Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 166338 dokumen yang sesuai dengan query
cover
Tina Enyta
"Polipropilena (PP) merupakan polimer termoplastik yang banyak digunakan. PP memiliki densitas yang rendah, mudah diproses, dapat didaur ulang, dan relatif murah, tetapi kekuatan tariknya rendah. Penggabungan PP dengan serat kenaf dapat meningkatkan sifat mekanik PP. Namun, PP dan serat kenaf memiliki kompatibilitas yang rendah. Oleh karena itu, serat kenaf diberi perlakuan pemutihan dengan NaClO 1% selama 2 jam pada temperatur ruang. Serat dikarakterisasi dengan FTIR, FESEM, dan uji tarik. Pemutihan menurunkan kandungan hemiselulosa, lignin, dan zat pengotor pada permukaan serat serta meningkatkan kekuatan tarik serat. Proses pencampuran PP dan serat kenaf dilakukan dengan metode hot melt mixing. Pencampuran dilakukan dengan komposisi serat 5% hingga 25% fraksi massa, temperatur 170oC hingga 190oC, dan waktu 10 menit hingga 20 menit. Komposit dikarakterisasi dengan FESEM, uji tarik, dan STA. Penambahan serat 5% fraksi massa menghasilkan komposit dengan kekuatan tarik, kristalinitas, dan kestabilan termal yang paling tinggi. Temperatur pencampuran 190oC menghasilkan komposit dengan kekuatan tarik, kristalinitas, dan kestabilan termal yang paling tinggi. Waktu pencampuran 20 menit menghasilkan komposit dengan kekuatan tarik paling tinggi.

PP is a thermoplastic polymer which is widely used. PP has low density, easily processed, can be recycled, and relatively inexpensive, but has low tensile strength. Synthesis PP with kenaf fiber can improve the mechanical properties of PP. However, PP and kenaf fiber have low compatibility. Therefore, kenaf fiber treated by bleaching with NaClO 1% for 2 hours in room temperature. Fiber characterized by FTIR, FESEM, and tensile test. Bleaching reduces hemicellulose, lignin, and impurities on the fiber surface and increase the tensile strength of fiber. PP and kenaf fiber mixing is done by hot melt mixing method. Mixing is done with fiber composition of 5% to 25% mass fraction, temperature of 170oC to 190oC, and time of 10 minutes to 20 minutes. Composites characterized by FESEM, tensile test, and STA. The addition 5% mass fraction of fiber results a composite with the highest tensile strength, crystallinity, and thermal stability. Mixing temperature of 190oC results a composite with the highest tensile strength, crystallinity, and thermal stability. Mixing time of 20 minutes results a composite with the highest tensile strength.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58469
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahma Lailani
"ABSTRAK
Pada penelitian ini dibuat PMCs (Polymer Matrix Composites), menggunakan polipropilena (PP) sebagai matriks dan serat kenaf sebagai penguat. Polipropilena dan serat kenaf memiliki sifat permukaan yang berbeda, sehingga kompatibilitas antara keduanya buruk. Oleh karena itu, dilakukan modifikasi permukaan serat kenaf dengan metode alkalinisasi. Proses alkalinisasi dilakukan dengan merendam serat kenaf pada larutan NaOH 6% selama 8 jam. Selanjutnya pencampuran PP dan serat kenaf menggunakan metode hot melt mixing. Pengaruh komposisi serat, temperatur pencampuran, dan waktu pencampuran pada pembuatan komposit PP-kenaf dianalisa pada penelitian ini. Hasil pengujian menunjukan bahwa kekuatan tarik komposit PP-5%kenaf lebih baik dibanding kekuatan tarik PP. Namun, pada komposisi serat 15% fraksi massa mulai terjadi penurunan kekuatan tarik komposit. Hal ini disebabkan karena meningkatnya jumlah void dan fenomena fiber pull out seiring penambahan komposisi serat kenaf. Peningkatan komposisi serat juga menurunkan kristalinitas dan kestabilan termal pada komposit. Temperatur pencampuran divariasikan 170oC, 180oC, dan 190oC. Peningkatan temperatur pencampuran akan menghasilkan distribusi dan dispersi serat yang baik. Sehingga dengan temperatur pencampuran 190oC dihasilkan kekuatan tarik, kristalinitas, dan kestabilan termal optimal pada komposit. Waktu pencampuran divariasikan 10 menit, 15 menit dan 20 menit. Semakin lama proses pencampuran akan semakin optimal pula distribusi dan dispersi serat pada matriks, sehingga kekuatan tarik komposit makin meningkat.
