Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 135228 dokumen yang sesuai dengan query
cover
Annisaa Primadini
"Jaringan Saraf Tiruan adalah salah satu metode baru yang dikembangkan untuk pemecahan berbagai masalah kompleks yang tidak dapat diselesaikan secara analitik. Salah satu pengembangannya adalah metode jaringan saraf pembelajaran Radial Basis Function, dengan metode inisialisasi bobot Nguyen-Widrow dan Orthogonal Least Square (OLS). Akurasi dan kecepatan pembelajaran yang dimiliki oleh Radial Basis Function (RBF) sangat menarik untuk diaplikasikan pada sistem kendali. Pemodelan Forward dan Invers sistem dilakukan dengan metode RBF dengan mengambil data sistem SISO Pressure Process Rig. Setelah dilakukan pemodelan, jaringan saraf tiruan akan diuji dengan Direct Inverse Test. Hasil identifikasi sistem dan identifikasi invers pada sistem Pressure Process Rig memiliki hasil yang baik. Begitu pula saat diuji coba dengan Direct Inverse Test, sistem kendali mempunyai performa cukup baik, namun tidak menutup kemungkinan adanya skema model lain yang dapat digunakan dalam pemodelan sistem.

Artificial Neural Network is a newer field of study that could solve any complex problem that could not be done by analytical solution. Radial Basis Function (RBF) is one of the newer method of Artificial Neural Network with two distinct weight initialization method ; Nguyen-Widrow and Orthogonal Least Square (OLS) methods. RBF?s high recognition rate and very fast learning speed are interesting enough to be used in control system. RBF is used in forward and inverse identification in modelling Pressure Process Rig system. Direct Inverse Test is also done in order to make sure Radial Basis Function perform well in identifying a particular system. Radial Basis Function had a great perfomance in both forward and inverse system identification and also in Direct Inverse Test, but it is possible to have another learning scheme in system modelling.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andre Jatmiko Wijaya
"[ABSTRAK
Perkembangan teknologi yang semakin cepat menjadikan teknologi penting di berbagai sektor kehidupan, khususnya di bidang industri. Perkembangan zaman membuat tingkat permintaan akan suatu produk menjadi berubah sehingga industri harus meningkatkan kinerja produksinya.
Teknologi yang digunakan merupakan teknologi automasi di mana di dalamnya terdapat pengendali. Pengendali yang digunakan oleh kebanyakan industri merupakan pengendali konvensional karena pengendali konvensional relatif murah dan efektif. Akan tetapi pengendali konvensional ini tidak dapat digunakan untuk sistem yang kompleks dan non linear. Pengendali konvensional, misalnya pengendali PID, tidak dapat mengatasi terjadinya perubahan karakteristik dari sistem secara otomatis. Untuk itu diperlukan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis dan dapat beradaptasi dengan dinamika perubahan sistem yang diakibatkan adanya perubahan kondisi lingkungan kerja. Sistem pengendali yang dianggap mampu untuk beradaptasi dengan perubahan karakteristik dari sistem secara otomatis adalah pengendali berbasis Neural Network. Dalam percobaan ini parameter yang digunakan untuk menentukan pengendali yang baik adalah adaptivity serta kecepatan respon pengendali.
Pada hasil simulasi ini didapatkan bahwa pengendali berbasis Neural Network dengan metode Radial Basis Function Neural Network (RBFNN) lebih baik dan lebih cepat dalam menanggapi perubahan karakteristik sistem dibandingkan dengan pengendali Neural Network berbasis backpropagation.
ABSTRACT
Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity.
Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can?t be used for complex and non-linear system. For example, PID controller, it can?t handle the changes of system?s characteristic automatically. PID controller has to be reset to handle the new system?s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system?s characteristic automatically and adapt with the dynamics of system?s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system?s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response.
The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system?s characteristic than Backpropagation based Neural Network controller.;Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity.
Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can?t be used for complex and non-linear system. For example, PID controller, it can?t handle the changes of system?s characteristic automatically. PID controller has to be reset to handle the new system?s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system?s characteristic automatically and adapt with the dynamics of system?s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system?s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response.
The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system?s characteristic than Backpropagation based Neural Network controller., Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity.
Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can’t be used for complex and non-linear system. For example, PID controller, it can’t handle the changes of system’s characteristic automatically. PID controller has to be reset to handle the new system’s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system’s characteristic automatically and adapt with the dynamics of system’s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system’s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response.
The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system’s characteristic than Backpropagation based Neural Network controller.]"
Fakultas Teknik Universitas Indonesia, 2015
S61919
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ashari
"ABSTRACT
Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.

