Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127000 dokumen yang sesuai dengan query
cover
Dewi Lesmawaty
"Pengembangan produk baru merupakan hal yang sangat penting dalam menjaga
pertumbuhan perusahaan. Herbisida glyphosate dengan kemampuannya yang
spesifik dan efektif dalam menghambat enzim 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS) menjadi herbisida yang luas dipakai di seluruh dunia
termasuk di Indonesia yaitu sebesar 51% pasar pada Maret 2013. Proses
pembuatan produk baru ammonium glyphosate 400 g/L SL dilakukan melalui dua
metode optimasi yaitu Response Surface Method (RSM) dan Artificial Neural
Network-Genetic Algorithm (ANN-GA). Kemampuan prediksi respon RSM dan
ANN dibandingkan melalui nilai root mean squared error (RMSE). Dari hasil
prediksi RSM, RMSE untuk pembuatan ammonium glyphosate berbasa NH4OH
dan berbasa NH4HCO3 secara berturut-turut adalah 44.37 dan 73.2. Sedangkan
dengan prediksi ANN RMSE untuk pembuatan ammonium glyphosate berbasa
NH4OH dan berbasa NH4HCO3 secara berturut-turut adalah 122.04 dan 143.80.
Pada penelitian ini juga ditunjukkan bahwa RSM memiliki kemampuan lebih
baik dalam menentukan kondisi optimal jika dibandingkan dengan ANN-GA.
Berdasarkan hasil optimasi, formulasi ammonium glyphosate berbasa NH4OH
dapat menurunkan biaya sebesar 3.71% dan dengan berbasa NH4HCO3 dapat
menurunkan biaya 11.08% dari komposisi yang sudah ada.

New product development is very important for the companies to maintain the
growth. Since its specificity and affectivity in inhibits 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS), glyphosate becomes a worldwide herbicide
including in Indonesia with 51% market size in March 2013. The making of the
proposed new product, ammonium glyphosate 400 SL, is optimized by the two
methodologies Response Surface Method (RSM) and hybrid of Artificial Neural
Network-Genetic Algorithm (ANN-GA). Prediction capability of the RSM and
ANN model were determined by comparing the root mean squared error (RMSE).
From the RSM prediction, the RMSE for the NH4OH and NH4HCO3 experiment
were 44.37 and 73.2, respectively. And from the ANN prediction, the RMSE for
the NH4OH and NH4HCO3 experiment were 122.04 and 143.80, respectively. In
this study, RSM also showed its superiority in determine the optimum condition
for making ammonium glyphosate compared to the ANN-GA. Based on the
optimization result, NH4OH base formulation gave the 3.71% cost saving and
NH4HCO3 base formulation gave 11.08% cost saving compared to the existing
product.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35224
UI - Tesis Membership  Universitas Indonesia Library
cover
Olivia Bunga Pongtuluran
"ABSTRAK
Teknologi ekstraksi tanaman obat yang telah umum digunakan pada industri obat herbal memiliki kekurangan dari segi efisiensi waktu ekstraksi, beban pemeliharaan alat yang tinggi, konsumsi pelarut yang banyak dan tidak hemat energi. Metode ektraksi dengan ultrasonik menawarkan suatu proses yang berdasarkan hasil dari beberapa penelitian dianggap lebih sederhana dan efisien. Proses ultrasonik dipengaruhi oleh beberapa faktor yaitu: suhu, power dan frekuensi, intensitas, waktu, preparasi, jenis pelarut, dan jumlah pelarut yang digunakan. Pada penelitian ini digunakan frekuensi 20 kHZ, amplitudo 32% dan intensitas sebesar 0,5. Desain percobaan pada penelitian ini menggunakan metode Taguchi yang mengaplikasikan model Orthogonal Array dan RSM dengan model Central Composite Design(CCD). Ada tiga variable independen dalam penelitian ini yaitu waktu, rasio pelarut terhadap sampel dan kadar etanol, dimana masing- masing memiliki 3 level dan respon dari penelitian ini diukur dari persentase yield yang dihasilkan, banyaknya kandungan total fenol dan total flavonoid yang terdapat dalam ekstrak.  Hasil penelitian menunjukkan bahwa semakin tinggi kadar etanol, semakin besar kadar total fenol dan flavonoid yang dihasilkan namun yield semakin rendah. Namun, rasio solvet yang semakin besar menghasilkan kadar yield yang tinggi, namun variabel ini tidak berpengaruh pada respon yang lain. Hasil penelitian ini juga menunjukkan bahwa faktor waktu tidak memberikan dampak yang signifikan terhadap  ketiga respon. 

