Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 83218 dokumen yang sesuai dengan query
cover
Silaban, Crisman Wise Patuan
"ABSTRAK
Sistem Monitoring Gelombang Otak adalah salah satu sistem untuk memantau kondisi otak seseorang dengan memanfaatkan metode Neuro Imaging, yaitu EEG.Sistem ini memantau tingkat kesadaran pada manusia berdasarkan gelombang otaknya, seperti pada saat tertidur orang akan cenderung menghasilkan lebih banyak gelombang Delta. Sistem Monitoring Gelombang Otak mampu mengukur perubahan tingkat kesadaran berdasarkan gelombang otak yang diperoleh, yaitu pada saat tidur dihasilkan lebih banyak gelombang delta (19-20 gelombang delta) jika dibandingkan pada saat sadar (13 gelombang delta) dalam waktu 3 menit . Sistem monitoring ini diharapkan mampu untuk memantau kondisi kesadaran pada orang yang mengalami koma berdasarkan gelombang otak delta yang direkam.

ABSTRACT
Brain Wave Monitoring System is a system for monitoring the condition of a person's brain by utilizing the method of Neuro Imaging, which is EEG.Sistem monitor the level of consciousness in humans by brain waves, such as when asleep people will tend to result in more waves of Delta. Brain Wave Monitoring System is capable of measuring changes in the level of consciousness by brain waves are obtained, which at the time generated more sleep delta waves (delta waves 19-20) when compared at the time aware (13 delta waves) within 3 minutes. The monitoring system is expected to be able to monitor the state of consciousness in people who fell into a coma by delta brain waves are recorded."
Fakultas Teknik Universitas Indonesia, 2014
S56337
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tsalsabilla Winny Junika
"ABSTRAK

Untuk menunjang pemantauan konsentrasi manusia, perlu adanya pemahaman mengenai respon sinyal dari EEG terhadap dua kondisi manusia ya itu saat sedang konsentrasi penuh dan konsentrasi tidak penuh (adanya distraksi). Dalam mengolah data sinyal EEG tersebut, dibutuhkan metode algoritma dan klasifikasi sinyal untuk mendapatkan hasil data sinyal dari dua kondisi tersebut. Pada penelitian ini akan dijelaskan tentang sistem perancangan pendeteksian konsentrasi manusia berdasarkan sinyal EEG. Metode yang digunakan adalah Fast Fourier Transform (FFT) dan Discrete Wavelet Transform (DWT) sedangkan dalam algoritma klasifikasinya menggunakan Support Vector Machine (SVM). Hasil yang telah didapatkan dalam pengujian ini adalah SVM lebih mampu untuk mengklasifikasikan sistem dengan kernel RBF menggunakan 30% holdout validation. Keakurasian dari sistem ini adalah 91% pada metode DWT dan 72% pada metode FFT. Sehingga, dari kedua ekstraksi metode FFT dan DWT, yang memiliki nilai ekstraksi terbaik adalah DWT.


ABSTRACT
To support the monitoring focused human concentration, there is a need to understand the response of signals from EEG in two conditions which are when human is in full concentration and less concentration (presence of distraction).  To process those EEG signal data, an algorithm method and classification is needed to get the results of signal data from these two conditions In this research, the system of detecting design of human concentration levels based on EEG signals will be explained. The used methods are Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) while the classification algorithm uses Support Vector Machine (SVM).  The result of this research shows that by using SVM, a much more reliable result is achieved when a kernel RBF is used with 30% holdout validation. The result of the aforementioned method yields a 91% accuracy with DWT method and a 72% accuracy with FFT. 