ABSTRACT
This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise."
2014
S57664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afif Widaryanto
"

Perkembangan kecerdasan buatan (artificial intelligence/AI) bergerak semakin cepat dan mengalami kemajuan pesat dalam setiap bidang kehidupan manusia, tak terkecuali dalam dunia kendali industri. Sementara kendali industri mensyaratkan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis serta dapat beradaptasi dengan dinamika perubahan sistem yang diakibatkan adanya perubahan kondisi lingkungan kerja. Pengendali berbasis kecerdasan buatan dianggap mampu untuk beradaptasi dengan perubahan karakteristik dari sistem secara otomatis adalah pengendali berbasis neural network. Dalam penelitian ini disajikan desain dan simulasi sistem pengendali berbasis neural network dengan metode pembelajaran back propagation yaitu pengendali inverse langsung(direct inverse control/DIC), pengendali neuron tunggal(single neuron controller), serta pengendali PID pada plant modul training pressure process rig(PPR 38-417). Untuk pengujiannya, didesain sistem identifikasi berbasis neural network sebagai simulator plant. Hasilnya, semua sistem kendali yang didesain tersebut mampu mengendalikan plant sesuai dengan sinyal referensi yang dinginkan. Namun pengendali single neuron dan PID mampu mempertahankan keluarannya dengan baik saat diberi gangguan pada sinyal kendali maupun plant dibandingkan dengan pengendali inverse langsung(ANN-DIC). Hal ini dikarenakan kendali single neuron dan PID bersifat close loop sehingga mampu mengkoreksi kesalahan secara langsung. Sementara jika dibandingkan dengan kendali PID, kendali single neuron lebih adaptif untuk berbagai kondisi gangguan karena memiliki metode pembelajaran langsung, sementara kendali PID perlu dilakukan tunning untuk mendapatkan unjuk kerja yang handal.


The development of artificial intelligence (AI) is moving faster and experiencing rapid progress in every area of human life, not least in the world of industrial control. While industrial control requires a control system that is able to overcome changes in characteristics automatically and can adapt to the dynamics of system changes caused by changes in working environment conditions. Artificial intelligence-based controllers are considered capable of adapting to changes in the characteristics of the system automatically is a neural network-based controller. In this study, the design and simulation of a neural network-based controller system with back propagation learning methods, namely direct inverse control (DIC) and single neuron controller, as well as PID controllers for the pressure process rig (PPR 38-417) training module. For the test, a neural network-based identification system is designed as a simulator plant. As a result, all the control systems designed are able to control the plant in accordance with the desired reference signal. However, single neuron and PID controllers are able to maintain their output well when given interference with the control signal or plant compared to the direct inverse controller (ANN-DIC). This is because single neuron control and PID are close loop so that they can correct errors directly. Meanwhile, when compared to PID control, single neuron control is more adaptive for a variety of disruption conditions because it has a direct learning method, while PID control needs to be tuned to get reliable performance.

"
2019
T53060
UI - Tesis Membership  Universitas Indonesia Library
cover
Yoan Elviralita
"Dalam beberapa tahun ini, telah banyak penelitian yang berhubungan dengan pengenalan pola dilakukan untuk mengindentifikasi berbagai macam bentuk pola. Tesis ini membahas pengembangan jaringan saraf tiruan fungsi basis radial fuzzy. Dalam penelitian ini dilakukan dua percobaan, yaitu jaringan saraf fungsi basis radial fuzzy menggunakan SOM dan jaringan saraf fungsi basis radial fuzzy tanpa SOM.
Hasil yang dicapai dari recognition rate menunjukkan jaringan saraf fungsi basis radial fuzzy menggunakan SOM memberikan performa yang baik. Jaringan saraf ini diharapkan dapat dikembangkan oleh peneliti-peneliti yang lain untuk kemajuan keilmuan dalam segala bidang.

In recent years, has been much research related to pattern recognition performed to identify various forms of patterns. This thesis discusses the development of artificial neural networks fuzzy radial basis functions. In this study conducted two experiments, namely radial basis function neural network fuzzy neural network using the SOM and fuzzy radial basis function without SOM.
The result of recognition rate shows the radial basis function neural networks using a fuzzy SOM gives a good performance. Neural network is expected to be developed by other researchers for the advancement of knowledge in all fields."
Depok: Universitas Indonesia, 2011
T29631
UI - Tesis Open  Universitas Indonesia Library
cover
Bayu Tri Iksani
Depok: Fakultas Teknik Universitas Indonesia, 1998
S39403
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadel Muhammad
"