ABSTRACT
In this research PMCs (Polymer Matrix Composites) was made, using polypropylene as matrix and kenaf fiber as reinforcement. PP and kenaf fiber have different surface properties, so that the compatibility between the two gets worse. Therefore, modification of kenaf fiber surface is carried out with alkaline treatment. The process of alkaline treatment is done by soaking the kenaf fiber in 6% NaOH solution for 8 hours. Then do the mixing process between PP and kenaf fiber using hot melt mixing method. The influence of fiber composition, temperature mixing, and time mixing on manufacture of composites were analyzed on this research. The test results showed that the tensile strength of PP-5%kenaf composite better than the tensile strength of PP. However, the composite with 15% fiber mass fraction decreased tensile strength. This was caused by the growing number of voids and fiber pull out phenomena over the addition of kenaf fiber composition. The increase of fiber composition also lowers the crystallinity and thermal stability on the PP-kenaf composite. Mixing temperature varied 170oC, 180oC, and 190oC. The increase of temperature mixing will produce good distribution and dispersion of fiber. So that on 190°C mixing temperature resulting composite with optimal tensile strength , crystallinity , and thermal stability. The mixing time varied for 10 minutes, 15 minutes, and 20 minutes. The longer the mixing process will resulting good dispersion and distribution, so that the composite tensile strength was increased."
2015
S58212
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nicko Azharry Setyabudi
"Polipropilena (PP) merupakan salah satu jenis polimer termoplastik yang dibuat oleh industri polimer hulu dan digunakan dalam berbagai aplikasi. Pada penggunaannya, PP banyak ditambahkan material lain (contoh: talcum) untuk meningkatkan kualitas dan memperbaiki sifat materialnya sesuai kebutuhan. Di Indonesia, PP merupakan salah satu material yang memiliki permintaan yang besar. Namun permintaan tersebut tidak diimbangi dengan produksi yang dilakukan oleh industri polimer hulu yang ada di dalam negeri. Pada tahun 2011, Indonesia menjadi negara pengimpor produk olefin terbanyak di ASEAN. Oleh karena itu, solusi alternatif diperlukan untuk mengatasi masalah ini, salah satunya dengan menggunakan material daur ulang (regrind).
Studi ini dilakukan untuk mengkaji karakteristik paduan yang terbentuk dari material regrind polipropilenatalcum (jenis komposit polipropilena yang banyak digunakan dalam industri otomotif) sehingga dapat diketahui apakah material regrind memiliki karakteristik yang tidak kalah baik dibandingkan material fresh-nya. Studi ini didukung dengan sebuah fakta bahwa material regrind polipropilena-talcum 20% memiliki titik leleh yang tidak berbeda jauh dengan temperatur leleh polipropilena (sekitar 176 °C), yaitu pada temperatur 176.4 °C.
Studi ini dilakukan dengan membentuk paduan dari material regrind polipropilena-talcum 20% dan 30% dan melalui proses dry mixing dan hot melt mixing. Karakteristik yang dikaji meliputi perubahan morfologi yang terjadi akibat proses regrinding dan pencampuran material, perilaku mekanik (kekuatan tarik dan modulus elastisitas), dan perilaku termal material tersebut.

Polypropylene (PP) is a thermoplastic polymer made by the polymer industry and used in various applications. In the application, PP is added to other material (eg, talcum) to improve the quality and enhance the properties of material. In Indonesia, the PP is one of the materials that have a great demand. But the request is not matched by production undertaken by the existing polymer industry in the country. In 2011, Indonesia became a net importer of most olefin products in ASEAN. Therefore, an alternative solution is needed to solve this problem, such as using recycled materials (regrind).
This study was conducted to examine the characteristics of the alloy is formed from polypropylene-talcum regrind material (polypropylene composites are widely used in the automotive industry) to know whether regrind material characteristics has significant differences compared to the fresh material. This study was supported by the fact that regrind material polypropylene-talcum 20% has a melting point which is not much different from the polypropylene melting temperature (around 176.0 °C), which is at 176.4 °C.