ABSTRACT
The conventional medicinal plant extraction technologies that have been applied widely in herbal medicine industries neglect some matters i.e the time efficiencies, low cost maintenance, less  solvent and low energy consumption. An ultrasound- assisted extraction process which offered the modest and more effective outcome based on  several research influenced by some variables  such as temperature, power and frequency, intensity, extraction time, preparation process, type and quantity of solvent. This research used an ultrasound equipment which was set at frequency 20 kHz, amplitude 32% and the 0,5 of intensity. Moringa leaves have many chemical contents such as protein, vitamins A, B and C, beta carotene, phenolic acid, lignin, carbohydrates, fibre, and flavonoids whose pharmacological activities are as wound healing, anti-anemia, anti-inflammatory, antipyretic, analgesic, and antimicrobial. The experimental design of this research employed Taguchi method with 9 runs based on Orthogonal Array (OA) model and 40 runs of RSM experiments constructed by Central Composite Design (CCD) with 2 replications. There were 3 independent variables introduced namely extraction time, solvent-to-solid ratio, and ethanol concentration for each has 3 levels and the experiment responses are yield percentage, total phenolic content, and total flavonoid content of the extract.  The output showed that the more ethanol concentration used the more phenolic and flavonoid content generated, however the yield production decreases. On the other hand the higher the ratio creates the high yield yet this variables showing no impact towards two other responses. The result of this study also revealed that extraction time has no effect on all the responses."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Siti Astari Pratiwi
"Tesis ini bertema tentang optimasi dari sistem chiller adsorpsi untuk mencari koefisien performa (COP) dan kapasitas pendinginan. Optimasi dilakukan dengan menggunakan gabungan antara jaringan saraf tiruan dan algoritma genetika (GA). Simulasi yang dilakukan adalah pengembangan sistem chiller adsorpsi yang data simulasinya sudah pernah di validasi dengan data eksperimen sebelumnya. Parameter laju alir massa, temperatur, dan waktu siklus divariasikan sebagai variabel penentu. Sementara COP dan kapasitas pendinginan mejadi fungsi objektifnya.
Pada tesis ini, jaringan saraf tiruan yang terbentuk menunjukkan bahwa error terkecil jaringan yang terbentuk adalah 0.001532624 atau 0.153%. Hal ini menyatakan bahwa jaringan yang terbentuk dapat memprediksi fungsi objektif COP dan SCP dengan tingkat akurasi sebesar 99.85. Selisih (error) terkecil titik optimum prediksi jaringan saraf tiruan chiller adsorpsi dua bed Silica Gel 123 dan Air dengan nilai simulasi software-nya sebesar 0.027 untuk SCP dan 0.034 untuk nilai COP.

The optimization of adsorption chiller system that purposed to approach the optimal coefficient of performance (COP) and cooling capacity is presented in this thesis. The combination of artificial neural network (ANN) and genetic algorithm (GA) is applied to optimize the simulation of adsorption chiller. The adsorption chiller system simulation is an integrated two adsorption bed that developed from previous simulation and experiment that had been done. In this thesis, mass flow, temperature, and time cycle are varied and considered as decision variable while the COP and cooling capacity is chosen as the objective function.
In this thesis, the artificial neural network that formed presents the smallest network error is 0.001532624 or 0.153. This states that the formed network can predict the objective functions of COP and SCP with an accuracy rate of 99.85. The smallest optimum point difference (the error) between the value prediction of neural network adsorption chiller two bed Silica Gel 123 and Water and the software simulations value is 0.027 for SCP and 0.034 for COP.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T55183
UI - Tesis Membership  Universitas Indonesia Library
cover
Timotius Kelvin Wijaya
"Kebutuhan energi untuk rumah tangga atau bangunan di Indonesia sedang tumbuh secara signifikan. Oleh karena itu, efisiensi energi dalam energi pendingin sangat dibutuhkan. Penelitian ini bertujuan untuk mengembangkan sistem kontrol yang dapat menentukan setpoint paling optimal untuk laju aliran air massa untuk meminimalkan energi dari sistem pendingin. Bangunan dimodelkan oleh perangkat lunak Sketchup dan energi pendingin dimodelkan dengan menggunakan teknik co-simulasi antara EnergyPlus dan Matlab melalui BCVTB (Building Controls Virtual Test). Menggunakan Artificial Neural Network (ANN) dan optimisasi Genetic Algorithm (GA) untuk membuat prediksi optimasi titik yang akurat. Penelitian ini mendapatkan penghematan konsumsi listrik chiller HVAC yang sudah menggunakan sistem part load terutama pada daya pompa chiller sebesar 67,675% penghematan dari kondisi aslinya.

