Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143320 dokumen yang sesuai dengan query
cover
Almira Larasati
"Material biologis mampu luruh alami dikembangkan sebagai kandidat aplikasi perancah pembuluh darah untuk mencegah restenosis. Pada penelitian sebelumnya Fe-Mn-C berhasil dikembangkan dengan fasa austenit dan sifat mekanis yang baik. Namun laju degradasi dari material ini masih rendah untuk aplikasi perancah pembuluh darah. Fe-Mn-C berstruktur busa dikembangkan untuk memperbaiki laju degradasi pada paduan Fe-Mn-C. Kalium karbonat ditambahkan dengan Fe-Mn-C sebagai agen pembentuk busa yang diproduksi dengan metode fabrikasi metalurgi serbuk dengan variabel persen penambahan kalium karbonat (K2CO3) sebesar 5%, 10%, dan 15% dari jumlah total persen berat paduan Fe-Mn-C. Sinter dilakukan pada temperatur 850oC selama 3 jam yang kemudian dilanjutkan dengan sinter dekomposisi pada temperatur 1100oC selama 1,5 jam di atmosfer inert gas Nitrogen (N).
Hasil sinter dilakukan karakterisasi sifat fisik, kimia, mekanik, dan perilaku korosi. Paduan yang dihasilkan memilki kompoisisi Fe-30Mn-8C pada penambahan 5% K2CO3, Fe-27Mn-8,6C pada penambahan 10% K2CO3, dan Fe-27Mn-9,5C pada penambahan 15% K2CO3. Fasa yang terbentuk adalah fasa austenit, fasa mangan oksida, dan fasa grafit. Kekerasan paduan mencapai hingga 271,53 VH pada paduan dengan penambahan 15% K2CO3. Laju korosi semakin meningkat hingga 5,1 mm/tahun seiring dengan porositas yang semakin meningkat karena adanya penambahan persen K2CO3.

Degradable biomaterial has been developed for coronary stent application to prevent restenosis. Fe-Mn-C was developed with fully austenite phase and good mechanical properties. But degradation rate of Fe-Mn-C still relatively low for coronary stent application. In this study, Fe-Mn-C foam has been developed to improve degradation rate on Fe-Mn-C alloy by addition of potassium carbonate as foaming agent to create porosity. Variable used in this experiment was the percentage of potasium carbonate (K2CO3) 5%, 10%, and 15% from the total weight percent of Fe-Mn-C powder. Sintering process was done in inert gas nitrogen (N) at temperature of 850oC for 3 hours and continued at 1100oC for 1,5 to decompose K2CO3. Several characterization was performed on samples such as physical, chemical, and mechanical properties also degradation behaviour of samples.
The results showed that materials formed Fe-30Mn-8C in 5% of K2CO3 addition, Fe-27Mn-8,6C in 10% K2CO3 addition, and Fe-27Mn-9,5C in 15% K2CO3 addition. Phase and microstructure formed austenite, manganese oxide, and graphite phase. Hardness value in each alloying increased up to 271,53 VH in 15% K2CO3 addition. Corrosion rate increased up to 6,05 mmpy along with the increasing porosity in materials as the results of K2CO3 addition.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53864
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rhidiyan Waroko
"Material Fe-M n-C telah banyak dikembangkan sebagai material mampu luruh untuk aplikasi penyangga pembuluh dalam satu dekade belakangan ini. Penggunaan biomaterial Fe-M n-C mampu menghindari tindakan pembedahan kembali setelah pembuluh jantung kembali normal setelah mengalami penyempitan, yaitu sekitar 6-12 bulan. Pengujian material Fe-M n-C dilakukan untuk mencari kelayakan kandidat biomaterial ini digunakan sebagai penyangga pembuluh yang mampu luruh. Material tersebut dibuat dengan cara pemaduan mekanik kemudian metalurgi serbuk. Hasil pengujian EDAX pada material akhir menunjukkan komposisi material yaitu Fe-24Mn-0.4C dan Fe-33Mn-0.3C. Hasil pengujian atomic absorption spectroscopy pada ektrak larutan kedua larutan menunjukkan kandungan logam pada ekstrak material Fe-24M n-0.4C lebih tinggi dari ekstrak material Fe-33M n-0.3C. Pada permukaan kedua material juga menunjukkan adanya pembentukan lapisan kalsium fosfor yang dapat memberikan tahanan antarmuka seperti data pada pengujian electrochemical impedance spectroscopy. Secara umum, hasil pengujian biokompatibilitas dengan metode sitotoksisitas pada kedua material menunjukkan nilai viabilitas sel yang lebih baik dari material SS 316 L. Secara keseluruhan, material Fe-24M n-0.4C dan material Fe-33M n-0.3C layak digunakan sebagai kandidat biomaterial.