Demam Berdarah Dengue (DBD) adalah salah satu masalah kesehatan masyarakat yang utama di Indonesia. Jumlah kasus DBD semakin bertambah seiring dengan laju pertumbuhan mobilitas dan populasi manusia. Radial basis function neural network (RBFNN) pada tugas akhir ini diimplementasikan untuk prediksi jumlah insiden mingguan DBD di DKI Jakarta. RBFNN adalah salah satu feed forward neural neworks yang hanya memiliki satu lapisan tersembunyi. Lapisan tersembunyi pada RBFNN dikonstruksi oleh sebuah fungsi aktivasi. K-means clustering digunakan untuk menunjang peforma dari RBFNN, yaitu untuk menentukan pusat dan lebar dari fungsi aktivasi yang digunakan. Performa dari RBFNN dilihat dari RMSE yang dihasilkan pada data training dan data testing. Dari implementasi yang dilakukan, dapat diperoleh bahwa pemilihan struktur atau model RBFNN sangat berpengaruh terhadap hasil prediksi yang diperoleh. Pada tugas akhir ini, RBFNN mampu memprediksi insiden mingguan DBD di DKI Jakarta dengan cukup baik tetapi RBFNN belum dapat menjakau data yang melonjak tinggi pada data testing.


Dengue Hemorrhagic Fever (DHF) is one of the main public health problems in Indonesia. The number of DHF cases and the spread of this disease is increasing along with mobility and population density. Radial basis function neural network (RBFNN) in this final project is implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN in this final project was implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN is a feed forward neural network model that has a single hidden layer. The hidden layer of RBFNN is constructed by an activation function. K-means clustering algorithm is used to improve the performance of RBFNN to determine the center and width of the activation function. The performance of RBFNN can be seen from the RMSE generated in the training data and testing data. From the implementation, it can be obtained that the choice of RBFNN structure or model is very influential on the predicted results obtained. In this final project, RBFNN is able to predict the weekly incidence of DHF in DKI Jakarta quite well but RBFNN has not been able to predict well the data that soared in the testing data.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1998
S39384
UI - Skripsi Membership  Universitas Indonesia Library
cover
"[Kondisi chaotic merupakan kondisi dimana sistem selalu berkembang. Prediksi dari sistem yang memiliki kondisi chaotic sangat penting untuk menentukan keputusan yang akan diambil. Dalam skripsi ini dibahas mengenai prediksi dari Lorenz’s Chaotic System, dimana prediksi yang dilakukan menggunakan jaringan saraf tiruan Radial Basis Function Extreme Learning Machine. Jaringan saraf tiruan dipilih karena kemampuannya untuk dapat beradaptasi dengan sistem sehingga diharapkan dapat melakukan prediksi dengan baik. Hasil penelitian ini menunjukkan bahwa jaringan saraf tiruan Radial Basis Function Extreme Learning Machine dapat melakukan prediksi dengan baik yaitu dengan waktu pembelajaran yang sangat cepat dan tingkat akurasi yang tinggi., Chaotic condition is a condition where the system is always evolving. Prediction of the system that has chaotic condition is very important for determining the decisions to be taken. In this thesis discussed about the prediction of Lorenz's Chaotic System, where the predictions are made using Radial Basis Function Extreme Learning Machine neural network. Artificial neural network is chosen for its ability to be able to adapt to a system that is expected to do well prediction. The results of this study indicate that the Radial Basis Function Extreme Learning Machine neural network can perform good prediction with very fast learning time and high accuracy.]"
Fakultas Teknik Universitas Indonesia, 2014
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Faqih
"ABSTRAK
Pada masa sekarang ini, teknologi semakin berkembang dan terus berkembang dengan cepat. Terutama kebutuhan adanya teknologi prediksi yang memerlukan pengembangan lebih dalam lagi sehingga dapat menghasilkan teknologi yang dapat memprediksi masa depan Multi-Step Ahead MSA secara lebih akurat. Salah satunya untuk teknologi prediksi peramalan cuaca sistem Chaos yang dapat membantu masyarakat dalam mempersiapkan aktifitas yang akan dilakukan. Penelitian ini melakukan simulasi percobaan penerapan Jaringan Saraf Tiruan berbasis Radial Basis Function RBF pada sistem prediksi data Chaos, data Lorenz dan data Mackey-Glass. Berdasarkan hasil percobaan dapat dilihat dari nilai bahwa penerapan jaringan saraf tiruan berbasis Radial Basis Function RBF memiliki tingkat keakuratan yang baik untuk memprediksi lebih dari 100 langkah kedepan.

ABSTRACT
Recently, technologies have been growing and growing fast. Especially, the need of prediction technology that need to be developed more so that it could create a technology that is capable to predict the future Multi Step Ahead MSA more accurate. One of the applied field of this prediction method is for forecasting Chaotic System which help the society in order to prepare their activity that will be scheduled. This research performs simulation experiments in applying the Artificial Neural Network based on Radial Basis Function RBF of prediction system for chaotic data, Mackey Glass equation and Lorenz rsquo s system. As can be seen from the values of the experimental results, applying Artificial Neural Network based on Radial Basis Function results high accuracy for predicting more than 100 steps ahead. "
2018
T51190
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>