Energy needs for households or buildings in Indonesia are growing significantly. Therefore, energy efficiency in cooling energy is needed. This study aims to develop a Control Algorithm that can determine the most optimal set point for the mass flow rate of air to drain energy from the cooling system. Buildings are modeled by Sketchup software and cooling energy is modeled using co-simulation techniques between EnergyPlus and Matlab through BCVTB (Building Controls Virtual Test). Use dynamic neural networks (ANN) and genetics algorithm (GA) optimization to make accurate point optimization predictions. This study found the saving of HVAC chiller electricity consumption that already use part load systems, especially on the power of the chiller pump by 67,675% savings from its original condition."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pandu Apriyanto
"Salah satu upaya meminimalkan hambatan gelombang untuk mengurangi hambatan total adalah konfigurasi multi lambung dengan memvariasikan penempatan outrigger. Penelitian ini bertujuan untuk mencari konfigurasi optimal pentamaran lambung warp-chine untuk mengurangi hambatan total yang signifikan untuk berbagai kecepatan. Terbatasnya informasi penggunaan lambung warp-chine pada multihull berkaitan dengan karakteristik lambung serta optimalisasi penempatan outrigger menjadi dasar dari penggunaan lambung warp-chine pada penelitian ini. Perhitungan dan optimasi menggunakan program komputer MATLAB menggunakan metode Artificial Neural Network dan Algoritma Genetika. Hasil optimasi menunjukkan penurunan hambatan pada saat Fr>0.4 baik koefisien hambatan gelombang maupun koefisien hambatan total dengan penurunan rata-rata dari masing-masing hambatan sebesar 1.47% dan 4.06%. Hasil menunjukkan bahwa proses optimasi pentamaran pada penelitian ini dapat diprediksi dengan baik pada pentamaran dengan kecepatan tinggi, namun belum bisa diprediksi dengan baik pada pentamaran dengan kecepatan rendah.

One effort to minimize wave resistance to reduce total resistance is a multihull configuration by varying the placement of the outrigger. This study aims to find the optimal configuration of the warp chine hull to reduce significant total resistance for various speeds. The limited information about the use of warp chine hull in multihull related to the characteristics of the hull and the optimization of outrigger placement is the basis of the use of warp chine hull in this study. Calculation and optimizations using the MATLAB computer program using Artificial Neural Network methods and Genetic Algorithms. The optimization results show a decrease in resistance when Fr> 0.4 both the wave resistance coefficient and the total resistance coefficient with an average reduction of each resistance by 1.47% and 4.06%. The results show that the optimization process in this study can be predicted well in the high speed application, but it cannot be predicted well in the low speed application."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Abdurrahman Pabe
"Backpropagation neural network backpropagation adalah salah satu algoritma machine learning yang dapat digunakan untuk melakukan klasifikasi data. Klasifikasi data dilakukan dalan serangkaian proses training dan testing. Pada akhir proses testing yang juga merupakan akhir dari proses backpropagation, akan didapatkan nilai recognition rate. Nilai recognition rate merupakan nilai yang menandakan banyaknya data yang berhasil diklasifikasi dengan benar pada proses testing terhadap seluruh testing dataset. Recognition rate erat kaitannya dengan masalah underfitting, overfitting, local minima, dan local maxima. Keempat masalah ini menyebabkan nilai recognition rate yang didapatkan kurang optimal. Namun biasanya untuk menangani keempat masalah ini dilakukan pengaturan pada beberapa paramter, misalnya learning rate, momentum, jumlah layer, jumlah nodes, weights, dan lain-lain. Pada tulisan ini akan dijelaskan program optimasi yang melakukan pengaturan pada nilai inisialisasi weights untuk menangani keempat tersebut. Program ini melakukan inisialisasi weights menggunakan genetic algorithm pada backpropagation yang mengimplementasikan k-fold crossvalidation. Untuk menguji dan membandingkan program optimasi terhadap program implementasi backpropagation yang tidak dioptimasi program non-optimasi, digunakan empat dataset, yaitu iris flower dataset, seeds dataset, wine dataset, dan EEG dataset buatan. Pada akhir pengujian didapatkan hasil bahwa program optimasi berhasil mendapatkan nilai recognition rate lebih tinggi pada iris flower dataset, yaitu 97.33 pada program optimasi dan 96.67 pada program non-optimasi. Kemudian didapatkan pula nilai recognition rate yang lebih tinggi pada seeds dataset, yaitu 93.33 pada program optimasi dan 92.86 pada program non-optimasi. Lalu didapatkan pula nilai recognition rate yang lebih tinggi pada EEG dataset buatan, yaitu 37.5 pada program optimasi dan 35.94 pada program non-optimasi. Sedangkan pada wine dataset didapatkan nilai recognition rate yang sama antara program optimasi dan program non-optimasi, yaitu 99.44.

