Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27953 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 2006
TA1472
UI - Tugas Akhir  Universitas Indonesia Library
cover
Andrey Sapati Wirya
"ABSTRAK
Penelitian ini bertujuan untuk memperoleh model hydrocracking dalam trickle bed reactor untuk produksi green fuel menggunakan katalis Ni-W berpenyangga silika alumina, mendapatkan ukuran reaktor trickle bed untuk perpindahan panas yang baik dan mencari kondisi optimum untuk tingkat kemurnian tinggi. Penelitian diawali dengan studi pustaka tentang green fuel, kinetika hydrocracking, trickle bed reactor dan pemodelan. Kemudian model ditentukan dan dikembangkan untuk dilakukan simulasi serta diverifikasi untuk menguji konvergensi. Hasil simulasi dianalisis secara teknis untuk mendapatkan kondisi optimum dengan kemurnian yang tinggi. Dari hasil simulasi didapatkan bahwa kemurnian produk diesel mencapai 44,22 pada temperatur 420 0C. Produk kerosin dapat mencapai kemurnian sebesar 21,39 pada temperatur 500 0C. Produk nafta dapat mencapai kemurnian sebesar 25,30 pada temperatur 500 0C.
hr>
ABSTRAK
The purposes of this research are to get hydrocracking model in trickle bed reactor to produce green fuel using Ni W supported alumina silica catalyst, to determine the size of trickle bed reactor which provide good heat transfer, and to get optimum condition for high purity product. The research is initiated by literature study of green fuel, hydrocracking kinetics, trickle bed reactor, and basic of modeling. The model is determined and developed to perform simulation under different conditions. Model is verified to check the convergence. Simulation results are analyzed technically to achieve optimum condition with high product purity. Simulation results show that the diesel product purity is 44.22 at 420 0C. The Kerosene product could achieve purity of 21.39 at 500 0C. The naphta product could achieve purity of 25.30 at 500 0C."
2017
S68050
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1999
S49196
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yogi Ikhwan
"Salah satu produk oleokimia yang cukup menarik untuk dikaji adalah pelumas deep drawing. Deep drawing adalah proses pengerjaan logam yang digunakan untuk membentuk lembaran datar menjadi bentuk mangkuk (cup) tanpa kerut ataupun robek.
Pelumas deep drawing berperan penting dalam mendinginkan dies dan blank, memberikan pelumasan batas, mencegah adhesi (welding), dan memberikan efek bantalan kepada dies selama proses drawing, menghasilkan cup dengan kedalaman yang memadai serta sisa pelumas mudah untuk dibersihkan. Berdasarkan penelitian yang telah dilakukan, minyak jarak (castor oil) beserta senyawa turunannya dapat digunakan sebagai bahan baku pelurnas mengingat kemampuan pelumasan minyak jarak yang baik dalam suhu tinggi serta komposisi asam iemak ya.ng dikandungnya.
Minyak jarak yang digunakan pihak industri sebagai pelumas memiliki kelemahan antara lain kurang tahan terhadap oksidasi serta sisa pelumas yang sukar menguap cenderung mengotori cup. Untuk mengurangi beberapa kelemahan dari jarak digunakanlah senyawa turunannya pelumas.
Tujuan dari penelitian ini adalah menguji kemampuan beberapa senyawa tumnan minyak jarak pada proses deep drawing lembaran kuningan, dan membandingkannya dengan BIMOLI yang digunakan di industri.
Penelitian dilakukan dengan melakukan percobaan analisa sifat iisikokirnia yang meliputi viskositas kinematik, bilangan asam, bilangan penyabunan, bilangan iod, kandungan abu dan berat jenis serta uji deep drawing, yang mcliputi beban drawing, earjng dan kedalaman cup.
