Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8550 dokumen yang sesuai dengan query
cover
New York : Academic Press, 1983
660.296 PYR
Buku Teks SO  Universitas Indonesia Library
cover
Alexander Yadani
"Biomassa adalah produk organik dari makhluk hidup dan berasal dari perkebunan atau pertanian, hutan, ternak atau bahkan sampah, juga dapat disediakan karena kandungan karbon yang tinggi dari kompon. Biomassa lebih lanjut dapat disajikan ke dalam bahan bakar dan pengawet, namun dari sudut pandang ekonomi, bahan bakar yang didapat dari penawaran biomassa kontras dengan pemanfaatannya sebagai pengawet, sehingga biomassa sebagai pengawet adalah Asap Cair. Asap cair diperoleh dari pendinginan uap proses pirolisis.
Pirolisis adalah metode termokimia untuk mendekomposisi senyawa kimia dengan menaikkan suhu bahan baku. Proses pirolisis memerlukan tiga alat utama, ada pemanas, pipa penghubung yang biasa dikenal dengan Neck Reactor, dan LCS (Liquid Collecting System). Setelah bahan baku dan berubah menjadi uap, itu akan mengalir melalui kredit untuk didinginkan, sehingga asap cair bisa diperoleh. Pada suatu sudut tertentu reaktor leher akan mengubah suhu dan kecepatan uap.
Untuk mengirimkan uap LCS melalui perlu pipa bengkok untuk menghubungkan mereka. Namun, data kinerja pipa masih belum diketahui bengkoknya. Oleh karena itu, simulasi menggunakan Ansys CFX adalah hasil dari mengoptimalkan pengiriman uap. Alasan menggunakan Ansys CFX adalah karena telah ditulis sebelumnya. Variasi reaktor leher diperlukan. Akan ada tiga jenis reaktor leher untuk disimulasikan yaitu 70° seperti aslinya dari percobaan, 60° dan 85°.
Hasil dari simulasi ini dapat dihasilkan dalam dua jenis, tampilan samping dan fokus pada Reaktor Leher dan Outlet Pipa. Setelah mengumpulkan hasil dengan data dari Ansys CFX, dari tabel yang menunjukkan kondisi reaktor leher dibuat. Data yang diperoleh dapat digunakan untuk meningkatkan desain reaktor leher di masa depan.

Biomass is organic product of living things and come from plantation crops or agriculture, forests, livestock or even garbage, also can provide heat because of the hdycarbon content of the compond. Further biomass can be serve into fuel and preservative, however at the point when seen from the economic viewpoint, fuel got from biomass has an offering worth contrasted with its utilization as an preservative, Thus biomass as preservative is Liquid Smoke. Liquid smoke is obtained from the steam cooling of the pyrolysis process.
Pyrolysis is a thermochemical method for decomposing chemical csompounds by rising the temperature on raw materials. Pyrolysis process is need three major tools, there are heater, connecting pipe or usually known as Neck Reactor, and LCS ( Liquid Collecting System). After raw material is heated and change into vapor, it will flow through neck reactor than goes to LCS to be cooled, thus the liquid smoke can be obtain. At some angle of neck reactor will change the temperature and velocity of the vapor.
To deliver the vapor through LCS need a bend pipe to connect them. However, the data for performance bend pipe still unknown. Therefore simulation using Ansys CFX is needed to simulate and gather the results to make optimation of deliver the vapor. The reason of using Ansys CFX is because this application is able to simulate flow with the effect of ambient temperature and can get the details of data for each notes that has been specify beforehand. By trying to get a good amount of yield at the product, the variation of neck reactor is needed. There will be three type of neck reactor to simulate which is 70° as the original from experiment, 60° and 85°.
The results from this simulation can be generated in to two type, side view and focus on Neck Reactor and Outlet Pipe. After collected the results with data from Ansys CFX, than the table that shows the condition of neck reactor is created. The data obtained may be utilized to improve the better and safer  designs for neck reactor in the future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chunairil Wijaya
"Levoglucosan adalah sebuah komponen utama yang berbentuk cairan kental dari hasil pirolisis biomassa yang banyak dimanfaatkan sebagai pestisida buatan, growth regulators, macrolide antibiotics dan lain-lain. Biomassa tersusun atas hemisellulosa, sellulosa, lignin dan sejumlah kecil komponen organik yang masing-masing dapat terpirolisis dan terdegradasi dengan laju yang berbeda, mekanisme dan jalur yang berbeda.