Backpropagation neural network backpropagation is one of machine learning algorithms that can be used to classify data. The data classification is done in a series of trainig and testing processes. At the end of testing process that is also the end of backpropagation process, the algorithm will produce recognition rate value. Recognition rate value indicates the total of correctly classified data in testing process againts all data in testing dataset. Recognition rate value related to underfitting, overfitting, local minima, and local maxima problems. However, to handle these problems adjusting some parameters are necessary to be done. These parameters are learning rate, momentum, number of layers, number of nodes, weights, etc. In this writting will be explained an optimization program that adjusts the initialization values of weights to handle those four problems. This program initializes weights using genetic algorithm on backpropagation implementing k fold crossvalidation. To test and compare the optimization program with a program that implements backpropagation without optimization non optimzation program four datasets will be used, those are iris flower dataset, seeds dataset, wine dataset, and artificial EEG dataset. At the end of the test, the results show that optimization program obtained higher recognition rate value on iris flower dataset, that is 97.33 on optimization program againts 96.67 on non optimization program. Other than that, optimization program obtained higher recognition rate value on seeds dataset, that is 93.33 on optimization program againts 92.86 on non optimization program. Also, optimization program obtained higher recognition rate value on artificial EEG dataset, that is 37.5 on optimization program againts 35.94 on non optimization program. However, the optimization program obtained an equal recognition rate value on wine dataset, that is 99.44."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ruth Palupi Widya Handari
"Durasi pemeliharaan merupakan hal yang penting dalam kegiatan dry docking kapal. Estimasi durasi pemeliharaan diperlukan untuk membuat jadwal pemeliharaan kapal pada suatu galangan. Sayangnya saat ini pihak galangan belum mempunyai standar yang baku dalam mengestimasi durasi pemeliharaan kapal. Penelitian ini bertujuan untuk memperoleh model matematis estimasi durasi pemeliharaan kapal dry docking menggunakan Artificial Neural Network dan Genetic Algorithm. Dengan melihat volume dan jenis pekerjaan dry docking sebagai input, diperoleh model estimasi durasi dengan nilai rata-rata error 5.12 hari. Hasil estimasi kemudian dibandingkan dengan metode Neural Network standar dan metode Decision Tree-Genetic Algorithm-Neural network. Hasil penelitian menunjukkan bahwa metode Decision Tree-Genetic Algorithm-Neural network mempunyai nilai estimasi yang lebih akurat dibandingkan dengan kedua metode lainnya.

Maintenance time duration is an important things in ship dry docking activities. Estimating the time duration is necessary for ship schedule arranging in dock. Unfortunately, the dock company doesn’t have a standard procedure in estimating ship maintenance duration. The purpose of this research is to get mathematic model of dry docking maintenance duration estimation using Artificial Neural Network and Genetic Algorithm. By considering the job volume and type as input variable, the research get estimation model with root mean square error (RMSE) 5.12 day. Then, the estimation result is compared with traditional Neural network and Decision Tree-Genetic Algorithm-Neural network method. The result shows that Decision Tree-Genetic Algorithm-Neural network is more accurate in estimating the ship maintenance duration than the other two methods."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39301
UI - Tesis Membership  Universitas Indonesia Library
cover
Vinay Chandwani
"With rapid growth in the construction industry, Ready Mix Concrete (RMC) is playing a key role in offering customized quality of concrete to contractors and builders. The workability of concrete covers early age operations of concrete viz., placing, compaction and finishing. Since RMC is manufactured at a plant and transported to the construction site, hence the loss of workability is of prime concern due to the considerable time interval between mixing and placing of concrete. Workability of concrete measured using a slump test is an indicator to evaluate the life of RMC during its transportation phase and uniformity of concrete from batch to batch. The concrete mix proportions like cement, fly ash, coarse aggregates, fine aggregates, water and admixtures govern the workability or slump value of the concrete. Artificial Neural Networks (ANNs) learning from past examples gathered from RMC plant has been used to model the functional relationship between the input parameters and the slump value. The ANN model provided promising results compared to first order and second order regression techniques in modeling unknown and complex nature of relationships exhibited by the input parameters and the slump of concrete. The neural network synaptic weights which control the learning mechanism of ANN have been further used to compute the percentage relative importance of each constituent of RMC on the slump value."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:2 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Siregar, Rizki Ramadhan
"Kebutuhan energi untuk rumah tangga atau bangunan di Indonesia sedang tumbuh secara signifikan. Oleh karena itu, efisiensi pada energi pendinginan sangat dibutuhkan. Penelitian ini bertujuan untuk mengembangkan model Artificial Neural Network (ANN) yang dapat memprediksi jumlah konsumsi energi pendinginan untuk pengaturan yang berbeda dari variabel kontrol sistem pendingin VRF. Bangunan dimodelkan oleh perangkat lunak Sketchup dan sistem pendinginan dimodelkan dengan EnergyPlus. MATLAB digunakan untuk training dan testing model ANN. Untuk model testing, set data dikumpulkan melalui simulasi yang sudah divalidasi dengan pengukuran lapangan. Empat langkah yang dilakukan dalam proses training yaitu pengembangan model awal, pemilihan variabel input, optimasi model, dan evaluasi kinerja. Model yang telah dioptimalkan menunjukkan akurasi prediksi yang akurat, sehingga membuktikan potensinya untuk aplikasi dalam algoritma kontrol yang diharapkan dapat menciptakan lingkungan termal ruangan yang nyaman serta energi yang efisien. Hasil analisis TOPSIS menunjukkan penghematan daya listrik sistem VRF sebesar 26% dari daya listrik observasi.