Dari semua percobaan yang dilakukan didapatkan hasil yang menggambarkan bahwa semua campuran CASTOR OIL dan turunannya sccara umum mcnunjukkan performa yang lebih baik dibandingkan dengan BIMOLI dan turunannya yang merupakan pembanding. Sementara minyak mineral HVI 60 dengan viscositas 25,26 cSl selalu mengghasilkan performa yang buruk pada semua kondisi deep drawing dibawah BIMOLI, CASTOR OIL dan senyawa turunannya."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49510
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuliarti Rahayu Ningsih
"Penelitian ini melakukan studi pemanfaatan minyak sawit termodifikasi sulfur sebagai minyak dasar broaching oil untuk logam steel dengan viskositas max 86 cSt. Bahan baku adalah minyak sawit termodifikasi melalui proses sulfurisasi non katalis, suhu 150-160 oC selama 3 jam. Sulfur yang digunakan adalah elemental sulfur. Broaching oil disintesis dengan cara mencampur minyak dasar dan paket aditif.
Dari studi diketahui bahwa FAME termodifikasi sulfur meghasilkan sifat extreme pressure yang handal. Formulasi optimum diperoleh pada komposisi FAME termodifikasi sulfur-minyak mineral berkadar sulfur 6% w/w. Hasil uji viskositas 25,3 cSt (40 oC), load carrying capacity 400 kgf, scar diameter 0,407 mm, tingkat proteksi korosi kelas 1.b, dan kekasaran permukaan benda kerja 0,0418-0,0579 μm.

This research studies the utilization of sulfurized palm oil as base oil for broaching process with maximum viscosity 86 cSt. The raw material are modified palm olein via non-catalytic sulfurization, temperature of 150-160 oC for 3 hours. The sulfur from elemental sulfur. Broaching oil made by blending the base oil and additive packages.
From this study it was found that sulfurized FAME will generate excelent extreme pressure properties. The optimum formulation obtained on composition of sulfurized FAME-mineral oil with 6% w/w of sulfur. Result of viscosity are 25,3 cSt (40 oC), load carrying capacity 400 kgf, scar diameter 0,407 mm, class of corrosion protection 1.b, and the surface roughness of workpiece are 0,0418-0,0579 μm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45579
UI - Tesis Membership  Universitas Indonesia Library
cover
Sugiarti
"Salah satu minyak nabati yang potensial untuk dimanfaatkan sebagai bahan bakar alternatif adalah minyak jarak pagar (Jatropha curcas), karena memiliki komponen yang mirip dengan minyak bumi. Minyak jarak tidak dapat dikonsumsi karena beracun, sehingga tidak terjadi kompetisi antara penggunaannya sebagai bahan bakar atau bahan pangan. Namun, minyak jarak memiliki viskositas sepuluh kali lebih tinggi daripada solar, sehingga dibutuhkan metode yang tepat untuk menurunkan viskositasnya.
Penelitian sebelumnya menggunakan metode perengkahan thermal pada tekanan 18 bar dengan sistem batch, menunjukkan bahwa hidrokarbon rantai panjang minyak jarak dapat direngkah menjadi hidrokarbon dengan rantai yang lebih pendek sehingga menghasilkan bio-oil dengan viskositas yang lebih rendah. Namun, viskositas bio-oil tersebut belum setara dengan solar komersial. Di samping itu, tekanan operasi yang tinggi sulit untuk diaplikasikan pada kendaraan bermotor. Agar sesuai dengan sistem yang ada pada kendaraan, maka pada penelitian ini akan dilakukan pirolisis minyak jarak fasa cair secara batch dengan sirkulasi. Pemilihan proses ini dilakukan juga untuk memperoleh kondisi optimum yang diperlukan agar minyak jarak dapat dipirolisis menjadi setara solar.
Pirolisis minyak jarak dilakukan dengan menggunakan reaktor dari bahan stainless steel dengan ukuran diameter = 2,44 cm dan tinggi = 20 cm. Suhu reaksi 320, 340 dan 360 0C dan waktu reaksi 3,47; 4,79; 8,56 dan 13,89 menit. Produk yang diperoleh kemudian dianalisis densitas, viskositas, angka setana, FTIR dan GC ? MS. Hasil analisis menunjukkan viskositas minyak jarak mengalami penurunan dari 63,3052 cSt290C menjadi 56,4448 s/d 60,9578 cSt290C pada suhu 3200C . Hal ini menandakan bahwa hidrokarbon rantai panjang yang terdapat pada minyak jarak mengalami perengkahan. Selain itu viskositasnya juga mengalami peningkatan pada suhu 340 dan 3600C, yang menandakan telah terjadi reaksi propagasi.
