Ditemukan 149121 dokumen yang sesuai dengan query
Hade Saputra Haslim
"Sistem pengereman kereta monorail bertujuan supaya energi bisa digunakan seefisien mungkin. Metode pengereman regeneratif bertujuan memanfaatkan kelebihan energi akibat kondisi pengereman. Kelebihan energi ini dirubah menjadi energi listrik agar dapat digunakan kembali. Tetapi ketika arus balik terlalu besar terjadi overvoltage yang dapat merusak komponen-komponen inverter. Sehingga dibutuhkan pembatas tegangan arus stator sumbu q agar tegangan DC link tidak melebihi referensi. Akibat dari pembatasan tegangan maka kecepatan sistem tidak dapat mengikuti kecepatan acuan sehingga diperlukan bantuan pengereman mekanik. Skripsi ini membahas mengenai simulasi pengereman regeneratif dan mekanik pada kereta monorail disertai simulasi dengan perubahan gain pada pengendali kecepatan, maupun dengan input kecepatan yang berubah-ubah.
Braking condition could generate energy that we can use again so the energy becomes efficient. The purpose of regenerative braking in monorail is to use the excessive energy from braking system and convert it to electricity so we can use it easily. But when the back current is too much it can cause overvoltage which can make electrical component broken. So we need voltage limiter for q-axis stator current which keeps DC link voltage in certain value. Because of the voltage limiter, the braking torque become decrease and actual speed could not follow the reference speed. So we need another braking system, for this case we use mechanical braking. This simulation is for braking system in monorail using regenerative braking and mechanical braking."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46693
UI - Skripsi Membership Universitas Indonesia Library
Achmad Alvien Nurhidayatullah
"Kendaraan listrik memiliki permasalahan utama yaitu memiliki jarak tempuh yang dekat dikarenakan energi listrik yang tersimpan dalam baterai jumlahnya terbatas. Solusi yang dapat digunakan untuk meningkatkan jarak tempuh dan efisiensi dari kendaraan listrik adalah menggunakan pengereman regeneratif. Pengereman regeneratif adalah sistem pengereman yang melakukan pengembalian energi yang terbuang pada saat proses pengereman kendaraan. Sistem ini mengubah energi kinetik kendaraan menjadi energi listrik yang disalurkan ke baterai yang nantinya dapat digunakan kembali. Namun, baterai sebagai media penyimpanan energi listrik pada kendaraan tidak dapat menerima lonjakan daya yang tinggi ketika terjadi pengereman regeneratif. Hal ini dikarenakan kerapatan daya dari baterai yang kecil, sehingga jika lonjakan daya terus terjadi, maka akan terjadi degradasi dan pengurangan siklus yang terjadi pada baterai. Super kapasitor dapat menjadi alternatif media penyimpanan yang baik dalam pengereman regeneratif. Super kapasitor memiliki kerapatan daya yang besar, sehingga mampu melakukan pengecasan dengan baik ketika pengereman regeneratif berlangsung.
Metodologi yang digunakan pada penelitian ini adalah melakukan pengujian pengereman regeneratif dengan variasi kecepatan roda dan variasi beban yang terhubung dengan generator DC yang nantinya terhubung dengan load, aki, dan superkapasitor. Nilai kecepatan yang semakin besar membuat daya keluaran generator lebih besar, sehingga energi yang dihasilkan lebih besar juga. Nilai resistansi yang semakin kecil membuat gaya pengereman semakin besar, sehingga waktu pengereman akan semakin cepat. Superkapasitor dapat menerima energi regenerasi paling besar dibandingkan melewati load dan pengisian aki. Hal ini dikarenakan lonjakan daya yang terjadi saat pengereman membuat energi yang dihasilkan lebih besar dengan waktu pengereman yang lebih singkat.
Electric vehicles main problem is they have a short distance due to the limited amount of electrical energy stored in the battery. The solution that can be used to increase the mileage and efficiency of electric vehicles is to use regenerative braking. Regenerative braking is a system that returns energy wasted during the vehicle braking process. This system converts the vehicle's kinetic energy into electrical energy channeled to the battery, which can later be reused. However, vehicles' batteries as a storage medium for electrical energy cannot receive high power surges when regenerative braking occurs. This is because the battery's power density is small, so if power surges continue to occur, there will be degradation and reduction of cycles in the battery. Supercapacitors can be a good alternative storage medium in regenerative braking. Supercapacitors have a large power density, so they can charge well when regenerative braking occurs.The methodology used in this study is to test regenerative braking with wheel speed variations and load variations connected to a DC generator, which will generate load, charge lead acid battery, and charge supercapacitor. The research results show that the greater the speed value, the greater the generator's output power, so the energy produced is also greater. The smaller the resistance value, the greater the braking force, so the braking time will be faster. Supercapacitors can receive the most regeneration energy compared to going through the load and charging the lead acid battery. It happened because the power surge that occurs during braking results generated more energy with a shorter braking time."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nadya Noorfatima
"Aktivitas manusia modern membutuhkan kendaraan berbahan bakar fosil sebagai moda transportasi yang cepat serta efisien. Kendaraan berbahan bakar fosil menghasilkan emisi gas buang yang berdampak buruk bagi lingkungan. Salah satu upaya untuk mengatasinya adalah dengan mengganti kendaraan berbahan bakar minyak bumi dengan Kendaraan Sadar Lingkungan KARLING yang lebih ramah lingkungan. KARLING menggunakan motor listrik BLDC berbahan bakar listrik sebagai penggerak sehingga tidak menghasilkan gas emisi sehingga aman bagi lingkungan.