Energy needs for households or buildings in Indonesia are growing significantly. Therefore, efficiency in cooling energy is needed. This study aims to develop an Artificial Neural Network (ANN) model that can predict the amount of cooling energy consumption for different settings of the VRF cooling system control variable. The building is modeled by the Sketchup software and the cooling system is modeled by EnergyPlus. MATLAB is used for training and testing ANN models. For model testing, data sets are collected through simulations that have been validated with field measurements. The four steps involved in the training process are initial model development, selection of input variables, model optimization, and performance evaluation. The optimized model shows accurate prediction accuracy, thereby proving its potential for application in control algorithms that are expected to create a comfortable and energy efficient indoor thermal environment. The results of the TOPSIS analysis show that the VRF system's electrical power savings are 26% of the observed electrical power."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richard Mahendra Putra
"Debu vulkanik merupakan partikel yang sangat berbahaya bagi aktivitas penerbangan. Objek tersebut dapat diamati secara spasial melalui pengamatan satelit. 8. Namun, satelit ini memiliki kelemahan berupa pergeseran akibat kesalahan sudut baca ketika objek yang diamati jauh dari posisi nadir satelit. Data target output debu vulkanik yang digunakan merupakan hasil interpretasi forecaster berdasarkan pengamatan satelit Terra/Aqua (MODIS) yang memiliki orbit polar sehingga pengamatan dilakukan tepat diatas objek. Algoritma sampel yang dilakukan untuk membuat model adalah dengan variasi sampel berupa data piksel tunggal dan data rata-rata piksel pada citra satelit Himawari Untuk menentukan lokasi debu vulkanik berdasarkan citra satelit, dibutuhkan interpretasi dari forecaster. Pada penelitian ini, dibuat sebuah sistem pemodelan berbasis artificial neural network untuk menghasilkan output sebaran debu vulkanik secara otomatis berdasarkan training data dari citra satelit Himawari 8. Namun, satelit ini memiliki kelemahan berupa pergeseran akibat kesalahan sudut baca ketika objek yang diamati jauh dari posisi nadir satelit. Data target output debu vulkanik yang digunakan merupakan hasil interpretasi forecaster berdasarkan pengamatan satelit Terra Aqua (MODIS) yang memiliki orbit polar sehingga pengamatan dilakukan tepat diatas objek. Algoritma sampel yang dilakukan untuk membuat model adalah dengan variasi sampel berupa data piksel tunggal dan data rata-rata piksel pada citra satelit Himawari Sedangkan variasi data input yang digunakan terdiri dari 3 input, 16 input, dan 4 input kanal satelit. Metode pengujian performa dari model dilakukan dengan melihat citra sebaran debu yang dihasilkan model yang diverifikasi di setiap titik piksel. Berdasarkan hasil penelitian, model dengan menggunakan 3 input kanal satelit dapat mendeteksi sebaran debu vulkanik dengan baik pada data training maupun testing. Untuk koreksi kesalahan paralaks satelit Himawari memiliki dampak yang cukup signifikan terhadap hasil output model. Akurasi dari output model meningkat signifikan setelah dilakukan koreksi spasial akibat kesalahan paralaks yang menghasilkan akurasi model pada saat testing mencapai 95 persen "
2019
T53147
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>