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Aldiya Yusuf
"ABSTRAK
Isu kesehatan mental merupakan sebuah isu yang sangat berkembang pesat pada masa ini. Remaja dan dewasa muda pada usia 16 hingga 30 tahun adalah korban utama yang menjadi penderita penyakit mentalitas. Isu kesehatan mental merupakan isu yang cukup serius dalam bidang medis dan social. Salah satu penyebab dari penyakit pada mentalitas manusia adalah kurangnya kemawasan diri, yang merupakan salah satu kunci dalam menjaga kestabilan mental pada diri seseorang. Sinyal otak merupakan suatu sinyal yang diduga mampu mendekteksi aktifitas otak manusia, dan dari sinyal tersebut, kita mampu membuat suatu sistem klasifikasi kondisi emosional manusia. Pada penelitian ini, EEG Neurostyle dengan 24 kanal digunakan untuk menangkap sinyal kelistrikan dari otak manusia. Metodenya meliputi reaksi seorang subjek terhadap stimulus berupa audio-visual yang berdurasi kurang lebih 5 menit. Subjek terdiri dari 10 orang manusia berumur 18 hingga 22 tahun, dimana tiap subjek menonton sebuah video pada lingkungan yang sama. Ekspresi mimik wajah akan direkam menggunakan kamera sebagai referensi dan konfirmasi agar sesuai dengan emosi yang dideskripsikan oleh subjek. Fitur emosi berupa RPR kemudian diambil untuk kemudian dimasukan kedalam algoritme classifier. Emosi dibagi berdasarkan 4 jenis yaitu: senang, sedih, takut, dan jijik Menggunakan Supervised Machine Learning, kita dapat menggunakan fitur fitur tersebut untuk klasifikasi. Menggunakan k-NN, didapat akurasi diatas 70% dengan menggunakan 4 kelas.

ABSTRACT
Mental health issues are growing rapidly in these recent years. Teenagers and young adult on age 16-30 years old are the most common victims. Mental health is a really serious issue concerning emotional health. One of the causes on emotional health issues is a lack of self-awareness, which is the key cornerstone on maintaining emotional-state. Brain signals has proven that it can read human emotion, and from there we can use brain waves to classify human emotional-state. In this research study, EEG Neurostyle of 24 channels is used to obtain brain electrical signals. The method involves the subject reaction to a set of audio-visual stimuli of approximately 5 minutes, the subject consists of 10 subjects aged 18-22, with each person watched the video-clips in the same environment. The expressions of the subjects were recorded separately to ensure their emotion accordance with the source (i.e. sad clips resulting sad emotion). Then its feature were extracted. The feature were used to classify the emotion into 4 classes: happy, sad, scared, and disgust. Using Supervised Machine Learning Method, we can use these features to identify a new sample to predict which class it belongs to. Using k-NN algorithm as classifier, an accuracy greater than 70% is obtained with 4 classes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dessy Ana Laila Sari
"ABSTRAK
Klasifikasi emosi manusia merupakan salah satu topik hangat yang dapat dimanfaatkan dalam berbagai bidang, baik medis maupun militer. Emosi manusia sendiri dapat diklasifikasi dengan berbagai metode, salah satunya adalah Machine Learning (ML). Machine learning merupakan proses pembelajaran computer untuk menyelesaikan task tertentu, dengan menggunakan metode ini hasil yang didapatkan akan lebih akurat dan konstan. Dalam tesis ini akan dikembangkan sistem klasifikasi emosi manusia berdasarkan sinyal EEG dari DEAP yang berbasis ML dengan berbagai studi metode ML, seperti Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) hingga Random Forest (RF). Sistem klasifikasi kemudian akan dikembangkan kembali menggunakan metode Convolutional Neural Network (CNN). Dari penelitian ini didapatkan bahwa nilai recognition rate yang dihasilkan hanya berkisar 50% dengan nilai maksimal 62%. Sistem juga diberikan feature selection layer untuk memaksimalkan recognition rate, namun penambahan ini tidak memberikan hasil yang signifikan. Dengan demikian recognition rate pada sistem klasifikasi menggunakan sinyal EEG sangat bergantung pada pemrosesan sinyal raw.