This study was conducted to form alloys of polypropylene regrind material-talcum 20% and 30% and through the process of dry mixing and hot melt mixing. Characteristics examined include morphological changes that occur due to the regrinding and mixing materials, mechanical behavior (tensile strength and modulus of elasticity), and the thermal behavior of the material.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47763
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Taufiq
"ABSTRAK
Penelitian ini fokus pada peningkatan sifat mekanis Polipropilena impak kopolimer (PP) dengan menggunakan serat ijuk yang telah dimodifikasi. Modifikasi serat ijuk dilakukan dengan menggunakan proses alkalinisasi dan pemutihan. Proses tersebut bertujuan untuk meningkatkan kristalinitas dan kompatibilitas serat ijuk terhadap matriks PP. Pembuatan komposit PP-ijuk dilakukan menggunakan metode pencampuran lelehan panas untuk selanjutnya di cetak sesuai spesifikasi sampel uji sifat mekanis. Proses pencampuran dilakukan selama 15 menit dan dipelajari dua variabel utama, yakni variasi kadar serat ijuk (1%, 3%, 5%) dan variasi temperatur pencampuran (160⁰C dan 165⁰C). Komposit yang terbentuk selanjutnya dilakukan pengujian STA dan UTM. Dari hasil percobaan dapat disimpulkan bahwa peningkatan sifat mekanis yang optimal didapatkan pada percobaan menggunakan serat ijuk 1% dan suhu pencampuran 160⁰C. pada sampel tersebut teramati penambahan nilai kuat tarik hampir mencapai 1 Mpa. Hasil percobaan mengindikasikan bahwa serat ijuk hasil modifikasi dapat digunakan sebagai filler untuk meningkatkan sifat mekanis PP. Kondisi utama yang paling mempengaruhi peran positif serat ijuk adalah distribusi dan dispersi.

ABSTRACT
This research focused on the employment of modificated ?ijuk? fibers as fillers to improve the mechanical properties of polypropylene impact copolymer (PP). Ijuk fibers are processed through alkali treatment and bleaching. Those processes are intended to improve the crystalinity and compatibility of ?ijuk? fibers to matrix PP. Afterwards, PP-ijuk composite is made by using rheomixing and subsequently casted in satisfactory to meet the requirements as standard sample for tensile strength testing. Rheomixing was conducted for 15 minutes in different concentration of ?ijuk? fibers (1%, 3%, 5%) and temperature (160⁰C dan 165⁰C). STA and UTM were used to observe the properties of the composite. From the results, can be concluded that the optimal condition to improve the mechanical properties of PP is obtained in the condition of 1% ?ijuk? fibers and 160⁰C mixing temperature. These condition were successfully improved the tensile strength of PP by 1 Mpa. The experiments indicated that modificated ?ijuk? fibers can be used as filler to increase the mechanical properties of PP. Distribution and dispertion were attributed as the main factors which influenced the processes."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S66420
UI - Skripsi Membership  Universitas Indonesia Library
cover
Enrico Susanto
"[Pada penelitian ini, serat ijuk dihancurkan dan diayak ukuran 40 # setelah itu serat ijuk diberi perlakuan kimia dengan NaOH 2 % selama 1 jam, KMnO4 0,1 N selama 15 menit, dan NaClO 5 % selama 5 jam dengan tujuan mendapatkan selulosa kristalin. Setelah itu dilakukan proses pencampuran kering (hotmelt mixing) antara polipropilen dengan serat ijuk hasil perlakuan kimia dengan 7,5 % volum serat ijuk terhadap polipropilen dengan variabel temperatur 160°C, 165°C, dan 170°C dan variabel waktu pencampuran 15 menit dan 20 menit. Setelah itu dilakukan pengujian uji FTIR buat serat, sedangan buat komposit adalah uji tarik, uji STA, uji XRD, dan uji FE-SEM hal ini dilakukan untuk mendapatkan sifat kristalinitas dan mekanik dari komposit polipropilen ini. Hasil penelitian menunjukkan bahwa serat ijuk hasil perlakuaan lebih kristalin dari pada serat ijuk tanpa perlakukan, polipropilen dengan serat ijuk hasil perlakuaan kimia cukup kompatibel terhadap polipropilen, dari penelitian didapatkan sifat kristalinitas terbaik pada variabel 165°C selama 20 menit. Dan yang memiliki sifat kekuatan tarik paling baik adalah variabel 170°C selama 20 menit, sedangkan yang memiliki % elongasi paling baik adalah dengan variabel 160°C 20 menit.

