian ini digunakan 60 data uji, masing-masing 30 citra untuk kelas porno dan non porno. Tingkat akurasi yang diperoleh dengan menggunakan metode SVM lebih tinggi dibandingkan BP, yaitu 88,33% dan 86,67%."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63223
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mustakim
"The largest region that produces oil palm in Indonesia has an important role in improving the welfare an economy of the society. Oil palm production has increased significantly in Riau Province in every period. To determine the production development for the next few years, we proposed a prediction of the production results. The dataset were taken to be the time series data of the last 8 years (2005-2013) with the function and benefits of oil palm as the parameters. The study was undertaken by comparing the performance of Support Vector Regression (SVR) method and Artificial Neural Network (ANN). From the experiment, SVR resulted the better model compared to the ANN. This is shown by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF), whereas ANN resulted only 74% for R2 and 9% for MSE on the 8th experiment with hidden neuron 20 and learning rate 0,1. SVR model generated predictions for next 3 years which rose 3%-6% from the actual data and RBF model predictions
Daerah penghasil kelapa sawit terbesar di Indonesia mempunyai peranan penting dalam peningkatan kesejahteraan dan ekonomi masyarakat. Produksi kelapa sawit mengalami peningkatan yang signifikan di Provinsi Riau dalam setiap kurun waktu, untuk menentukan perkembangan produksi beberapa tahun ke depan, kami mengusulkan suatu prediksi dari hasil produksi. Dataset yang diambil adalah data time series dari data yang diperoleh selama 8 tahun terakhir (2005-2013) dengan fungsi dan manfaat kelapa sawit sebagai parameter. Dalam implementasinya peramalan dilakukan dengan membadingkan kinerja metode Support Vector Regression (SVR) dan Artificial Neural Network (ANN). Dari percobaan, SVR menghasilkan model terbaik dibandingkan dengan ANN yaitu ditunjukkan dengan koefisien korelasi sebesar 95% dan MSE 6% pada kernel Radial Basis Function (RBF), sedangkan ANN hanya menghasilkan R2 sebesar 74% dan MSE 9% pada percobaan ke-8 dengan hidden neuron 20 dan learning rate 0,1. SVR model menghasilkan prediksi untuk 3 tahun kedepan yang memiliki kenaikan antara 3%-6% dari data aktual dan prediksi model RBF"
Riau: Faculty of Science and Technology, 1Information System Department UIN Sultan Syarif Kasim Riau, 2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Selly Anastassia Amellia Kharis
"Kanker merupakan kelompok penyakit yang ditandai dengan pertumbuhan dan penyebaran sel-sel abnormal yang tidak terkendali. Jika penyebaran sel tersebut tidak terkendali, hal ini dapat menyebabkan kematian. Berdasarkan American Cancer Society, pendeteksian dini terhadap sel kanker dapat meningkatkan angka harapan hidup seorang pasien lebih dari 97 . Banyak penelitian yang telah meneliti mengenai klasifikasi kanker menggunakan microarray data. Microarray data terdiri dari ribuan fitur gen namun hanya memiliki puluhan atau ratusan sampel. Hal tersebut dapat menurunkan akurasi klasifikasi sehingga perlu dilakukannya pemilihan fitur sebelum proses klasifikasi.
Pada penelitian ini dilakukan dua tahap pemilihan fitur. Pertama, support vector machine recursive feature elimination SVM-RFE digunakan untuk prefilter gen. Kedua, hasil pemilihan fitur SVM-RFE diseleksi kembali dengan menggunakan artificial bee colony ABC yang merupakan algoritma optimisasi berdasarkan perilaku lebah madu. Penelitian ini menggunakan dua dataset, yaitu data kanker paru-paru Michigan dan Ontario dari Kent Ridge Biomedical Dataset.
Hasil percobaan dengan menggunakan SVM-RFE dan ABC menunjukkan nilai akurasi klasifikasi yang lebih tinggi daripada tanpa pemilihan fitur, SVM-RFE, dan ABC, yaitu 98 untuk data kanker paru-paru Michigan dengan menggunakan 100 fitur dan 97 untuk data kanker paru-paru Ontario dengan menggunakan 70 fitur.

Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. If the spread is not controlled, it can result in death. Based on American Cancer Society, early detection of cancerous cells can increase survival rates for patients by more than 97 . Many study showed new aspect of cancer classification based microarray data. Microarray data are composed of many thousands of features genes and from tens to hundreds of instances. It can decrease classification accuracy so feature selection is needed before the classification process
In this paper, we propose two stages feature selection. First, support vector machine recursive feature elimination recursive feature elimination SVM RFE is used to prefilter the genes. Second, the SVM RFE features selection result is selected again using Artificial Bee Colony ABC which is an optimization algorithm based on a particular intelligent behavior of honeybee swarms. This research conducted experiments on Ontario and Michigan Lung Cancer Data from Kent Ridge Biomedical Dataset.
Experiment results demonstrate that this approach provides a higher classification accuracy rate than without feature selection, SVM RFE, and ABC, 98 for Michigan lung cancer dataset with using 100 features and 97 for Ontario lung cancer dataset with using 70 features.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49733
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>