Diketahui bahwa, levoglucosan adalah produk yang paling banyak diperoleh dalam pirolisis selulosa dari biomassa. Biomassa yang digunakan dalam penelitian ini adalah cangkang kelapa sawit dan tandan kosong kelapa sawit. Pemilihan biomassa tersebut didasarkan dari komposisi biomassa tersebut yang mengandung > 30 % selulosa. Faktor kondisi operasi pirolisis yaitu holding time dan suhu optimum, telah diteliti sebelumnya dapat mempengaruhi yield levoglucosan.
Pada penelitian ini, metode pirolisis yang dipilih adalah fast pyrolysis. Pemilihan ini dikarenakan levoglucosan akan terbentuk dari depolimerasi selulosa pada tahap awal fast-pyrolysis pada rentang  suhu 315°C-400°C dan setelah itu akan terjadi secondary reaction menghasilkan turunan levoglucosan yaitu furan dan piranosa terdehidrasi.
Dalam penelitian ini, fast pyrolysis dilakukan dalam reaktor unggun tetap dengan konfigurasi looping system pada rentang suhu (450 - 550)°C, laju alir N2 adalah 1500 ml/menit dan 3000 ml/menit serta variasi biomassa adalah 51.3 gram dan 81.3 gram. Analisis levoglucosan didukung dengan instrumen GC-MS.
Hasil levoglucosan pada biomassa tandan kosong sawit tidak diperoleh karena proses pirolisis tidak terjadi sampai lapisan selulosa biomassa sedangkan pada biomassa cangkang sawit diperoleh yield levoglucosan tertinggi pada suhu 500°C dengan holding time 2.4 s yaitu sebesar 2.33 % (g/g) biomassa.

Levoglucosan is a major component in the form of thick liquid from the results of biomass pyrolysis which is widely used as artificial pesticides, growth regulators, macrolide antibiotics and others. Biomass is composed of hemicellulose, cellulose, lignin and a small amount of organic components which each can be hydrolyzed and degraded at different rates, different mechanisms and pathways.
It is known that levoglucosan is the product most obtained from cellulose pyrolysis of biomass. The biomass used in this study is  palm kernel shell and empty palm fruit bunches. The choice of biomass is based on the composition of the biomass containing > 30% cellulose. The factors of pyrolysis operating namely holding time and optimum temperature conditions that have been studied previously, can affect levoglucosan yield.
In this study, the pyrolysis method chosen was fast pyrolysis. This selection is because levoglucosan will be formed from cellulose depolymerization in the early stages of fast-pyrolysis at a temperature range of 315°C-400°C and after that a secondary reaction will occur resulting in levoglucosan derivatives namely furan and dehydrated pyranose.
In this study, fast pyrolysis was carried out in a fixed bed reactor with a looping system configuration in the temperature range (450-550)°C, the flow rate of N2 was 1500 ml/minute and 3000 ml/minute and the biomass variation was 51.3 grams and 81.3 grams. Analysis of levoglucosan was supported by the GC-MS instrument.