ABSTRACT
The classification of human emotions is a hot topic that can be utilized in various fields, both medical and military. Human emotions themselves can be classified by various methods, one of which is Machine Learning (ML). Machine learning is a process of learning computers to complete certain tasks, using this method the results obtained will be more accurate and constant. In this thesis a human emotion classification system will be developed based on EEG signals from DEAP dataset using various ML method studies, such as Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) to Random Forest (RF). The classification system will be developed again using the Convolutional Neural Network (CNN) method. From this study it was found that the value of the recognition rate produced is only around 50% with a maximum value of 62%. The system is also given a feature selection layer to maximize recognition rate, but this addition does not provide significant results. Thus the recognition rate in the classification system using EEG signals is very dependent on raw signal processing.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Henry Hendarwin
"Sistem akuisisi data Electroencephalography (EEG) telah dikembangkan. menggunakan Analog Front End (AFE) ADS1299 EEGFE-PDK berbasis Raspberry Pi. Sistem ini merupakan kelanjutan dari sistem yang dikembangkan sebelumnya, dengan menambahkan fitur Relative Power Ratio (RPR), komunikasi Local Area Networking (LAN) dan GUI (Graphical User Interface). Fitur RPR perlu dipahami Karakteristik sinyal EEG. ADS 1299 memiliki beberapa keunggulan diantaranya Akuisisi data secara simultan, resolusi 24 bit, membutuhkan daya <0,2 mW dan noise <1 μV. Sistem akuisisi data ini terdiri dari 4 unit AFE yang dikonfigurasi secara daisy rantai. Komunikasi antara AFE dan Raspberry Pi menggunakan periferal serial antarmuka (SPI) dengan format RDATA. Bahasa pemrograman C digunakan untuk komunikasi antara Raspberry dengan AFE dan Matlab digunakan untuk pemrosesan sinyal. Data dari Raspberry ditransfer melalui LAN ke Personal Computer (PC). Kemudian disaring menggunakan Butterworth order 5. Data EEG dan perhitungan RPR ditampilkan secara real-time. Perhitungan dilakukan dengan Fast Fourier Transforms (FFT) dan Power Spectral Density (PSD). Sistem ini telah dievaluasi dengan menggunakan simulator EEG (NETECH Mini-Sim EEG) yang menghasilkan sinyal listrik sinusoidal dengan frekuensi 2 Hz, 5 Hz, dan amplitudo tegangan 30, 50 μV. Dengan perbandingan rata-rata FWHM (Full Width at Half Maximum) didapatkan untuk frekuensi 2Hz di sistem akuisisi tersebut memperoleh nilai 4 Hz, dan dalam Neurostyle 4 Hz. Di frekuensi 5 Hz, rata-rata nilai FWHM yang diperoleh untuk sistem akuisisi yang dibuat adalah 13 Hz dan Neurostyle pada 14 Hz.

The systems have been developed to obtain Electroencephalography (EEG) data using the Raspberry Pi based Analog Front End (AFE) ADS1299 EEGFE-PDK. This system is a continuation of a previously developed system, supported by Relative Power Ratio (RPR) features, Local Area Networking (LAN) and GUI (Graphical User Interface) features. EPR. ADS 1299 has several advantages that can be taken from simultaneous data, 24 bit resolution, requires power <0.2 mW and noise <1 μV. This data acquisition system consists of 4 AFE units completed by daisy chains. Communication between AFE and Raspberry Pi uses a serial peripheral interface (SPI) with RDATA format. C programming language is used for communication between Raspberries and AFE and MATLAB is used for signal implementation. Data from Raspberry is transferred via LAN to Personal Computer (PC). Then filtered using Butterworth order 5. EEG data and realtime calculations. The calculations are carried out by Fast Fourier Transforms (FFT) and Power Spectral Density (PSD). This system has been evaluated using an EEG simulator (NETECH Mini-Sim EEG) which produces sinusoidal electrical signals with a frequency of 2 Hz, 5 Hz, and a amplitude of 30, 50 μV. With the average change in FWHM (Full Width at Half Maximum) obtained for the 2Hz frequency in the acquisition system a value of 4 Hz is obtained, and in Neurostyle it is 4 Hz. At a frequency of 5 Hz, the average FWHM value obtained for the acquisition system is 13 Hz and Neurostyle is 14 Hz."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendra Saputra Gani
"Telah dibuat sistem akuisisi data EEG 16 kanal menggunakan ADS1299FE Texas Instrument, USA berbasis FPGA Zedboard Diligent,USA . EEG merupakan suatu divais yang digunakan untuk mengukur aktivitas kelistrikan pada permukaan kepala yang dikenal sebagai sinyal EEG. Sinyal EEG memiliki beda potensial 0.5-100 V dengan frekuensi 0.5 ndash; 40 Hz. Sistem akuisisi data EEG ini terdiri atas 2 buah chip ADS1299 yang terhubung secara Daisy-Chain yang diproses menggunakan FPGA Zedboard. Rancangan sistem akuisisi ini dapat dikonfigurasi ulang baik gain dan data ratenya. Pengaturan ulangini dapat dilakukan melalui program terminal pada komputer maupun dengan menggunakan perangkat lunak yang didisain khusus untuk sistem ini. Perangkat lunak tersebut dapat merekam dan menampilkan data hasil akuisisi secara real time. Validasi sistem akuisisi data EEG ini telah diuji menggunakan EEG Simulator NETECH Mini-Sim EEG , pengujian dilakukan pada frekuensi 2Hz dan 5Hz dengan rentang amplitudo 10 V, 30 V , 50 V dan 100 V. Hasil uji validasi pada frekuensi 2Hz diperoleh hasil pengukuran dengan maksimal deviasi 1.3 dan pada frekuensi 5Hz diperoleh hasil pengukuran dengan maksimal deviasi 1.8.

