Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 49791 dokumen yang sesuai dengan query
cover
cover
cover
Universitas Indonesia, 1990
S28002
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desi Riana Saputri
"ABSTRAK
Produksi biohidrogen melalui reformasi kukus bio-oil berperan penting dalam perkembangan energi terbarukan yang berasal dari biomassa dalam memproduksi bahan bakar yang bersih. Walaupun demikian, kehadiran coke dan rendahnya konversi karbon merupakan permasalahan yang sering terjadi. Sehingga, penelitian ini bertujuan untuk mengurangi pembentukan deposit karbon dan meningkatkan konversi karbon dengan menggunakan core shell. Core shell akan meningkatkan luas permukaan, interaksi terhadap support katalis dan aktivitas katalitiknya. Core shell Ni/CaO-?-Al2O3@Ru disintesis dengan metode mikroemulsi dalam sistem larutan CTAB/n-heksanol/sikloheksana/aquades. Katalis dikarakterisasi dengan menggunakan XRD, BET, FESEM-EDS dan TEM. Fraksi aqueous bio-oil dianalisis menggunakan GC-MS. Hasil penelitian ini menunjukan bahwa yield hidrogen tertinggi dihasilkan dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru adalah sebesar 16,34 pada menit ke-10. Jumlah deposit karbon terendah diperoleh dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru yaitu 1,234 g. Konversi karbon dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru meningkat 11,27 dibandingkan menggunakan Ni/CaO-?-Al2O3. Produksi yield hidrogen dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru meningkat sebesar 4,56 dibandingkan dengan menggunakan Ni/CaO-?-Al2O3. Sehingga, core shell Ni/CaO-?-Al2O3@Ru lebih baik digunakan untuk produksi hidrogen dan mengurangi deposit karbon melalui reformasi kukus bio-oil dibandingkan dengan katalis Ni/CaO-?-Al2O3.

ABSTRACT
Biohydrogen production through bio oil steam reforming plays an important role in the development of renewable hydrogen from biomass to produce the cleanest fuel. However, the existence of coke and low carbon conversion are problems that have been found in some studies. The purposes of this study were to reduce coke formation and to enhance carbon conversion by using core shell. Core shell can improve surface area, support interaction and its catalytic activity. Ni CaO Al2O3 Ru core shell catalysts were prepared by CTAB n hexanol cyclohexane water micro emulsion system. The catalysts were characterized by means XRD, BET, FESEM EDS and TEM. Bio oil aqueous fraction was analyzed by using GC MS. Based on experiment, the highest hydrogen yield was produced by using Ni CaO Al2O3 Ru core shell was 16.34 in minute 10. The lowest coke deposit production by using Ni CaO Al2O3 Ru core shell was 0.1234 g. Gas product carbon conversion by using core shell Ni CaO Al2O3 Ru enhanced more 11.27 than using Ni CaO Al2O3. Hydrogen yield production by using Ni CaO Al2O3 Ru core shell enhanced more 4.56 than using Ni CaO Al2O3 catalyst. The result showed that the effect of Ni CaO Al2O3 Ru core shell was more efficient for hydrogen production and to decrease coke deposit through steam reforming bio oil compared to Ni CaO Al2O3 catalyst."
2017
T49740
UI - Tesis Membership  Universitas Indonesia Library
cover
"This research has the effort to develop catalyst for steam reforming of bio oil. The bio oil is liquid
product that iv produced _from biomass pyrolysis. The reforming of bio oil produces hydrogen gas. The main
challenge in reforming of organic compound especially aromatic, in bio oil as phenol, is carbon formation
at the catalyst surface resulted in uncomplete reaction. The catalyst formulation resulted is expected to have
high resistance to catalyst deactivation because of carbon formation. Beside that, it is expected too to have
high stability and activity, compared to commercial nickel based catalyst. For those purposes, research of
steam reforming of m-cresol in bench scale has been done. m-cresol is one of phenol compounds in bio oil,
that has stable properties, difficult to react and disturb the catalyst activity. The catalyst formulation used is
Ru-Ni/MgO.La;O3.Al2O3 mixture. This research has succeed to develop catalyst of reforming from Ni-Ru
metal combination that having the good stability and activity to reform m-cresol. The best catalyst
composition resulted is 2%Ru-15%Ni. In Ni and Ru catalyst combination, Ni catalyst is the mainly active
component in reforming of oxygenated aromatic compound in bio oil The Ru catalyst function is to increase
Ni metal dispersion on support, by then increasing the catalyst stability.