The results of levoglucosan in the empty palm fruit bunches biomass were not obtained because the pyrolysis process did not occur until the cellulose layer of biomass while in palm kernel shell biomass was obtained the highest levoglucosan content at 500°C with a holding time of 2.4 s which was 2.33 % (g/g) biomass.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muthia Hanun
"Penggunaan plastik pada proses ko-pirolisis trigliserida dapat berguna untuk menyumbangkan hidrogen selama proses ko-pirolisis serta mengurangi limbah plastik. Pada penelitian ini, reaksi ko-pirolisis akan dilakukan di dalam reaktor tangki berpengaduk menggunakan katalis Ni/ZrO2.SO4, yang diharapkan mampu memenuhi karakteristik mesopori dan meningkatkan yield produk hasil. Tujuan penelitian ini adalah untuk mendapatkan pengaruh rasio umpan plastik polipropilena dari 0%, 25%, 50%, 75% dan 100% berat umpan terhadap hasil produk ko-pirolisis dan komposisi bio-oil. Produk ko-pirolisis dianalisis berdasarkan yield, analisis FTIR, dan GC-MS, untuk menentukan kemungkinan jalur reaksi, komposisi senyawa, dan ikatan kimia yang ada di dalam bio-oil. Penggunaan katalis Ni/ZrO2.SO4 mampu meningkatkan yield ­produk akhir dan mengurangi produksi wax dan gas. Dari hasil ko-pirolisis, peningkatan rasio polipropilena pada umpan dapat mengurangi jumlah senyawa oksigenat dari 75.88% pada variasi 0% PP menjadi 67.17% pada variasi 25% PP, 55.38% pada variasi 50%, dan 44.96% pada variasi 75% PP. Setelah proses pirolisis, reaksi hidrodeoksigenasi dilakukan dalam reaktor tangki berpengaduk dengan dialiri gas hidrogen bertekanan 14 bar. Produk akhir hidrodeoksigenasi menunjukkan bahwa katalis Ni/ZrO2.SO4 tidak menunjukkan efek positif untuk mengurangi komponen oksigenat pada bio-oil­. Hal ini diakibatkan oleh faktor hambatan sterik dan keasaman katalis, sehingga reaksi cenderung mengarah ke esterifikasi.

The use of plastic in triglyceride co-pyrolysis were for donating hydrogen during the co-pyrolysis process and reducing plastic waste. In this study, the co-pyrolysis reaction will be carried out in a stirred reactor using a Ni/ZrO2.SO4 catalyst, which is expected to meet mesoporous characteristics and increase product yield. The purpose of this study was to determine the effect of the polypropylene plastic feed ratio of 0%, 25%, 50%, 75% and 100% by weight of the feed on the co-pyrolysis product yield and bio-oil composition. The co-pyrolysis products were analyzed based on yield, FTIR, and GC-MS, to determine possible reaction pathway, compound composition, and chemical bonds in bio-oil. The use of Ni/ZrO2.SO4 catalyst could increase the final product yield and reduce the production of wax and gas. From the results of co-pyrolysis, increasing the ratio of polypropylene in the feed could reduce the amount of oxygenate compounds from 75.88% in the 0% PP variation to 67.17% in the 25% PP variation, 55.38% in the 50% variation, and 44.96 % at 75% PP variation.. After the pyrolysis process, the hydrodeoxygenation reaction was carried out in a stirred tank reactor with hydrogen gas flowing under a pressure of 14 bar. The final product of hydrodeoxygenation showed that the Ni/ZrO2.SO4 catalyst did not show a positive effect on reducing the oxygenate component of the bio-oil. This is caused by the steric hindrance and acidity of the catalyst, so it tends to lead to esterification.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Miranda Meidistira
"Sampah daun dapat dikonversi menjadi produk yang lebih berguna dengan menggunakan beberapa proses, salah satu prosesnya adalah menggunakan proses pirolisis. Proses pirolisis dapat dilakukan dengan membutuhkan beberapa parameter, yaitu bahan baku, suhu, waktu tinggal, dan juga laju pemanasan. Pada proses pirolisis, biomassa mengalami proses penyusutan. Pada penelitian ini, variabel yang digunakan adalah suhu, laju alir gas, dan rasio kombinasi katalis dengan tujuan melihat hubungan variabel-variabel tersebut dengan proses penyusutan dan produk pirolisis yang dihasilkan. Proses pirolisis menghasilkan produk berupa produk cair, gas, dan padat. Dari hasil penelitian, produk padatan kemudian dikarakterisasi menggunakan analisis Fourier Transform Infrared Spectroscopy (FTIR) dan dihasilkan bahwa terdapat beberapa perbedaan yang terdapat pada padatan pirolisis katalitik dan non-katalitik dan terdapat perbedaan intensitas pada peak-peak spektra yang menunjukan adanya penyusutan dari struktur penyusun biomassa. Produk cair yang terbentuk dianalisis dengan menggunakan alat Gas Chromatography – Mass Spectroscopy (GC-MS) dan didapatkan bahwa produk cair memiliki kandungan oksigenat dan non-oksigenat di dalamnya. Kandungan oksigenat dan non-oksigenat yang berada dalam produk cair dilakukan dengan menggunakan bantuan katalis ZSM-5 (Zeolite Socony Mobil-5) dan YSZ (Yttria Stabilized Zirconia). Katalis ZSM-5 berfungsi sebagai katalis asam yang dapat meningkatkan kandungan hidrokarbon dan katalis YSZ berfungsi untuk meningkatkan produksi non-oksigenat pada produk bio-oil yang dihasilkan. Produk distribusi yang dihasikan dengan proses katalitik memiliki produk distribusi yang lebih beragam. Penambahan katalis juga menurunkan energi aktivasi yang digunakan sebesar 5,41%.