Has been developed Electroencepharography EEG data acquisition system base on FPGA Zedboard Diligent, USA usin ADS1299FE Texas Instrument, USA . EEG is a device used to measure the electrical activities on the scalp. The voltage range of EEG signal are around 0.5 100 V with frequency 0.5 ndash 40 Hz. This data acquisition system consisted of 2 chips ADS1299 which were connected in Daisy Chain mode and processes using Zedboard. This acquisition system can be reconfigured both its gain and data rate. This configuration could modified both using terminal program or software specially design respectively. The feature of this software are data recording and display the EEG signal graphically in real time. The recorded EEG signal were validated using EEG Simulator NETECH Mini Sim EEG with frequency 2Hz and 5Hz and voltage test in 10 V, 30 V, 50 V and 100 V. The result of the validation test at 2Hz obtained measurement result with a maximum deviation of 1.3 and at a frequency of 5Hz obtained measurement result with a maximum deviation of 1.8 ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T46854
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizki Arif
"Dalam penelitian ini, telah dibuat sebuah sistem akuisisi data 32-channel berbasis Field Programmable Gate Array FPGA untuk mengakuisisi dan memroses sinyal Electroencephalography EEG . Sistem akuisisi data yang dibangun menggunakan board PYNQZ1, dengan Xilinx ZYNQ XC7Z20-1CLG400C All Programmable System-on-Chip APSoCs yang dapat memberikan sebuah sistem tertanam dengan performa tinggi, karena memiliki kombinasi antara fleksibilitas serta versatility dari programmable logic PL dengan prosesor embedded atau programmable system PS dengan kecepatan tinggi. Sebagai pusat dari sistem akuisisi data yang dibangun, FPGA menerima, memproses, dan menyimpan data dari Front-End Analog to Digital Converter ADC ADS1299EEG-FE. Komunikasi data yang digunakan dalam sistem akuisisi data yang dibangun adalah Serial Peripheral Interface SPI dengan konfigurasi daisy-chain. Untuk bagian pemrosesan sinyal, penulis mengimplementasikan filter bandpass Butterworth dengan orde 5 dan Fast Fourier Transform FFT pada overlay dari PYNQ-Z1. Overlay merupakan desain FPGA yang dapat dikonfigurasi sehingga menghubungkan PS pada ZYNQ dengan PL, memberikan penulis kemampuan untuk mengendalikan secara langsung platform hardware memanfaatkan Python pada PS. Rerata dari error akurasi yang didapatkan dari hasil validasi adalah 1.34 dan kriteria performa Total Harmonic Distortion THD menghasilkan 0.0091 , dengan memanfaatkan NETECH MiniSIM EEG Simulator 330. Perbandingan dari sistem akuisisi data dengan Neurostyle NS-EEG-D1 System yang mengambil data EEG yang sama menghasilkan parameter korelasi gradien dengan 0.9818, y-intercept dengan -0.1803, dan R2 dengan 0.9742 berdasarkan analisis least square. Parameter tersebut memperlihatkan sistem akusisi data yang telah dibangun cukup, jika tidak setara, dengan sistem akuisisi data komersil dengan standar medis, yaitu Neurostyle NS-EEG-D1 System, karena dapat memastikan dan mempertahankan akurasi dengan konfigurasi frekuensi sampling yang lebih tinggi.

