Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13927 dokumen yang sesuai dengan query
cover
Wed Giyarti
"Aljabar Lie adalah ruang vektor atas suatu lapangan yang dilengkapi dengan bracket Lie yang bilinier, bersifat antisimetri dan memenuhi identitas Jacobi. Salah satu contoh dari aljabar Lie adalah himpunan pemetaan linier dari ruang vektor V ke V, yang dinotasikan dengan gl(V), dengan bracket Lie berupa komutator. Jika V adalah suatu aljabar, maka himpunan derivasi dari V (dinotasikan dengan Der(V)) membentuk suatu subaljabar Lie dari gl(V). Holomorph dari aljabar Lie L, yaitu hasil tambah langsung dari L dan Der(L), juga membentuk aljabar Lie. Aljabar Lie dikatakan lengkap jika pusatnya adalah himpunan nol dan semua derivasinya adalah derivasi dalam. Pada tesis ini, diulas syarat yang harus dipenuhi agar aljabar derivasi dan holomorph dari suatu aljabar Lie menjadi lengkap.

Lie algebra is a vector space over a field together with a bilinear Lie bracket, that satisfy antisymmetry and Jacobi identity. One of the examples of Lie algebra is a set of linear transformation from a vector space V to V, that is denoted by gl(V), with a commutator as the Lie bracket. If V is an algebra then the set of derivation of V (denoted by Der(V)) forms a Lie subalgebra of gl(V). The holomorph of a Lie algebra, that is direct sum of vector spaces L and Der(L), also forms a Lie algebra. A Lie algebra is called complete if its center is zero and all its derivations are inner. In this thesis, it is discussed the properties that must be satisfied in order to the derivation and the holomorph of Lie algebra become complete."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T39251
UI - Tesis Membership  Universitas Indonesia Library
cover
Gitta Indreswari
"Aljabar Lie sederhana merupakan aljabar Lie dengan karakteristik khusus, yaitu tidak abelian dan tidak memiliki ideal sejati yang tak nol. Dalam penelitian ini, dikenalkan suatu aljabar Lie sederhana yaitu sl fr infin;,K yang merupakan subaljabar Lie dari gl fr infin;,K . Aljabar Lie sederhana sl fr infin;,K memiliki dimensi yang tidak berhingga dengan basis yang tak terhitung.

Simple Lie algebra is Lie algebra with special characteristics, which is not abelian and not having any nonzero proper ideal. In this study, a simple Lie algebra sl fr infin ,K is introduced, which is a sub Lie algebra from gl fr infin ,K . Simple Lie algebra sl fr infin ,K has an infinitely dimension with an uncountably basis.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Freudenthal, Hans
New York: Academic Press, 1987
512.86 FRE l
Buku Teks SO  Universitas Indonesia Library
cover
Berlin: Springer-Verlag, 1993
R 512.55 LIE
Buku Referensi  Universitas Indonesia Library
cover
Belinfante, Johan G.F.
"Introduces the concepts and methods of the Lie theory in a form accessible to the non-specialist by keeping mathematical prerequisites to a minimum. Although the authors have concentrated on presenting results while omitting most of the proofs, they have compensated for these omissions by including many references to the original literature. Their treatment is directed toward the reader seeking a broad view of the subject rather than elaborate information about technical details. Illustrations of various points of the Lie theory itself are found throughout the book in material on applications.
In this reprint edition, the authors have resisted the temptation of including additional topics. Except for correcting a few minor misprints, the character of the book, especially its focus on classical representation theory and its computational aspects, has not been changed."
Philadelphia : Society for Industrial and Applied Mathematics, 1989
e20442704
eBooks  Universitas Indonesia Library
cover
Andrew
"Aljabar Lie adalah ruang vektor atas suatu lapangan yang memenuhi beberapa aksioma tertentu. Salah satu dari aksioma aljabar Lie ini dikenal dengan identitas Jacobi. Dalam skripsi ini, dibahas karakteristik dari aljabar Lie seperti ideal, homomorfisma dan struktur konstan. Selain itu juga dibahas aljabar yang terturunkan dari suatu aljabar Lie. Untuk aljabar Lie berdimensi 2 dan 3 yang dibahas adalah aljabar Lie yang non-abelian. Khusus untuk aljabar Lie berdimensi 3 yang dibahas hanya sampai aljabar yang terturunkan berdimensi 2 dan pada lapangan kompleks.

Lie algebra is a vector space over a field that satisfy some axioms. One of the axioms is known as the Jacobi identity. In this thesis, it is discussed the characteristics of Lie algebra such as ideal, homomorphism and constant structure. Here, it is also discussed the derived algebra of Lie algebra. For the Lie algebra with dimension 2 and 3 to be discussed is a non-abelian Lie algebra. Especially for a 3-dimensional Lie algebra is discussed only to the derived algebra of dimension 2 on complex field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45670
UI - Skripsi Open  Universitas Indonesia Library
cover
"This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure—the Schrödinger-Virasoro algebra. Just as Poincaré invariance or conformal (Virasoro) invariance play a key rôle in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence.
The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrödinger operators."
Berlin : Springer, 2012
e20426660
eBooks  Universitas Indonesia Library
cover
Prasdika Rizki Pradana
"Subnorm pada suatu aljabar adalah fungsi bernilai real yang memiliki syarat-syarat tertentu.Dalam skripsi ini digunakan suatu topologi norm pada aljabar tersebut untukmenentukan kekontinuan dari subnorm. Dalam skripsi ini, dibahas subnorm yang diskontinudi mana-mana pada suatu aljabar pangkat asosiatif. Aljabar pangkat asosiatif adalahsuatu aljabar yang setiap elemennya membangkitkan suatu subaljabar yang asosiatif.

A Subnorm on an Algebra is a real valued function with certain requirements. Normtopology is used to determine the continuity of a subnorm. In this undergraduate thesis,discontinuous everywhere subnorms is discussed on a power associative algebra. Powerassociative algebra is an algebra that every single element generate an associative subalgebra.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lipschutz, Seymour, 1915-2003
Jakarta: Erlangga, 2004
512.5 LIP s
Buku Teks SO  Universitas Indonesia Library
cover
Hadley, George, 1930-
Jakarta: Erlangga, 1983
512.5 HAD a
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>