Fe-M n-C materials has been developed as biodegradable material for coronary stent application in recent decades. The use of Fe-Mn-C biomaterials is able to avoid surgery after heart vessels returned to normal condition after a constriction, which is about 6-12 months. Material testing of Fe-M n-C alloy is performed to proving of feasibility that biomaterials candidate for biodegredable coronary stent. Fe-Mn-C biomaterials produce by mechanical alloying and powder metallurgy. EDAX test result shows that both material composition is Fe-24M n-0.4C and Fe-33Mn-0.3C. Atomic absorption spectroscopy (AAS) test result of solution extract of both materials shows that metal composition at solution extract of Fe-24M n-0.4C material higher than solution extract of Fe-33M n-0.4C material. On the surface of both materials shows that there is a Calsium/Phospor layer. Electrochemical impedance sp ectroscopy (EIS) test result shows that there is interface barrier on the surface, that cause by Calsium/Phospor layer. Generally, biocompatibility test result shows that the cell viability of both materials is higher than SS 316 L material. For all test result shows that both material, Fe-24M n-0.4C and Fe-33Mn-0.3C material can be used for biodegradable material candidate."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T43305
UI - Tesis Membership  Universitas Indonesia Library
cover
Setiyaningrum
"Pengembangan material biologis mampu luruh alami sebagai aplikasi perancah pembuluh darah telah banyak dilakukan. Pada penelitian sebelumnya Fe-Mn-C berstruktur busa dengan 5% kalium karbonat (K2CO3) berhasil dikembangkan dengan fasa austenit dan laju degradasi yang cukup baik. Namun kandungan karbon yang terbentuk masih sangat tinggi dengan membentuk fasa grafit (C) menyebabkan kekerasan yang terlalu tinggi dan meninggalkan sifat magnet yang akan mengganggu saat pemeriksaan MRI (Magnetic Resonance Imaging). Variasi komposisi unsur karbon (0%, dan 0,5%C) dilakukan untuk memperbaiki sifat mekanik dan membentuk fasa austenit sepenuhnya guna diperoleh sifat yang non magnetic. Pemaduan mekanik material serbuk dilakukan dengan metode rotary mixing dengan komposisi target Fe-35Mn dan Fe-35Mn-0,5C. Sinter dilakukan pada temperatur 850oC selama 3 jam dan dilanjutkan dengan sinter dekomposisi pada temperatur 1100oC selama 1,5 jam di atmosfer inert gas Nitrogen (N). Hasil sinter kemudian dilakukan karakterisasi sifat fisik, kimia, mekanik, dan perilaku korosinya. Fasa yang terbentuk adalah fasa austenit, dan fasa mangan oksida dengan laju degradasi yang baik dan tidak bersifat magnet.