This study proposes a novel Field Programmable Gate Array FPGA based 32 channel data acquisition system to acquire and process Electroencephalography EEG signal. The data acquisition system is utilizing PYNQ Z1 board, which is equipped with a Xilinx ZYNQ XC7Z020 1CLG400C All Programmable SoC APSoCs that can offer high performance embedded system because of the combination between the flexibility and versatility of the programmable logic PL and the high speed embedded processor or programmable system PS . As the core of the data acquisition system, the FPGA collect, process, and store the data based on Front End Analog to Digital Converter ADC ADS1299EEG FE. The communication protocol used in the data acquisition system is Serial Peripheral Interface SPI with daisy chain configuration. For the signal processing part, we implement a 5th order Butterworth bandpass filter and Fast Fourier Transform FFT directly on the PYNQ Z1 rsquo s overlay. The overlay are configurable FPGA design that extend the system from the PS of the ZYNQ to the PL, enabling us to control directly the hardware platform using Python running in the PS. The mean accuracy error obtained from validation result of the developed system is 1.34 and the Total Harmonic Distortion THD performance criterion resulting in 0.0091 , both of them validated with NETECH MiniSIM EEG Simulator 330. The comparison between the developed system with Neurostyle NS EEG D1 System acquiring the same EEG data shows correlation parameter gradient of 0.9818, y intercept with 0.1803, and R2 of 0.9742 based on the least square analysis. The parameter above indicates that the developed system is adequate enough, if not on a par, with the commercialized, medical grade EEG data acquisition system Neurostyle NS EEG D1 as it can assure and maintain accuracy with higher sampling frequency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Permana
"Brain Computer Interface (BCI) merupakan sebuah teknologi yang sedang banyak dikembangkan di banyak negara di dunia, pasalnya teknologi BCI ini adalah teknologi yang modern dimana teknlogi ini dapat memungkinkan manusia dapat berkomunikasi dengan suatu sistem. Sampai sekarang BCI banyak dikembangkan pada dunia medis, salah satunya adalah stroke, stroke adalah sebuah penyakit yang diakibatkan oleh penguumpalan darah pada pembuluh darah diotak ataupun akibat pecahnya pembuluh datah diotak. Stroke mengakibatkan kelumpuhan pada bagian tubuh penderitanya, sehingga membuat ketebatasan pada mobilitasnya. Sehingga melalui penelitian ini diharapkan dapat membantu pasien stroke dalam mobilitiasnya. Pada pembuatan sistem sebelumnya dilakukan pengklasifikasian sinyal otak dengan cara perekaman sinyal EEG dengan menggunakan ADS1299EEG-FE, perekaman ini dilakukan dengan metode motor imagery sehingga subjek tidak perlu melakukan pergerakan cukup melakukan pemikiran pergerakan motorik untuk dapat menjalankan kursi roda. Pengklasifikasian sistem ini menggunakan fitur RPR yaitu nilai rasio power, setelah dilakukan klasifikasi dilakukanlah validasi sistem dengan melakukan pengujian lasngung pada sistem. Pada pengujian sistem terdapat 2 model pengujian yakni Diam – Maju – Mundur dan Diam – Kiri – kanan dengan presentase keberhasilan 46% dan 65%.