In this work, palm fiber crushed and sieved size 40 # after the palm fiber chemically treated with 2% NaOH for 1 hour, 0.1 N KMnO4 for 15 minutes, and 5% NaClO for 5 hours in order to obtain crystalline cellulose. Once that is done the dry mixing (hotmelt mixing) between polypropylene and palm fiber chemical treatment results with 7.5% volume of the palm fiber and polypropylene with a variable temperature of 160°C, 165°C and 170°C and a variable time mixing 15 minutes and 20 minutes. After it was examined FTIR test for fiber, while the composite is made tensile test, STA test, XRD test and FE-SEM test this is done to obtain crystallinity and mechanical properties of polypropylene composites this. The results show that fiber perlakuaan results more crystalline fibers than untreated palm fiber, polypropylene and palm fiber chemistry results treatment compatible enough to polypropylene, crystallinity of the research showed the best properties on the variable 165 ° C for 20 minutes. And who has the most excellent tensile strength properties are variable 170 ° C for 20 minutes, while the best of % elongation is at a variable 160 ° C 20 minutes.;In this work, palm fiber crushed and sieved size 40 # after the palm fiber chemically treated with 2% NaOH for 1 hour, 0.1 N KMnO4 for 15 minutes, and 5% NaClO for 5 hours in order to obtain crystalline cellulose. Once that is done the dry mixing (hotmelt mixing) between polypropylene and palm fiber chemical treatment results with 7.5% volume of the palm fiber and polypropylene with a variable temperature of 160°C, 165°C and 170°C and a variable time mixing 15 minutes and 20 minutes. After it was examined FTIR test for fiber, while the composite is made tensile test, STA test, XRD test and FE-SEM test this is done to obtain crystallinity and mechanical properties of polypropylene composites this. The results show that fiber perlakuaan results more crystalline fibers than untreated palm fiber, polypropylene and palm fiber chemistry results treatment compatible enough to polypropylene, crystallinity of the research showed the best properties on the variable 165 ° C for 20 minutes. And who has the most excellent tensile strength properties are variable 170 ° C for 20 minutes, while the best of % elongation is at a variable 160 ° C 20 minutes.;In this work, palm fiber crushed and sieved size 40 # after the palm fiber chemically treated with 2% NaOH for 1 hour, 0.1 N KMnO4 for 15 minutes, and 5% NaClO for 5 hours in order to obtain crystalline cellulose. Once that is done the dry mixing (hotmelt mixing) between polypropylene and palm fiber chemical treatment results with 7.5% volume of the palm fiber and polypropylene with a variable temperature of 160°C, 165°C and 170°C and a variable time mixing 15 minutes and 20 minutes. After it was examined FTIR test for fiber, while the composite is made tensile test, STA test, XRD test and FE-SEM test this is done to obtain crystallinity and mechanical properties of polypropylene composites this. The results show that fiber perlakuaan results more crystalline fibers than untreated palm fiber, polypropylene and palm fiber chemistry results treatment compatible enough to polypropylene, crystallinity of the research showed the best properties on the variable 165 ° C for 20 minutes. And who has the most excellent tensile strength properties are variable 170 ° C for 20 minutes, while the best of % elongation is at a variable 160 ° C 20 minutes.;In this work, palm fiber crushed and sieved size 40 # after the palm fiber chemically treated with 2% NaOH for 1 hour, 0.1 N KMnO4 for 15 minutes, and 5% NaClO for 5 hours in order to obtain crystalline cellulose. Once that is done the dry mixing (hotmelt mixing) between polypropylene and palm fiber chemical treatment results with 7.5% volume of the palm fiber and polypropylene with a variable temperature of 160°C, 165°C and 170°C and a variable time mixing 15 minutes and 20 minutes. After it was examined FTIR test for fiber, while the composite is made tensile test, STA test, XRD test and FE-SEM test this is done to obtain crystallinity and mechanical properties of polypropylene composites this. The results show that fiber perlakuaan results more crystalline fibers than untreated palm fiber, polypropylene and palm fiber chemistry results treatment compatible enough to polypropylene, crystallinity of the research showed the best properties on the variable 165 ° C for 20 minutes. And who has the most excellent tensile strength properties are variable 170 ° C for 20 minutes, while the best of % elongation is at a variable 160 ° C 20 minutes.;In this work, palm fiber crushed and sieved size 40 # after the palm fiber chemically treated with 2% NaOH for 1 hour, 0.1 N KMnO4 for 15 minutes, and 5% NaClO for 5 hours in order to obtain crystalline cellulose. Once that is done the dry mixing (hotmelt mixing) between polypropylene and palm fiber chemical treatment results with 7.5% volume of the palm fiber and polypropylene with a variable