Dengan latar belakang tersebut, skripsi ini bertujuan untuk mengkaji sistem kerja dan performansi pengendali yang digunakan untuk pengoperasian metode pengereman regeneratif pada KARLING, sebagaimana pengereman regeneratif dapat menjadi solusi untuk meningkatkan performa kendaraan.
Metode yang penulis gunakan dalam skripsi ini yaitu studi literatur, simulasi dengan menggunakan SIMULINK, dan pengujian pada prototipe. Simulasi dilakukan untuk mengetahui prinsip kerja pengendali terhadap pengereman regeneratif. Pengujian dilakukan untuk mengetahui respon KARLING selama pengereman regeneratif.
Modern human activities need fuel vehicles as their transportation tools. Fuel vehicles emit waste gases which are have bad effect for the environment. There is one way to cope the problem is exchanging fuel vehicle with Environment Conscious Vehicle Kendaraan Sadar Lingkungan KARLING . KARLING uses electric BLDC Motor which is moved by electrical energy so it will not emit any kind of gas. Therefore it will be eco friendly. Based on the backgrounds, the thesis rsquo s purposes are to research about regenerative braking ways of working and its performance towards KARLING. So that regenerative braking shall be solution for increasing compact size vehicles. The methods that the researcher use are study of literature, simulation using SIMULINK, and prototype test. The simulation shows ways of working of regenerative braking to generate electricity. Otherwise, prototype test is important to know the performance of regenerative braking towards compact vehicle."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Leonardus Christanto Prasetyo
"Dengan semakin berkembangnya kendaraan listrik maka pengembangan pada teknologi penghematan energi pun mengalami kemajuan. Pada proses pengereman motor biasanya akan menimbulkan energi kinetik yang berlebihan, kelebihan energi kinetik ini biasanya akan diubah menjadi energi listrik yaitu berupa arus balik. Pada monorail ataupun kereta rel listrik arus balik ini akan masuk ke dalan jaringan DC link, namun apabila arus balik ini terlalu besar dapat menimbulkan over voltage yang dapat merusak komponen-komponen pada inverter.
Metode pengereman regeneratif dikembangkan untuk mengatasi permasalahan yang ditimbulkan karena arus balik ini, untuk mencegah timbulnya over voltage maka tegangan pada DC link dibatasi sehingga arus balik yang terjadi tidak begitu besar dan tegangan pada DC link dapat dijaga agar sesuai dengan acuannya. Dengan menggunakan metode ini arus dapat dibatasi namun sebagai kompensasinya diperlukan bantuan torsi mekanik agar pengereman dapat sesuai yang diinginkan.
Penggunaan bidirectional converter sudah banyak dikembangkan agar dapat menurunkan tegangan pada DC Link tanpa memerlukan bantuan torsi mekanik dari luar. Dengan menggunakan voltage control rangkaian ini dapat dikendalikan untuk dapat menyimpan energi berlebihan yang timbul pada proses pengereman kemudian dapat memberikan daya pada saat proses motoring.
With the recent revival of the electrical vehichle much advancement in power management has been made. Braking process cause surplus of kinetic energy in motor. These kinetic energy are converted to electrical energy in form of opposite current In electric vehicle such as monorail and electrical train this opposite current will be enter the DC link circuit, if the current is too large it can cause overvoltage that can damage components in inverter. Regenerative braking method is developed in order to solve this problem, to prevent the over voltage the DC link voltage must be limit so the opposite current is not to high. With this method the current will be limit but as the compensation the braking systems need mechanical torque. This bidirectional converter has been develop in order to reduce DC link voltage without need mechanical torque. These circuit can be controlled to save the kinetic energy that comes from the braking process and these energy can be used later for motoring condition."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46777
UI - Skripsi Membership Universitas Indonesia Library
Edgar Nagok Nahum
"Kendaraan listrik merupakan sebuah perkembangan teknologi pada bidang otomotif untuk mengatasi permasalahan energi fosil yang semakin menipis di bumi. Energi akibat pengereman konvensional pada kendaraan sebagian besar terbuang menjadi energi panas sehingga diperlukan strategi pengereman yang optimal. Pengereman regeneratif merupakan mekanisme pengembalian energi yang terbuang saat proses pengereman. Pada pengereman regeneratif energi kinetik diubah menjadi energi listrik dengan bantuan generator. Metodologi yang digunakan pada penelitian ini, yaitu melakukan pengujian pengereman regeneratif dengan variasi beban resistif yang dihubungkan pada generator arus searah. Beban yang digunakan sebesar 12 Ω, 18 Ω, 22 Ω, 30 Ω, 38 Ω, 56 Ω, 80 Ω, dan 100 Ω. Perbedaan beban resistif mempengaruhi jumlah energi listrik yang dihasilkan dan waktu yang dibutuhkan untuk melakukan pengereman. Semakin kecil nilai resistansi pada generator maka semakin besar energi yang dihasilkan dan waktu yang dibutuhkan untuk melakukan pengereman semakin cepat.