Hasil analisis densitas juga menunjukkan tren yang sama. Pada hasil analisis angka setana menunjukkan minyak jarak mengalami peningkatan dari 37 menjadi 41. Pirolisis pada penelitian ini merupakan reaksi orde 2 dengan konstanta laju reaksi 1,74 x 10-5 s/d 0,0053 min-1 dan energi aktivasi 4,40 x 105 s/d 4,49 x 105 J/grmol. Konversi tertinggi yang dihasilkan adalah sebesar 15,28%. Perhitungan simulasi untuk konversi pirolisis 100% diperoleh pada suhu 320, 340 dan 3600C dengan waktu reaksi berturut?turut 38.48, 35.6 dan 30.65 menit. Viskositas bio-oil yang dihasilkan pada kondisi optimum ini berturut ? turut adalah sebesar 34,17;37,16 dan 38,14 cSt(270C). Agar viskositas bio-oil yang dihasilkan pada kondisi optimum ini dapat setara dengan solar, maka sebelum masuk ke ruang pembakaran, bio-oil harus mengalami pemanasan awal pada suhu 230 s/d 2500C. Setelah mengalami pemanasan awal, diperoleh bio-oil dengan viskositas berturut ? turut 4,7; 5,67 dan 4,29 cSt(290C).

One of potential bio oil used for alternative fuel in Indonesia is Jatropha oil (Jatropha curcas), because it has similar components with crude oil. Jatropha oil cannot be consumed because poisonous, therefore no usage competition whether it be used as fuel or food. However, viscosity of jatropha oil is ten times higher than diesel fuel, thence a specific method is required to decrease its viscosity.
Previous research was using gas phase - thermal cracking method at high pressure (18 bar) batch system, showed that long chain hydrocarbon of jatropha oil can be cracked into shorter chain hydrocarbon which produced lower viscosity of biooil. The viscosity of bio-oil produced has equal grade with commercial diesel fuel if heated up to 1000C, but application of high pressure system (18 bar) on vehicle is difficult. In order to achieve the suitable fuel for vehicle application, this research will conduct pyrolysis of liquid phase jatropha oil in batch system with circulation.
This process is selected to provide required optimum condition for pyrolysis process
in reactor. Pyrolysis process is performed in stainless steel reactor with 2,44 cm diameter and 20 cm height. Reaction is carried out at temperature 320, 340 and 360 0C within 3.47, 4.79, 8.56 and 13.89 minutes of reaction time. Reaction product will then be analyzed with density, viscosity, cetane number, FTIR and GC ? MS. Viscosity product is have decrease from 63.3052 cSt290C to 56.4448 s/d 60.9578 cSt290C in 3200C. Its mean the hydrocarbon longchain is cracking. Expect to the viscosity is increase in 340 and 3600C, its mean is the radical reaction is begin. Density is the same tren. Cetane number is increase from 37 to 41. The maximum convertion is 15.28% is the required in 3200C and 3.47 minutes. To obtained the convertion 100%, pyrolysis in 320, 340 and 3600C with time pyrolysis is 38,48; 35,6 and 30,65 minutes.
The obtained viscosity in optimum condition is 34,17; 37,16 and 38,14 cSt(290C). to get the viscosity is diesel like fuel, bio-oil is heated until 2500C. after heating, bio-oil viscosity is 4,7; 5,67 and 4,29 cSt(290C).