Development of degradable biomaterial for coronary stent applications has been carried out. Degradable biomaterial Fe-Mn-C with foam structure with 5% potassium carbonate (K2CO3) was successfully developed with austenite phase and good degradation rate. However, the carbon content still too high and produce graphite phase (C) causing the hardness becomes too high and will produce the magnetic properties that interfere with the examination process of MRI (magnetic resonance imaging). Variations of carbon composition (0%, and 0.5% C) has been done to improve mechanical properties and form a fully austenite phase to produce non-magnetic properties. Mechanical alloying of powder material done by rotary mixing method with a target composition of alloy are Fe-35Mn and Fe-35Mn-0,5C. Sintering was performed in inert gas atmosphere of nitrogen (N) at temperature of 850oC for 3 hours and continued at 1100oC for 1.5 hours. Several characterization was performed on sintered sampel such as physical, chemical, and mechanical properties also degradation behavior. Austenite and manganese oxide phase with a good rate of degradation and not magnetic properties are formed in this degradable biomaterial Fe-Mn-C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56521
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vincent Irawan
"Zirkonium-Niobium paduan (Zr-Nb paduan) memiliki potensi untuk menggantikan implant Titanium kontemporer dengan mempertimbangkan sitotoksisitas nya, suseptibilitas magnetik dan ketahanan korosi. Metalurgi serbuk sebagai salah satu metode pembentukan dapat digunakan dalam produksi implant dengan desain rumit dan struktur mikro yang fleksibel, baik dalam komposisi dan porositas. Pemadatan dan sintering dilakukan untuk menghasilkan produk yang padat dengan porositas. Pengamatan morfologi porositas akan diamati dengan mikroskop optik dan jumlah porositas dalam paduan akan diamati dengan pengujian porositas. Sedangkan struktur kristal diamati dengan dan X-Ray Diffraction (XRD). Konstituen fasa mikro sangat tergantung pada komposisi Niobium. Pengujian kekerasan menunjukkan peningkatan seiring dengan penambahan jumlah Niobium. Sementara itu penambahan Niobium akan menurunkan jumlah porositas dan mengubah morfologi porositas menjadi berbentuk jaring. Penambahan Niobium dalam jumlah besar membutuhkan temperature sintering yang jauh lebih tinggi dibandingkan paduan dengan jumlah Niobium lebih kecil.

Zirconium-Niobium alloy (Zr-Nb alloy) has potency to replace the contemporary Titanium bioimplant by considering its cytotoxicity, magnetic susceptibility and corrosion resistance. Powder metallurgy as one of the forming methods could be used in production of bioimplant with intricate design and flexible microstructure, both in composition and porosity. Compaction and sintering is carried out to produce solid product with remained porosity. Resulting porosity of Zr-Nb alloy produced by powder metallurgy method will be characterized by density measurements and optical microscopy. Crystalline structure is observed by X-Ray Diffraction (X-RD). The microphase constituent is highly dependent on Niobium composition. The density of alloy will decrease as the addition of Niobium. In contrary, the hardness of alloy will increase as the addition of Niobium."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54356
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aufandra Cakra Wardhana
"Logam berstruktur busa ini dikembangkan untuk perancah jaringan tulang untuk memperbaiki tulang yang patah. Material dengan biokompatibilitas, sifat mekanis, kemampuan degradasi yang baik, tidak beracun, dan osointegrasi yang baik dibutuhkan. Penelitian sebelumnya menggunakan kalium karbonat (K2CO3) sebagai agen pembentuk busa untuk Fe-35Mn-0,5C menghasilkan poros berbentuk tak beraturan.
Pada penelitian ini, carbamide berbentuk bulat berukuran diameter 1-2 mm dicampur dengan Fe-35Mn-0,5C untuk menghasilkan porositas yang berbentuk bulat. Fabrikasi sampel menggunakan proses metalurgi serbuk dengan penambahan 5% dan 10% carbamide untuk Fe-35Mn-0,5C. Dua percobaan dalam atmosfer gas argon dilakukan pada temperatur 200⁰C selama dua jam untuk mendekomposisi carbamide kemudian dinaikkan ke 1100⁰C selama 1,5 jam untuk pemadatan sampel, dan pada temperatur 250⁰C selama 3 jam untuk melihat dekomposisi carbamide.
Hasil sinter dikarakterisasi oleh pengujian densitas dan porositas, mikroskop dan makroskop optik, dan XRD. Semakin banyak carbamide yang ditambahkan, densitas semakin menurun dan porositas meningkat. Hal ini juga membuktikan bahwa carbamide dapat membentuk porositas bulat dengan ukuran masih dalam rentan diameter carbamide. Fasa pada sampel 5% dan 10% carbamide adalah austenit, ferit, dan MnO.