temperature of 160°C, 165°C and 170°C and a variable time mixing 15 minutes and 20 minutes. After it was examined FTIR test for fiber, while the composite is made tensile test, STA test, XRD test and FE-SEM test this is done to obtain crystallinity and mechanical properties of polypropylene composites this. The results show that fiber perlakuaan results more crystalline fibers than untreated palm fiber, polypropylene and palm fiber chemistry results treatment compatible enough to polypropylene, crystallinity of the research showed the best properties on the variable 165 ° C for 20 minutes. And who has the most excellent tensile strength properties are variable 170 ° C for 20 minutes, while the best of % elongation is at a variable 160 ° C 20 minutes., In this work, palm fiber crushed and sieved size 40 # after the palm fiber chemically treated with 2% NaOH for 1 hour, 0.1 N KMnO4 for 15 minutes, and 5% NaClO for 5 hours in order to obtain crystalline cellulose. Once that is done the dry mixing (hotmelt mixing) between polypropylene and palm fiber chemical treatment results with 7.5% volume of the palm fiber and polypropylene with a variable temperature of 160°C, 165°C and 170°C and a variable time mixing 15 minutes and 20 minutes. After it was examined FTIR test for fiber, while the composite is made tensile test, STA test, XRD test and FE-SEM test this is done to obtain crystallinity and mechanical properties of polypropylene composites this. The results show that fiber perlakuaan results more crystalline fibers than untreated palm fiber, polypropylene and palm fiber chemistry results treatment compatible enough to polypropylene, crystallinity of the research showed the best properties on the variable 165 ° C for 20 minutes. And who has the most excellent tensile strength properties are variable 170 ° C for 20 minutes, while the best of % elongation is at a variable 160 ° C 20 minutes.]"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S1575
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Himawan Abdillah
"Pada zaman sekarang ini dimana penggunaan energi yang murah, efisien, dan ramah lingkungan sangat diperlukan, maka dikembangkan sel tunam (fuel cells) sebagai sumber energi baru. Kekurangan dari sel tunam konvensional adalah massanya yang berat dan proses manufaktur yang sulit sehingga harga sel tunam itu sendiri menjadi mahal. Sifat ini merupakan kontribusi dari pelat bipolar pada sel tunam tersebut. Oleh karena itu, dibutuhkan pelat bipolar yang ringan, mudah diproses, dan murah.
Dalam penelitian ini dikembangkan komposit pelat bipolar menggunakan matriks polipropilena (PP), penguat karbon, dan aditif polyvinylidene fluoride (PVDF) yang divariasikan komposisinya untuk mendapatkan sifat konduktivitas dan mekanis yang baik.
Sifat-sifat dari komposit yang dihasilkan diuji dengan pengujian mekanis, konduktivitas, dan melt flow indexer. Selain itu, dilakukan juga pengamatan mikrograf dengan menggunakan SEM.
Dari hasil pengujian tersebut, didapatkan bahwa sifat mekanis akan semakin menurun seiring dengan penambahan penguat karbon dalam komposit. Namun, nilai konduktitasnya kecil. Dari keempat formula, didapatkan bahwa nilai mekanis yang paling baik terdapat pada formula dua dengan persentase penguat karbon sebesar 44 % wt. dan sifat konduktivitas terbaik terdapat pada formula tiga dengan 80 % wt. karbon dimana di dalamnya terkandung 25 % wt. grafit.
Dalam penelitian ini belum didapatkan komposisi yang optimal dalam pembagian komposisi PP dan penguat karbon. Selain itu, nilai konduktivitas juga masih kecil karena PVDF tidak dapat membantu ikatan PP dengan penguat karbon dengan baik.

Nowadays, when the usage of cheap, efficient, and eco-friendly energy is needed, fuel cells as a new energy source is developed. The disadvantage of conventional fuel cells are its heavyness and its low processability, which leads to its high price. These properties are affected by its bipolar plates. Therefore, we need a lightweight, easy-to-process, and cheap bipolar plates.
In this study, we develop a bipolar plate composite by using polypropylene matrix, carbon reinforcements, and polyvinylidene fluoride as an additive and varying its composition to develop good conductivity and mechanical properties.
Composite properties are evaluated by using mechanical tests, conductivity tests, and melt flow indexer. SEM micrography is also used.
From the results, we can conclude that mechanical properties will decrease as the adding of carbon reinforcements in the composite. But, it will decrease its conductivity. From 4 formulas we develop, second formula had the best mechanical properties with 44 % wt. carbon reinforcement and the third formula had the best conductivity properties with 80 % wt. carbon reinforcements, whereas, it has 25 % wt. graphite.
In this study, the optimal composition hasn?t been retrieved. The conductivity result also shows low conductivity because PVDF doesn?t help the bonding between PP and carbon reinforcements perfectly."