Brain Computer Interface (BCI) is a technology that is being developed in many countries in the world, because this BCI technology is a modern technology where technology can enable communicate human with a system. BCI has been widely developed in the medical, one of them is stroke, stroke is a disease caused by blood clots in blood vessels in the brain or due to ruptured brained vessels. Stroke results in paralysis of the part of the body of the sufferer, making it difficult for mobility. So that this research is expected to help stroke patients in their mobility. For making the system previously we classification the brain signals by recording EEG signals using ADS1299EEG-FE, this recording using the motor imagery method so that the subject did not need to move and just thinking about motor movements to control a wheelchair. The classification of this system uses the RPR feature, namely the value of the power ratio, after classification the system validation is done by direct testing on the system. In the system testing there are 2 test models namely Stop - Forward - Backward and Stop - Left - right with a success percentage 46% and 65%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Spirer, Herbert F.
Bandung: ITB Press, 1997
323.4 SPI d
Buku Teks SO  Universitas Indonesia Library
cover
Reza Hadi Saputra
"IT Risk Management merupakan suatu metodologi yang digunakan suatu perusahaan/ organisasi untuk dapat membantu mengatur resiko dari semua divais dan infrastruktur IT yang dimilikinya. Dengan IT Risk Management yang baik, maka perusahaan/ organisasi dapat mengatur seluruh aset IT yang dimiliki sehingga dapat membantu meningkatkan produktifitas perusahaan/ organisasi tersebut. IT Risk Management terdiri atas tiga tahapan, yaitu risk assessment, risk mitigation serta evaluation dan assessment. Pada setiap tahapan tersebut akan diperoleh output tertentu yang berupa report mengenai perusahaan/ organisasi. Untuk membantu dalam implementasi IT Risk Management, dibutuhkan Intrusion Detection System (IDS) yang akan memberikan report mengenai kondisi jaringan suatu perusahaan/ organisasi, meliputi pelaporan apabila terjadi gangguan serta tindakan yang akan dilakukan terhadap gangguan tersebut.
Pada skripsi ini dibuat suatu perancangan aplikasi berbasis web yang digunakan untuk perhitungan risk level (tingkat resiko) dalam suatu LAN pada tahapan risk assessment. Aplikasi tersebut digunakan untuk menghitung nilai risk level untuk setiap ancaman (threat) yang terdeteksi oleh IDS untuk suatu pilihan waktu yang dimasukkan oleh user. Aspek keamanan jaringan untuk suatu LAN merupakan hal yang sangat penting, terutama apabila di dalam LAN tersebut terdapat komputer yang didalamnya terdapat data yang sangat penting dan pada jaringan yang sama dengan komputer tersebut, terdapat komputer-komputer lain yang dipakai oleh banyak orang. Ancaman terhadap data pada komputer tersebut tidak hanya dapat berasal dari internet, tetapi juga dapat berasal dari computer-komputer dalam LAN. Oleh karena itu, dengan adanya aplikasi ini diharapkan apabila muncul suatu serangan terhadap suatu komputer yang berasal dari komputer lain pada LAN yang sama, serangan tersebut dapat terdeteksi sehingga tindakan perlindungan data dapat dilakukan.
Pada bagian akhir dari skripsi ini, sistem tersebut diujicoba pada LAN suatu perusahaan, untuk selanjutnya dilakukan suatu ujicoba serangan. Ada tiga tahapan ujicoba dengan setiap tahapan dilihat nilai Risk Level yang dihasilkan sistem. Pada tahap pertama, yaitu pencarian IP Address pada suatu LAN, menghasilkan nilai kuantitatif Risk Level sebesar 4 (Low Risk Level). Pada skenario ujicoba tahap 2, yaitu pencarian informasi meliputi port dan nama komputer untuk suatu komputer, menghasilkan nilai kuantitatif Risk Level sebesar 232 (High Risk Level). Pada skenario ujicoba tahap 3, yaitu pengambilalihan suatu computer target, menghasilkan nilai kuantitatif Risk Level sebesar 232 (High Risk Level).

IT Risk Management is a methodology used by a company / organization that can help them to manage risk from all devices and IT infrastructure assets. With the good IT Risk Management, the company / organization can manage all IT assets owned so can help them to increase the productivity of the company / organization. IT Risk Management consists of three phases, namely risk assessment, risk mitigation and the evaluation and assessment. At each stage, there are an output in the form of a report to the company / organization. To assist in the implementation of IT Risk Management, Intrusion Detection System (IDS) is required, to provide a report on the condition of the network of a company / organization, including reporting of when an interruption occurs and the action will be taken.
In this thesis, a web-based application is designed, that is used to calculate the risk level in a LAN on the risk assessment stage. That application is used to calculate the value of the risk level for each threat detected by the IDS for a selection entered by the user. Aspects of network security for a LAN is very important, especially where in the LAN there are computers that contains a very important data and at the same with computers, there are computers that are used by many people. Threats to the data on the computers not only can come from the internet, but can also come from computers in the LAN. Therefore, this application is expected to appear when an attack against a computer that came from another computer on the same LAN, the attack can be detected so that the data protection act can be done.
At the end of this thesis, the system is tested on a corporate LAN, to be a trial of attacks. There are three stages of testing with each of the stages seen the value of the resulting Risk Level system. In the first stage, the IP Address is searched on a LAN, the quantitative value of Risk Level is 4 (Low Risk Level). In the phase 2 trial scenario, the search information includes the port and the name of the computer to a computer, the quantitative value of Risk Level is 232 (High Risk Level). In the phase 3 trial scenario, the takeovers process of a target computer, the quantitative value of Risk Level is 232(High Risk Level).
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51406
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>