Leaf waste can be converted into more useful products by using several processes, one of which is using a pyrolysis process. The pyrolysis process can be carried out by requiring several parameters, namely raw material, temperature, residence time, and also the rate of heating. In the pyrolysis process, biomass undergoes a shrinkage process. In this study, the variables used are temperature, gas flow rate, and catalyst combination ratio with the aim of seeing the relationship of these variables with the shrinkage process and the resulting pyrolysis product. The pyrolysis process produces products in the form of liquid, gas and solid products. From the results of the study, solid products were then characterized using Fourier Transform Infrared Spectroscopy (FTIR) analysis and it was found that there were some differences found in catalytic and non-catalytic pyrolysis solids and there were differences in intensity in the spectral peaks that showed shrinkage of biomass. The liquid product formed was analyzed using the Gas Chromatography - Mass Spectroscopy (GC-MS) tool and it was found that the liquid product contained oxygenate and non-oxygenate in it. Oxygenate and non-oxygenate content in liquid products is increased by using ZSM-5 catalysts (Zeolite Socony Mobil-5) and YSZ (Yttria Stabilized Zirconia). ZSM-5 catalyst serves as an acid catalyst that can increase the hydrocarbon content and the YSZ catalyst serves to increase the production of non-oxygenate in the resulting bio-oil product. Distribution products produced by catalytic processes have a more diverse distribution of products. The addition of catalysts also reduced the activation energy used by 5.41%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alex Lu Chia Yang
"Pyrolysis is the thermal degradation of a carbonaceous solid by heat in the absence of oxygen. The feedstocks, such as biomass or solid wastes, are heated to a temperature between 400 and 600°C. The reaction produces three products: gas, pyro-fuel oil, and char. Pyrolyzing solid wastes to make pyro-oil and bio-char provides a renewable, low cost way to produce liquid fuel. The pyro-oil could be mixed with diesel fuel and the fuel properties suitable for a diesel engine generator could be investigated. This work uses a controlled microwave heating technique to pyrolyze used rubber tires into pyro-oil. The thermal treatment of received used rubber tires was done in a modified domestic microwave with a controlled heated stirred bed system. In earlier work, it was found that rubber tires are a poor absorber of microwaves. An appropriate microwave-absorbing material, such as activated char, was added to initiate the pyrolysis process, thus producing pyro-oil. The characteristics of this pyro-oil and the effect of the microwave absorber on the yield of pyro-oil are presented in the paper. Particular attention was paid to the temperature profile during microwave heating of the used rubber tires. The benefit of this application is the conversion of the waste tires into renewable and high calorific pyro-oil. In addition, properties of tire pyrolysis oil have been determined and compared with the results of commercial diesel fuel."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:2 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fianna Utomo
"Bonggol jagung memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena banyaknya limbah pertanian jagung Indonesia. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Co-pyrolysis antara bonggol jagung-plastik polipropilena memiliki efek sinergetik yang mengubah sebagian fraksi polar dari bio-oil menjadi fraksi non-polar yang mengandung senyawa non-oksigenat sebagai bahan baku untuk sintesis biofuel. Pada percobaan ini, pirolisis dari fraksi non-polar dilakukan untuk memproduksi bio-oil yang memiliki karakteristik yang dekat dengan bensin. Pirolisis dilakukan pada dua tahapan, di mana tahap pertama adalah co-pyrolysis untuk memproduksi fraksi non-polar dan tahap kedua adalah untuk mempirolisis fraksi non-polar tersebut untuk menurunkan viskositasnya menjadi dekat dengan viskositas bensin. Kedua tahap pirolisis akan dilakukan dalam reaktor tabung berpengaduk pada suhu 100 RPM, heating rate 5°C/menit, dan laju alir nitrogen 750 mL/menit pada tekanan gas nitrogen 3 bar. Variasi yang dilakukan berupa suhu akhir pirolisis tahap kedua. Produk bio-oil dikarakterisasi menggunakan H-NMR, GC-MS, LC-MS, FTIR, dan viskometer. Yield dan viskositas bio-oil dari hasil pirolisis tahap kedua bergantung kepada suhu akhir pirolisis, di mana semakin tinggi suhu, yield akan semakin tinggi dan viskositas juga cenderung untuk semakin tinggi. Adapun bio-oil dengan suhu akhir pirolisis tahap kedua 300°C memiliki karakteristik yang paling dekat dengan bensin.