2008
S51088
UI - Skripsi Open  Universitas Indonesia Library
cover
Margaretha Aryanti
"Telah dilakukan modifikasi serat polipropilen dengan asam akrilat supaya dapat dipergunakan untuk penukar kation. Penelitian ini bertujuan untuk mendapatkan serat yang dapat menukar ion logam dalam larutan ;dengan kapasitas tinggi.
Kopolimerisasi cangkok asam akrilat pada serat polipropilen dilakukan dengan metode peroksidasi menggunakan sinar dari sumber Co-60. Pengaruh beberapa faktor terhadap kadar pencangkokan dipelajari dengan memvariasikan dosis total iradiasil, temperatur dan waktu pencangkokan serta konsentrasi monomer. Variasi laju dosis dilakukan untuk mengetahui kecepatan pencangkokan. Terjadinya pencangkokan asam akrilat pada serat polipropilen diamati pada spektrum infra merah, dan kestabilan termal serat polipropilen sebelum dan sesudah pencangkokan (PP-g-AAc) diamati dengan Thermogravimetric Analysis (TGA). Rapasitas penukaran serat PP-g-AAc terhadap ion logam dalam larutan diperiksa dengan Atomic Absorption Spectrofotometer (AAS).
Hasil yang diperoleh menunjukkan bahwa makin tinggi dosis total dan konsentrasi monomer makin tinggi kadar pencangkokan. Dari variasi temperatur dan waktu pencangkokan diperoleh energi pengaktivan pencangkokan asam akrilat pada serat polipropilen sebesar 5,031 kcal/mol. Pengamatan terhadap hubungan laju dosis dengan kecepatan pencangkokan diperoleh persamaan RP = C I0,8 yang berarti pada reaksi pencangkokan di samping terjadi kopolimer cangkok terjadi pula homopolimer asampoll akrilat. Pengamatan pada spektra infra merah membuktikan terjadinya pencangkokan pada bagian amorf serat. Serat PP-g-AAc yang dihasilkan mempunyai kapasitas penukaran untuk ion Cu2+ adalah sebesar 3,14 mek/g.

Graft copolymerization of acrylic acid onto polypropylene fiber (PP) has been studied by preirradiation technique using co" gamma rays source. The preirradiated PP was treated with acrylic acid solution and heated at various temperature and period under nitrogen atmosphere. The percentage of grafting was determined and evaluated as function of total dose, reaction time, temperature and monomer concentration. The rate of grafting was studied as the function of dose rate. The grafted PP was characterized by IR spectroscopy TGA (Thermogravimetry Analysis) and the exchange capacity towards Cu(II).
From the results the activation energy calculated is 5,031 kcal/mol. The rate of grafting follow the equation of Rp = CI0'8 which is indicate that the grafting mechanism should through bimolecular mechanism. IR spectra shows that the monomer grafted on the amorf part of PP. The exchange capacity of PP-g-AAc prepared for Cu(II) is 3,14 meq/g.;Graft copolymerization of acrylic acid onto polypropylene fiber (PP) has been studied by preirradiation technique using co" gamma rays source. The preirradiated PP was treated with acrylic acid solution and heated at various temperature and period under nitrogen atmosphere. The percentage of grafting was determined and evaluated as function of total dose, reaction time, temperature and monomer concentration. The rate of grafting was studied as the function of dose rate. The grafted PP was characterized by IR spectroscopy TGA (Thermogravimetry Analysis) and the exchange capacity towards Cu(II).
From the results the activation energy calculated is 5,031 kcal/mol. The rate of grafting follow the equation of Rp = CI0'8 which is indicate that the grafting mechanism should through bimolecular mechanism. IR spectra shows that the monomer grafted on the amorf part of PP. The exchange capacity of PP-g-AAc prepared for Cu(II) is 3,14 meq/g.
"
Depok: Universitas Indonesia, 1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yustina Santikara Srihardini
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
TA1320
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nanang Masruchin
"Pada penelitian ini telah dikembangkan komposit berbasis polimer polipropilena (PP) dengan penguat serat alam yaitu serat sisal dan serat sabut kelapa. Bentuk morfologi serat alam divariasikan dalam bentuk bulk (chopped) dan berbentuk single of fiber melalui proses pulping. Jenis polimer yang digunakan adalah homopolimer dan kopolimer. Komposit yang dihasilkan dikarakterisasi untuk memperoleh komposit dengan kekuatan optimum tanpa mengesampingkan nilai ketangguhan-nya. Perlakuan panas dilakukan terhadap komposit serat alam pada suhu 70°, 100° dan 130°C selama 20 jam.