"
Jurnal Teknologi, Vol. 20 (3) Maret 2006 : 215-220, 2006
JUTE-20-3-Sep2006-215
Artikel Jurnal  Universitas Indonesia Library
cover
Alya Hafiza Vivadinar
"Pada penelitian ini, dilakukan analisis aspek teknis, lingkungan, dan ekonomi pada proses produksi Hydrogenated Vegetable Oil (HVO) dengan hidrogen dari Steam Methane Reforming (SMR), Gasifikasi Biomassa (BG), Elektrolisis dengan Pembangkit Listrik Panas Bumi (GEO-E), dan Elektrolisis dengan Pembangkit Listrik Panel Surya (PV-E). Tujuan dari penelitian ini adalah mendapatkan efisiensi energi, faktor emisi, serta biaya produksi HVO dari teknologi hidrogen yang berbeda-beda. Seluruh teknologi disimulasikan menggunakan Aspen PlusĀ® dengan fluid package Peng-Robinson. HVO diproduksi menggunakan dua reaktor, yaitu reaktor hydrotreating dan reaktor hidroisomerisasi dan menghasilkan tiga produk, yaitu HVO, green naphtha, dan bio-jet fuel. Proses produksi hidrogen menggunakan BG menggunakan bahan baku empty fruit bunch (EFB). Sedangkan pasokan listrik untuk elektrolisis didapat dari GEO-E dengan sitem kombinasi ORC dan Flash. Pasokan listrik untuk elektrolisis dengan PV-E dilengkapi dengan baterai. Analisis teknik dilakukan dengan menghitung efisiensi energi produksi HVO. Analisis ekonomi dilakukan dengan menghitung biaya produksi HVO dengan metode Levelised Cost of Energy (LCOE). Analisis lingkungan dilakukan dengan menghitung emisi CO2-e dengan metode Life Cycle Analysis. Hasil analisis memperlihatkan bahwa produksi HVO dengan efisiensi terbaik didapat dari hidrogen hasil SMR dengan efisiensi 55,67%, yang diikuti oleh BG (31,47%), PV-E (9,34%), dan GEO-E (7,89%). LCOE terendah juga masih membutuhkan produksi hidrogen dari SMR dengan LCOE sebesar $15,79/GJ-HVO, yang diikuti oleh BG ($16,37/GJ-HVO), GEO ($22,83/GJ-HVO), dan PV ($27,29/GJ-HVO). Akan tetapi, produksi HVO yang paling ramah lingkungan menggunakan GEO-E sebagai teknologi produksi hidrogen dengan faktor emsisi sebesar 1,63 kgCO2-e/kg HVO, yang diikuti oleh PV-E (1,86 kgCO2-e/kg HVO), SMR (5,57 kgCO2-e/kg HVO), dan BG (16,52 kgCO2-e/kg HVO).