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T30805
UI - Tesis Open  Universitas Indonesia Library
cover
Benny Tambuse
"Tesis ini membahas tentang keekonomian pengembangan sumur-sumur tua minyak bumi dan manfaat pengusahaan sumur tua terhadap perekonomian masyarakat sekitar sumur tua di Cepu. Sesuai Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 001 Tahun 2008 tentang Pedoman Pengusahaan Pertambangan Minyak Bumi Pada Sumur Tua, yang diberikan izin untuk melakukan pengusahaan sumur-sumur tua minyak tersebut adalah Koperasi Unit Desa (KUD) dan Badan Usaha Milik Daerah (BUMD). Untuk mengusahakan sumur tua KUD dan BUMD membutuhkan investasi untuk pembersihan sumur tua dan pemroduksiannya.
Penelitian ini menghitung keekonomian pengusahaan sumur tua dengan menggunakan skenario asumsi harga jual minyak Rp 4.160,-/L dan Rp 3.698,-/L dan variasi jumlah sumur tua yang diproduksikan. Penghitungan dilakukan pada keekonomian produksi sumur tua di setiap KUD dan BUMD serta keekonomian pengusahaan sumur tua secara umum.
Hasil penelitian menunjukkan bahwa tidak semua KUD dan BUMD menghasilkan keuntungan yang cukup untuk mengembalikan investasi yang telah dikeluarkan. Dengan asumsi harga jual minyak Rp 4.160,-/L maka produksi minimal per sumur tua yang dapat memberikan keuntungan adalah sebesar ± 2 bbl/hari, sedangkan menggunakan asumsi harga jual minyak Rp 3.698,-/L maka produksi minimal per sumur tua yang dapat memberikan keuntungan adalah sebesar ± 3,5 bbl/hari. Manfaat pengusahaan sumur tua bagi masyarakat adalah terbukanya lapangan kerja dan usaha serta peningkatan pendapatan.
Dalam pemroduksian sumur tua direkomendasikan untuk menggunakan metode timba, dikarenakan metode tersebut dapat membuka lapangan kerja dan usaha yang cukup banyak dimana sesuai dengan semangat pengelolaan sumur tua yaitu memberdayakan masyarakat sekitar.

This thesis discusses the economic development of old oil wells and benefit concessions old oil wells on the economy of the community around the in Cepu. According to the Regulation of Minister of Energy and Mineral Resources No. 001 of 2008 on Guidelines for Oil Mining Concessions In Old Oil Wells, who was given permission to do the exploitation of old oil wells is the Village Unit Cooperatives (cooperatives) and the Regional Owned Enterprises (enterprises). To commercialize old wells, cooperatives and enterprises requires investment for cleaning old oil wells and producing oil.
This study calculates the economic exploitation of old oil wells using a scenario assuming oil prices of Rp 4,160,-/L and Rp 3,698,-/L and the variation of the number of old oil wells that produced. Calculations performed on the economics of production of old oil wells in each cooperatives and enterprises as well as the economic exploitation of the old well in general.
The results showed that not all cooperatives and enterprises generate enough profit to return the investments made. Assuming oil selling price of Rp 4,160,-/L, the minimum oil production per well who can provide benefits is equal to ± 2 bbl/day, while using the assumption of oil selling price of Rp 3.698,-/ L, the minimum oil production per well who can provide benefits is equal to ± 3.5 bbl/day. Benefits for the community concession old well is work opportunities and businesses as well as increased revenue.
In producing old oil wells is recommended to use the bucket method, because the method can create jobs and business in accordance with the spirit in which the management of old oil wells that empower local communities.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43427
UI - Tesis Membership  Universitas Indonesia Library
cover
Arif Hendrawan
"Kilang minyak bumi menghasilkan vacuum residue dari unit distilasi vakum, yang sekarang tidak banyak digunakan. Campuran dari vacuum residue dan senyawa ikatan rangkap terkonjugasi dapat digunakan sebagai bahan baku untuk menghasilkan prekursor karbon aktif karena senyawa tersebut membentuk mesofasa yang stabil pada temperatur tinggi untuk memungkinkan terjadinya polimerisasi aromatik pada vacuum residue. Minyak jarak, yang tersedia di hutan tropis di Indonesia, dapat didehidrasi untuk membentuk senyawa ikatan rangkap terkonjugasi. Polimerisasi membentuk pitch yang mengandung aromatik dengan tingkat polimerisasi yang berbeda-beda sehingga luas permukaan pori yang tinggi dari karbon aktif dapat dicapai. Proses selanjutnya adalah karbonisasi pitch untuk membentuk karbon aktif.