Dari penelitian ini diketahui bahwa sifak mekanis polimer PP dapat ditingkatkan dengan penambahan serat alam. Serat sisal memiliki sifat mekanis yang lebih baik jika dibandingkan dengan serat sabut kelapa, hal ini dibuktikan dengan nilai kuat tarik, struktur mikro, derajat kristalinitas dan stabilitas terhadap panas. Dari analisa FE-SEM, perubahan bentuk serat menjadi pulp dapat meningkatkan dispersi serat dalam matrik polimer, namun hal ini hanya meningkatkan kuat tarik dan kuat tekuk. Nilai kuat tarik, kuat tekuk, modulus dan impak komposit pada penelitian ini dapat ditingkatkan dengan tetap mempertahankan bentuk morfologi bulk (chopped) dari serat alam dengan penambahan EPDM 2.5% berat dan perlakuan panas pada 130°C. Mekanisme peningkatan ketangguhan komposit disebabkan oleh pembentukan kristal β-phase PP serta mekanisme fiber pull out dari serat alam bentuk chopped pada matrik polimer. Polimer homopolimer memberikan performa komposit yang lebih baik jika dibandingkan dengan kopolimer.

The aim of this study is to develop polypropylene (PP) composite reinforced with sisal and coconut fibers. The effect of fiber morphology in term of bundles (chopped) and single of fibers (pulp), as well as types of polymer (homopolymer and copolymer) were manufactured to obtain high strength and high toughness composites. Composites were annealed at 70°, 100° and 130°C.
From this study, it is reported that sisal fiber is superior to coconut fibers as reinforcing agents. It is not necessary to convert the bundles into pulp. Optimum composite could be obtained by annealed the composites of 40% weight sisal chopped reinforced PP at 130°C by addition of EPDM 2.5% wt in the presence of PP-g-MA 5% wt. The formation of β-phase crystallization of PP revealed from XRD analysis and fiber pull out mechanism take responsible for the improvement of the high toughness of composite. Homopolymer gave best performance as matrix compared to copolymer for strength and toughness composites.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31260
UI - Tesis Open  Universitas Indonesia Library
cover
Johannes Chandra
"Beton sebagai material konstruksi dikenal getas (brittle) dan lemah terhadap tarik dibandingkan dengan material baja. Penelitian para ahli menunjukkan peningkatan daktilitas beton melalui penambahan serat pada material beton. Salah satu jenis serat yang sering digunakan adalah serat Polypropylene (PP), yang juga digunakan sebagai bahan dasar pembuatan gelas kemasan air mineral. Berangkat dari peningkatan jumlah limbah gelas plastik, maka penggunaannya sebagai material tambahan pada beton diharapkan dapat mengatasi permasalahan sampah perkotaan, dan dalam jangka panjang diharapkan dapat mengurangi biaya pembangunan rumah tinggal.
Tujuan penelitian ini adalah untuk mempelajari efektifitas penggunaan cacahan limbah plastik PP terhadap peningkatan kuat tarik dan kuat lentur beton normal (fc' = 25 MPa). Kadar cacahan PP yang ditambahkan pada beton normal adalah 0,90; 1,35; 1,80; 2,25; 2,70; 4,50; 6,30; 9,00; 18,00 dan 27,00 kg/m3 atau dalam volume fraksi adalah 0,10; 0,15 0,20 ; 0,25; 0.30; 0,50; 0,70; 1,00; 2,00 dan 3,00% untuk pengujian kuat tarik yang dilakukan pada benda uji umur 7 dan 28 hari, serta 0,90; 1,35; 1,80; 2,25; 2,70; 4,50; 6,30; dan 9,00 kg/m3 atau dalam volume fraksi adalah 0,10; 0,15 0,20 ; 0,25; 0.30; 0,50; 0,70 dan 1,00% untuk pengujian kuat lentur yang dilakukan pada benda uji umur 28 hari.
Percobaan pembebanan yang dilakukan meliputi pembebanan tarik belah, pembebanan lentur dan modulus elastisitas. Benda uji untuk pengujian tarikbelah dan modulus elastisitas adalah silinder dengan diameter 15 cm dan tinggi 30 cm, sedangkan benda uji percobaan pembebanan lentur adalah balok 10x10x55 cm3.