Corncobs biomass has a high potential to be developed into bio oil because of large amount of maize farm waste in Indonesia. In addition, plastic waste is also abundant in Indonesia, especially polypropylene. Co pyrolysis between corncobs and polypropylene has a synergetic effect that transforms some polar fraction of bio oil into non polar fraction containing non oxygenate compounds as precursor for synthesis of biofuel. In the present work, pyrolysis of the non polar fraction of bio oil was led to produce bio oil which had similar characteristics to that of gasoline. The pyrolysis was carried out in two stages, where the first stage was co pyrolysis to produce non polar bio oil and the second stage was pyrolysis of non polar fraction to reduce its viscosity similar to that of gasoline. The first and second stage pyrolysis was carried out in a stirred tank reactor at 100 RPM, heating rate of 5°C min and nitrogen flow rate of 750 mL min under 3 bar nitrogen gas pressure with the second stage pyrolysis final temperature varied. The resulting bio oil product was characterized by FT IR, GC MS, H NMR, viscometer and LC MS. Bio oil viscosity and yield of the second stage pyrolysis heavily depended on its final temperature, in which the higher the temperature, the higher was the viscosity, yet the higher was the bio oil yield. Bio oil with secondary pyrolysis final temperature of 300°C has the most similarities to gasoline characteristics. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desy Kurniawati
"ABSTRAK
Konversi limbah plastik HDPE menjadi bahan bakar minyak, merupakan langkah konkrit saat ini untuk menghasilkan alternative energi. Pirolisis menjadi salah satu pilihan yang dapat diambil, yang mana selama ini proses pirolisis masih dikenal sebagai proses konversi dengan kebutuhan energi yang cukup tinggi. Oleh karena hal tersebut tujuan dari penelitian ini adalah dengan mengembangkan metode pirolisis baik thermal pyrolysis dan catalytic pyrolysis berbasis pendinginan passive cooling system pada kedua metode tersebut yang rendah energi untuk menghasilkan minyak bahan bakar dengan sifat mendekati karakteristik minyak diesel. Pada catalytic pyrolysis, digunakan katalis yang berasal dari limbah PLTU yaitu abu terbang Amurang, Bukit Asam, Adaro dan Kideco. Dari keempat jenis tersebut hanya dua abu terbang yang memenuhi syarat untuk dijadikan bahan katalis ZSM5 berdasar nilai ambang batas rasio Si/Al yang dikandung dari uji SEM-EDS, yaitu dari keduannya masing-masing sebesar 21,95 dan 10,02. Hasil dari uji BET dihasilkan karakteristik ZSM5 yang memenuhi yaitu luas permukaan abu terbang Amurang dan Bukit Asam masing-masing adalah 9,11 m2/g dan 21,25 m2/g. Volume pori-pori 0,02 ml/g dan 0,03 ml/g, dan ukuran pori masing-masing 40,12 Å dan 25,93 Å. Kondisi operasi pyrolysis optimal pada suhu reaktor 500oC dengan specific energy consumption sebesar 44,35 watt/gram, dengan laju kalor 14497,85 KJ/h, dengan suhu air pendingin LCS 20oC dan dengan ukuran feed reaktor bekisar 2mm - < 20 mm. Pada thermal pyrolysis dihasilkan konversi fase cair 89%, dengan tanpa endapan dan 11% gas. Sedangkan untuk catalytic pyrolysis perlu penambahan katalis di bagian reaktor sebesar 30% dari jumlah katalis, dengan peletakan 70% katalis di ruang katalis pada saluran uap sebelum LCS, dan dihasilkan konversi sebesar 85% cairan. Karakteristik hasil densitas dan viscositas kinematis dari thermal pyrolysis adalah 0,830 gram/ml dan 2,045 mm2/s (pada suhu uji 40oC), sedangkan hasil densitas dan viscositas kinematis dari catalytic pyrolysis adalah 0,827gram/ml dan 1,799 mm2/s (pada suhu uji 20oC).