Tujuan dari penelitian ini adalah untuk melihat pengaruh penambahan minyak jarak hasil dehidrasi terhadap luas permukaan pori dan amorphicity ketidakaturan kristal. Amorphicity yang tinggi akan menghasilkan luas permukaan pori yang tinggi. Luas permukaan pori dan amorphicity dibandingkan pada sampel karbon aktif yang berasal dari vacuum residue tanpa dan dengan variasi penambahan 5 , 10 , dan 15 berat minyak jarak. Selama proses pirolisis terjadi polimerisasi aromatik, terbukti dengan peningkatan kandungan Haromatik mencapai 1.65 . Hasil eksperimen menunjukkan bahwa penambahan 15 minyak jarak dapat memperbesar luas permukaan pori sebesar 27 dari 720 m2/g menjadi 1064 m2/g serta meningkatkan amorphicity karbon aktif.

Petroleum refinery produces vacuum residue in a vacuum distillation unit, which is now not much utilized. Mixture of the vacuum residue and a conjugated double bond compound can be used as feedstock to produce activated carbon precursor because the compound forms a stable mesofasa at high temperature to allow polymerization of aromatik compounds in vacuum residue. Castor oil, which is available in tropical forest in Indonesia, can be dehydrated to form conjugated double bond compounds. Polymerization can form a pitch with different extents of polycyclization of aromatiks so that high surface pore area of the activated carbon can be achieved. The subsequent process was carbonization of the pitch to form activated carbon.
The purpose of this study is to examine the effect of the addition of dehydrated castor oil on the pore surface area and the amorphicity of the activated carbon. High amorphicity leads to high pore surface area. During the pyrolysis process, polymerization aromatics occured, as evidence increasing in the content of Haromatic by 1.65. The pore surface areas and amorphicities were compared in activated carbon samples originated from vacuum residue without and with addition of castor oil with variations of 5, 10, 15 by weight of castor oil. The experiment results show that the addition of 15 of castor oil improved pore surface area by 27 from 720 m2 g to 1064 m2 g and increased the amorphicity of the activated carbon particles.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdio Giffary
"Pengolahan minyak mentah membutuhkan kilang minyak dengan investasi yang sangat besar. Pencampuran atau blending minyak mentah, yang dilakukan pada kilang yang sudah beroperasi, adalah proses yang umum dilakukan di dunia migas untuk penghematan biaya. Salah satu industri minyak dan gas di Indonesia berencana untuk melakukan pencampuran minyak mentah dari sebuah sumur minyak berat dan minyak ringan pada kilang minyak yang berada di Sumatera. Namun, minyak campuran tersebut diprediksi dapat menimbulkan masalah baru pada proses transportasi menggunakan pipa. Minyak campuran dikhawatirkan tidak dapat mengalir dalam pipa akibat pengendapan wax, sehingga flow assurance   tidak tercapai. Penelitian ini mengusulkan studi tentang pengaruh pencampuran dua jenis minyak mentah terhadap fenomena mengendapnya wax pada pipa atau disebut wax deposition. Minyak berat "X" dengan karakteristik 24.1 °API dan 15% wax content dicampur minyak ringan "Y" dengan karakteristik 41.1 °API dan 0.121% wax content. Terdapat 2 variabel utama yang akan divariasikan yaitu rasio blending dan penambahan pemanas sebelum pemompaan. Selanjutnya dilakukan variasi terhadap temperatur pemanas untuk diketahui pengaruhnya terhadap pengendapan wax disepanjang pipeline. Penelitian ini menggunakan perangkat lunak aliran multi-fase dinamis, OLGA v.2017.2.0, untuk mendapatkan profil wax deposition. Rasio blending minyak ringan "Y" dan minyak berat "X" akan divariasikan pada nilai 7:1, 5:1, 3:1; 1:1, 1:3, 1:5, dan 1:7, masing-masing pada kondisi tanpa pemanas dan dengan pemanas. Pemanas di atur pada temperatur 45 oC dan temperatur ambient pada 26 oC.  Variasi berikutnya dilakukan pada temperatur pemanas dengan nilai 35 oC, 40 oC, 50 oC, dan 55 oC dengan rasio blending diatur tetap pada 1:1. Hasil menunjukkan peningkatan rasio blending, penambahan pemanas, dan peningkatan temperatur pemanas menghasilkan penurunan jumlah wax yang mengendap. Semua variasi parameter operasi menunjukkan pengaruh yang signifikan terhadap fenomena pengendapan wax pada pipa.