Metode yang digunakan dalam penelitian ini adalah metode eksperimental, dimana percobaan dilakukan untuk mendapatkan kumpulan data, yang kemudian akan dianalisa secara statistik kuantitatif dan kualitatif.. Metode Analisis Rancang Campur yang digunakan adalah Metode US. Bureau. Benda Uji dibuat di Laboratorium Bahan Departemen Sipil FTUI. Standar Uji yang digunakan baik untuk pengujian material dasar, beton muda dan beton yang sudah mengeras
mengacu pada Standar ASTM.
Penambahan jumlah cacahan plastik polypropylene pada kadar tertentu akan menurunkan workabilitas dari beton, hal ini ditunjukkan dengan penurunan slump beton seiring dengan peningkatan kadar cacahan.
Dari Hasil Pengujian didapat, penambahan cacahan plastik polypropylene secara umum tidak memiliki pengaruh yang berarti pada tegangan tarik beton normal. Peningkatan paling besar terjadi pada benda uji kadar 0,3% umur 7 hari, yaitu sebesar 10,989%; dengan tegangan tarik berkisar antara 0,456 - 0,648 √ ? ' c. Hal ini secara umum diakibatkan karena ikatan atau gaya adhesi antara cacahan dengan matriks beton lebih lemah dari gaya kohesi antara matriks beton itu sendiri. Hal ini dibuktikan dengan uji tarik belah, dimana cacahan plastik pada benda uji yang terbelah tidak putus akibat pembebanan, melainkan masih tersambung, sedangkan material.
Sedangkan Penambahan cacahan plastik polypropylene secara umum meningkatkan tegangan tarik lentur beton normal. Peningkatan paling besar terjadi pada benda uji kadar 0,7% umur 28 hari, yaitu sebesar 17,098%; dengan tegangan tarik lentur berkisar antara 0,853 - 1,056 √ ? & c.

Concrete as construction material is known brittle and possess relatively weak tensile strength, compared to steel material. Experiments done by the experts shows an improvement in ductility of concrete by adding fiber to concrete material. One of the fibers that often used is Polypropylene (PP) fiber, which also used as a raw material in mineral water plastic glass manufacture. The increase of
amount of plastic glass waste, gives an idea to use it as an addition material in concrete. It expects decrease the urban waste problem, and in long term, to reduce the cost to build a house.
The purpose of this experiment is to study the effect of usage of PP plastic waste in tensile and flexural strength of normal concrete with fc? 25 MPa. The amount of crushed PP added to normal concrete are 0,90; 1,35; 1,80; 2,25; 2,70; 4,50; 6,30; 9,00; 18,00 and 27,00 kg/m3 or in fraction volume are 0,10; 0,15 0,20 ; 0,25; 0.30; 0,50; 0,70; 1,00; 2,00 and 3,00% for tensile strentgh test which done in age 7 and 28 days, also 0,90; 1,35; 1,80; 2,25; 2,70; 4,50; 6,30; and 9,00 kg/m3 or in fraction volume are 0,10; 0,15 0,20 ; 0,25; 0.30; 0,50; 0,70 and 1,00% for flexural strentgh test which done in age 28 days.
The test is consist of splitting tensile test, flexural test and modulus elasticity test. The sample for tensile and modulus elasticity test is cylinder with 15 cm diameter and 30 cm height, as for the flexural test is beam with size 10x10x55 cm3.
In this experiment the experimental method will be used, where the experiment done to collect data, and the data will be analyzed quantitative and qualitative statistically. The Mix Design Method used is US. Bureau Method. The sample will be made in Material Laboratory, Civil Engineering Department, Faculty of Engineering, University of Indonesia. The Standard to test the constituent materials, fresh concrete and hard concrete is based on ASTM Method.
The addition of crushed polypropylene plastic in specific amount will decrease the workability of concrete, shown by the decrease of concrete?s slump as the increase of crushed plastic amount.
The Test shows that the addition of crushed polypropylene plastic will not influence the tensile stress of normal concrete, generally. The highest increase happened in volume fraction 0.3% age 7 days, with 10.989%; and the tensile strengths have range from 0.456 - 0.648 √ ? & c. . This is generally because the bond or adhesion between the plastic and matrix is weaker then the cohesion of the matrix itself. It is proved by the splitting tensile test, where the plastics are do not yield by the loading, as for the aggregates are crushed by the loading.
As for the flexural tensile stress, it tends to increase. The highest increase, happened in volume fraction 0.7% age 28 days, with 17.098%; and the flexural strengths have range from 0.853 - 1.056 √ ? & c."
2008
S35339
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>