Study is done from the perspective of technicality, environment, and economical for Hydrogenated Vegetable Oil (HVO) production with hydrogen from Steam Methane Reforming (SMR), Biomass Gasification (BG), Geothermal Electrolysis (GEO-E), and Solar Photovoltaic Electrolysis (PV-E). The purpose of this study is to evaluate the energy efficiency, emission factors, and cost production of HVO production from various hydrogen production technologies, mentioned above. Every production technology is simulated using Aspen PlusĀ® using the Peng-Robinson fluid package. HVO is produced by two reactors, which are hydrotreating reactor and hydroisomerisastion reactor. The process produces three main products, HVO, green naphtha, dan bio-jet fuel. Feedstock to produce hydrogen from BG is Empty Fruit Bunch (EFB). Electricity production via geothermal for electrolysis uses combination of Organic Rankine Cycle (ORC) and flash system. While the electricity produced using Solar Photovoltaic is equipped with battery. Technical analysis is done by calculating the energy efficiency from overall system energy flow. Production cost is calculated using the Levelised Cost of Energy (LCOE) to analyse the economical aspect. CO2-e emission is determined using the Life Cycle Analysis (LCA) method to analyse the environmental aspect. Study has shown that HVO production with SMR as the hydrogen production technology has the highest energy efficiency (55,67%), which then followed by BG (31,47%), PV-E (9,34%), and GEO-E (7,89%). The lowest LCOE can be obtained if the hydrogen is obtained from SMR aswell (15,78/GJ-HVO), which is followed by BG ($16,37/GJ-HVO), GEO ($22,83/GJ-HVO), and PV ($27,29/GJ-HVO). However, HVO production with the lowest emission factor is equipped with GEO-E (1,63 kgCO2-e/kg HVO), which followed by PV-E (1,86 kgCO2-e/kg HVO), SMR (5,57 kgCO2-e/kg HVO), and BG (16,52 kgCO2-e/kg HVO)."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Muhammad Ibadurrohman
"ABSTRACT
The purpose of this study is to develop a low cost, easy prepared, and environmentally friendly photocatalyst to produce hydrogen from aqueous methanol solution by combining catalytic reforming (metal based catalyst) and photocatalytic process (semiconductor based photocatalyst), at ambient condition under photon exposure. The effect of impregnated Cu and Ni (which are proven catalysts for thermal reforming) to TiO2 were investigated as well as the role/significance and behavior of methanol and water in photo-reforming process. As prepared Cu/TiO2 and Ni/TiO2 photocatalyst were characterized by ICP-AES, XRD, SEM, TEM, and UV-Vis DRS for better understanding of the photocatalytic reforming behavior. The optimum loadings of Cu and Ni into TiO2 surface were found to be 3% and 1% respectively. H2 generated from photoreforming of aqueous methanol solution (80% methanol v/v) over 3% Cu/TiO2 UV illumination was 4464.3 μmol.gcat 1.h-1, 5.5 times higher than unloaded TiO2 (803 μmol.gcat-1.h-1) while H2 yield over Ni/TiO2 wasfound to be 5200 μmol.gcat-1.h-1, 6.5 times higher compared to unloaded TiO2. In term of stability, Ni/TiO2 also shows superior performance compared to Cu/TiO2 and unloaded TiO2. Ni/TiO2 can still obtain final rate of 66% of its initial rate while only 42.4% was obtained for the case of Cu/TiO2, yet it is still slightly better than unloaded TiO2 (40.8%). Ni/TiO2 superiority in photocatalytic performance over Cu/TiO2 may be attributed to its higher work function which leads to higher electron trapping ability, better electron transfer from conduction band of TiO2 to metal site, and lower hydrogen overpotential. In order to investigate the role and significance of methanol and water on aqueous methanol photocatalytic reforming system, the methanol-water composition was varied during this particular study. The rates of hydrogen evolution displayed bell-shaped curves as a function of methanol volume fraction in the solution. The optimum hydrogen evolution rate was achieved in methanol volumetric ratio of 60-80%, in agreement with stoichiometric value of methanol:water mixture (1:1 molar ratio or 0.69:0.31 volumetric ratio). Both methanol and water show typical Freundlich adsorption behaviors. For solution containing 0-70% methanol, relationship between the hydrogen generation rate (v) and methanol content ([M]) is represented as v = 637.15[M]0.439. For solution containing 0-30% water, relationship between the hydrogen generation rate (v) and water content ([W]) is represented as v = 2594.1[W]0.161. This indicates that adsorption of water and methanol on the photocatalyst was a crucial part of the reaction mechanism.
"
2011
T48968
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
New York: The American Society of Mechanical Engineers, 1985
621.18 STE
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>