The metal foam has been developed for bone tissue scaffold to repair bone fracture. Material with good biocompatibility, mechanical properties, degradability, non-toxic, and good ossointegration is needed. Previous research used potassium carbonat as foaming agent for Fe-35Mn-0,5C produced irregular shape of porous.
In this research, spherical carbamide with diameter range of 1-2 mm was mixed with Fe- 35Mn-0,5C to produce spherical porosity. Fabrication of samples used powder metallurgy process by adding of 5% dan 10% weight percent of carbamide to Fe- 35Mn-0,5C. Two experiments in argon atmosphere were conducted at 200⁰C for 2 hour to decompose carbamide then at 1100⁰C for 1,5 hour to densify samples, and at 250⁰C for 3 hour to approving carbamide decomposition.
Sinter product characterized by density and porosity testing, optical microscope and macroscope, and XRD. Addition more content of carbamide resulted in lower density and higher porosity. It is also approved that carbamide produced spherical porosity with size within range of carbamide diameter. Phases of 5% and 10% carbamide samples are austenite, ferrite, and MnO.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59407
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rickfy Kharisa Perdhana
"Material Metal Matrix Composite (MMC) merupakan material yang banyak dilcembangkan alchir-alchir ini karena keunggulan yang dimilikinya dibandinglcan dengan material lain bailc mum! maupun paduan. Material MMC, yang merupalran lcombinasi dart matriks logam dengan peng-uamya (reinforcement) diharaplran memfliki sgfat yang Iebih balk dibandinglcan dengan lmmponen perzyuszmrxya Al-SiC merupalcan salah satu cantoh dart material MMC, dimana alurmmium berfimgsi sebagai matriks, sedangkan SiC beqimgsi sebagai penguat. Material yang dihasilkan dart kombinasi antara Al dan SiC ini diharaplcan akan memililci SUE!! ringan, kekerasan tinggi, lcelahanan aus tinggi, kelcuatan tekan tirzggi dan tahan terhadap korosi.
Salah satu merode dalam pembuatan material MMC Al-SiC ini adalah melalui proses metalurgi serbuk yang melipuri beberapa tahapan seperti karakterisrik serbuk, pencampuran serbulc, lcampaksi, dan sintering Temperatur sintering memiliki pengaruh yang signtfilran terhadap keberhasilan pembuatan material .WMC sesuai dengan yang diinginkan Untulc merzgetahui pengaruh dari temperatur -sintering terhadap sgfat melcanis yang diinginkan, malta dilalrulcan beberapa pengujian seperti pengzgian kekerasan, lcekuatan telcan, derzsitas/porasitas, dan pengamatan struktur mila-0.
Dari data penelirian dtaeroleh bahwa ternperatur sintering alcan mempengaruhi nilai porositas dart bakalan. Akibatnya, swf melcanis dart balralan yang dpengaruhl oleh nilai porositas bakalan juga tergantzmg dart temperatur sinter, dimana peningkatan temperatzn' sinter mengakibatlcan teyadinya penurunan porositas dan peningkatan densitas, kekerasan, mazgpun lcuat tekan dart bakalan.
Peninglcatan .syizt rnelcanis yang telah dibukrilcan melalui penelitian yang dilalcukan, alcan membuar penggunaan material MMC Al-SiC ini menjadi lebth luas, terurama pada bidang industri pernbuatan lcomponemlcomponen otomotif dan bidang aerospace yang sangat membutuhkan material dengan sWzr-stfat seperti yang dimiliki oleh material MMC Al-SiC."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S41459
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fuad Hakim
"Paduan biomaterial baja mangan untuk aplikasi biodegredable stent diproduksi dengan metode metalurgi serbuk diteliti dengan melihat pengaruhnya terhadap post treatment (canai dingin + re-sintering). Pemaduan mekanik metalurgi serbuk dilakukan dengan metode pengadukan sederhana dengan komposisi target (25%Mn dan 35%Mn). Post treatment dengan canai dingin reduksi 50% dan sinter ulang dengan aliran gas Ar pada temperatur 1100oC selama 2 jam. Pengaruh post treatment pada mikrostruktur, sifat mekanik dengan kekerasan Rockwell A, dan sifat korosi dengan celup dan polarisasi telah diteliti dan dibandingkan dengan biomaterial baja mangan sebelum post treatment.