Crude oil processing requires an oil refinery with massive investment. The Crude oil blending process in an existing refinery is a common process to overcome this problem. One of Indonesia's oil and gas producer is planning to blend crude heavy and light oil in an oil production facility located in Sumatra. It is anticipated that the oil mixture would encounter transportation problems due to the existence of wax deposition, resulting in a flow assurance problem. This research is conducted to examine the wax deposition as the effect of blending 24.1 °API heavy crude and 41.1 °API light crude oil with 15% and 0.121% of wax content. This research also takes two main experiment variables, the blending ratio and initial temperature. The effect of the heater addition's and its operating temperature were also examined. This study used a dynamic multi-phase flow software, OLGA v.2017.2.0, to obtain a wax deposition profile. The blending ratio of light oil and heavy oil varies 7:1, 5:1, 3:1; 1:1, 1:3, 1:5, and 1:7, each samples was examined in both ambient and heated conditions. The heater was set at 45 oC and ambient temperature at 26oC. The heating temperature was variated at 35oC, 40oC, 50oC, and 55oC with a blending ratio fixed to 1:1. Results showed that with higher light crude oil ratios, the addition of a heater, and higher heater temperatures resulted in lowering the number of waxes that appeared. All variations of the operating parameters show a significant effect on the wax deposition on the pipeline.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Djuang Marhendra
"Kebutuhan manusia akan energi semakin meningkat setiap tahunnya. Salah satu upaya untuk memenuhi kebutuhan tersebut yaitu dengan memanfaatkan sumber energi terbarukan. Maka dibangunlah suatu konsep yaitu zero energy building, dimana tujuannya adalah mengurangi emisi karbon dengan memanfaatkan bioenergi. Penelitian dilakukan pada turbin gas bioenergi mikro proto-X2. Pengujian dilakukan dengan menguji tiga jenis bahan bakar yaitu solar, minyak jarak dan minyak sawit.
Hasilnya menunjukkan bahwa minyak jarak dan minyak sawit tidak dapat diaplikasikan dalam keadaan murni, sementara solar berhasil diaplikasikan. Kemudian unjuk kerja turbin gas dengan bahan bakar solar dianalisa. Hasil analisa menunjukkan bahwa putaran tertinggi yang dihasilkan solar adalah 38.693,5 [rpm] dengan suhu nyala adiabatik 2147,695 [°C]. Hasil ini akan dibandingkan dengan bahan bakar campuran pada penelitian selanjutnya.

Human need for energy have been increased year to year. One of an effort to satisfy this need is to take the advantage of renewable energy. Then the concept zero energy building was built due to this cause, where the aim is to reduce the carbon emission by utilizing bioenergy. The research has been done to Proto-X2 Micro Bioenergy Gas Turbine. The testing is done by using three kind of fuel like diesel, jatropha oil and palm oil.
The result shown that the jatropha oil and palm oil cannot be applied purely, while the diesel is successfully applied. Then, the performance of gas turbine with diesel fuel were analyzed. From the analyze we get that the highest speed was 38.693,5 [rpm] with adiabatic flame temperature 2147,695 [°C]. This result will be compared with the fuel blend on the next research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45384
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>