ABSTRACT
The conversion of HDPE waste into fuel oil is concrete step to produce alternative energy. Pyrolysis is one of the choices that can be taken, which during this time the pyrolysis process still known as a conversion process with high energy requirements. Therefore, the aim of this research is to develop a pyrolysis method for both thermal pyrolysis and catalytic pyrolysis based on passive cooling system-based cooling in both low energy methods to produce fuel oil with properties as characteristics of diesel oil. In catalytic pyrolysis, catalysts derived from PLTU waste are used, namely Amurang, Bukit Asam, Adaro and Kideco fly ash. From the four types coal fly ash, only two fly ashes were qualified to be used as ZSM5 catalysts based on value of the Si/Al ratio contained from the SEM-EDS test, with the amount respectively are 21.95 and 10.02. The results of the BET test produced ZSM5 characteristics with the surface area of ​​Amurang and Bukit Asam fly ash, respectively are 9.11 m2/g and 21.25 m2/g. The pore volume is 0.02 ml/g and 0.03 ml/g, and the pore size is 40.12 Å and 25.93 Å. Pyrolysis operating conditions are optimal at reactor temperatures of 500oC with specific energy consumption 44.35 watt/gram, with heat transfer rate about 14497,85 KJ/h with cooling water temperature of 20oC for LCS, with reactor feed sizes ranging from 2mm - <20mm. In thermal pyrolysis produced 89% liquid phase conversion, with no deposits and 11% gas. Whereas for catalytic pyrolysis it is necessary to add catalyst in the reactor by 30% of the amount of catalyst, by placing 70% catalyst in the catalyst chamber in the steam channel before LCS and resulting in a conversion of 85% liquid. The characteristics of the kinematic density and viscosity results of thermal pyrolysis are 0.830 gram/ml and 2.045 mm2/s (at a test temperature of 40oC), while the kinematic density and viscosity results of catalytic pyrolysis are 0.827gram/ml and 1.799 mm2/s (at a test temperature of 20oC), while the kinematic density and viscosity results of catalytic pyrolysis are 0.827gram/ml and 1.799 mm2/s (at a test temperature of 20oC)."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nasruddin A Abdullah
"Liquid smoke can be produced by using the pyrolysis process. Biomass, as the raw material, is heated in a pyrolysis reactor to generate pyrolysis vapor. The pyrolysis vapors coming from the reactor are condensed in a liquid collection system to produce liquid smoke. A liquid collection system is a device used to convert smoke into liquid. Liquid smoke is often also called bio-oil, which is widely used as a fuel, as a preservative, and as other chemical substances. The objective of this paper was to provide the latest information on improving the liquid collection system from existing papers, and conclude with some inputs and application strategies. Studies were performed using the product parameters, equipment, and operational conditions referred to in the existing journal articles. Using a proper liquid collection system will give a better result in the liquid collection process."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:7 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>