Hasil dari pengujian setelah post treatment, material membentuk fasa austenit, ferrit, dan martensit. Pengaruh post treatment meningkatkan ketahanan korosi dan kekerasan pada baja mangan. Hal ini disebabkan karena persentase porositas berkurang setelah dilakukan post treatment. Laju korosi dilakukan dalam larutan Hank's dan ringer laktat. Pembentukan lapisan pasif Ca/P dan hidroksida terjadi setelah pengujian celup 7 hari dalam larutan Hank's.

Manganese alloy steel as biodegredable biomaterials for stent applications produced by powder metallurgy methods were investigated by looking at the effect on post-treatment (cold rolled + re-sintering). Mechanical alloying powder metallurgy done by a simple mixing method with the target composition of Mn (25% and 35%). Post treatment with a cold rolled of 50% reduction and resnintering with Ar gas stream at a temperature of 1100oC for 2 hours. The effect of post treatment on the microstructure, mechanical properties with a Rockwell hardness, and corrosion properties with immersion and polarization have been studied and compared with the biomaterial manganese steel before post treatment.
The results after the post treatment material formed austenite, ferrite and martensite. The effect of post-treatment increase the corrosion resistance and hardness on manganese steel. This occured because the percentage of porosity is decreased after post-treatment. Corrosion rate performed in Hank's solution and ringer's lactate. Hydroxide and Ca/P Passive layer formation occurred after 7 days immersion tests in Hank's solution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42641
UI - Skripsi Open  Universitas Indonesia Library
cover
Afrizal
Depok: Universitas Indonesia, 1992
S40820
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dadit Damar Rachmanto
"ABSTRAK
Seiring dengan perkembangan ilmu pengetahuan dan teknologi banyak sifat-sifat dari alam yang sebenarnya bisa direplika untuk dimanfaatkan, seperti terumbu karang yang ternyata mempunyai porositas yang bisa dimanfaatkan pada bidang heat exchanger dan diaplikasikan pada Loop heat pipe, proses fabrikasi dengan menggunakan metode powder mettalurgy dengan material tembaga dan polyprophylene diharapkan mampu untuk menciptakan porositas yang menyerupai terumbu karang. Metode Powder mettalurgy yang dilakukan pada penelitian ini bertujuan untuk mendapatkan nilai porositas dengan menggunakan, Proses mixing material, proses kompaksi serta 3 variabel temperatur dan waktu tahan pada proses debinding dan sintering untuk menentukan nilai porositasnya. hasil dari penelitian menunjukkan bahwa semakin tinggi temperatur dan lamanya waktu tahan pada proses sintering maka nilai dari densitasnya akan semakin tinggi akan tetapi nilai dari porositasnya semakin turun. Ikatan dari material serbuk tembaga yang membentuk neck formed pada proses sintering akan menentukan ukuran nilai porositas dan kemampuan permeabilitasnya

ABSTRACT
Along with the development of science and technology many of the attributes of nature that can actually be replicated to be used, such as coral reefs which have a porosity that can be used in the field of heat exchangers and applied to the Loop heat pipes, the fabrication powder mettalurgy process using the material copper and polypropylene expected to be able to create porosity like a coral reefs. Powder mettalurgy method performed in this study purpose to obtain porosity values using, material mixing process, the process of compaction and 3 variable temperature and holding time on debinding and sintering process to determine the value of porosity. the results of the study showed that the higher the temperature and the length of holding time at the sintering process, the value of the density will be higher but the value of porosity getting down. Bonding of copper powder material that forms the neck formed in the sintering process will determine the size of the porosity value and capabilities permaeabilitas"
Fakultas Teknik Universitas Indonesia, 2014
S57440
UI - Skripsi Membership  Universitas Indonesia Library
cover
A. Manaf
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1995/1997
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>