Electric vehicles are a technological development in the automotive sector to overcome the problem of depleting fossil energy on earth. Most of the energy due to conventional braking on vehicles is wasted into heat energy, so an optimal braking strategy is needed. Regenerative braking is a mechanism to recover energy wasted during the braking process. In regenerative braking, kinetic energy is converted into electrical energy with the help of a direct current generator. The methodology used in this study is to test regenerative braking with variations in resistive loads connected to a generator. The loads used are 12 Ω, 18 Ω, 22 Ω, 30 Ω, 38 Ω, 56 Ω, 80 Ω, and 100 Ω. The difference in resistive load affects the amount of electrical energy generated and the time it takes to brake. The smaller the resistance value on the generator, the greater the energy produced and the time it takes to brake faster."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Sonki Prasetya
"Kendaraan berat seperti truk dan bus menggunakan jenis rem udara untuk mengurangi kecepatan sebagai bagian penting untuk keselamatan. Udara dialirkan ke silinder yang berfungsi sebagai penggerak untuk mendorong poros rem saat terjadi pengereman. Dorongan tersebut berakibat mengembangnya memperluas sepatu rem (brake-shoe) di dalam drum rem (drum-brake) untuk menciptakan aksi pengereman. Namun, kendaraan Listrik (EV) memiliki prioritas utama untuk menghemat energi yang tersimpan dalam baterai. Sistem pengereman memiliki karakteristik waktu reaksi yang terdiri dari reaksi sistem rem dan reaksi pengemudi. Reaksi sistem rem untuk kendaraan besar terutama yang menggunakan pneumatik tergolong lambat sementara reaksi pengemudi, selama dioperasikan oleh manusia akan selalu memiliki waktu yang tetap. Karenanya penelitian ini bertujuan untuk meningkatkan kinerja sistem pengereman terutama Bis listrik secara optimal. Strategi yang dilakukan adalah dengan membuat penyederhanaan sistem menjadi lebih ringkas, lebih ringan, menerapkan kendali yang tepat, menyematkan teknologi cerdas untuk melihat potensi penerapan sistem baru di masa mendatang. Karakteristik sistem pengereman udara (konvensional) dan sistem elektrik yang berbeda memerlukan manipulasi kendali dengan Pulse Width Modulation (PWM) untuk membuat pengereman sesuai standard. Hasilnya mengurangi waktu reaksi sistem rem yang disebabkan oleh hambatan transmisi sistem udara sampai 30%. Penelitian ini menambahkan metode cerdas yang disebut kontrol fuzzy untuk mendapatkan karakteristik sistem baru yang lebih halus dari sisi dinamiknya dibandingkan dengan sistem konvensional. Selanjutnya, metode smart menggunakan kecerdasan buatan (AI) Convolutional Neural Network (CNN) disematkan dengan memanfaatkan sebuah kamera stereo untuk membantu deteksi obyek didepan pengemudi dan memberikan respon yang lebih cepat dalam sinyal pengereman. Penerapan metode tersebut dapat mengurangi waktu reaksi pengemudi saat pengereman sampai dengan 80%. Sebagai tambahan, sistem ini mengurangi tahapan dalam proses pengereman konvensional yang berakibat pada pengurangan berat sistem hingga 90% dari sebelumnya serta penurunan konsumsi energi listriknya mencapai 40%.
Heavy vehicles such as trucks and buses use this type of air brake to reduce speed as an important part of safety. Air is flowed to the cylinder which functions as a driving force to push the brake shaft during braking. This impulse results in expanding the brake-shoe in the drum-brake to create the braking action. However, Electric vehicles (EV) have top priority to save energy stored in batteries. The braking system has a characteristic reaction time consisting of the brake system reaction and the driver's reaction. The reaction of the brake system for large vehicles, especially those using pneumatics, is relatively slow, while the reaction of the driver, as long as it is operated by humans, will always have a fixed time. Therefore, this study aims to improve the performance of the braking system, especially electric buses, optimally. The strategy taken is to make system simplification more concise, lighter, apply precise control, embed smart technology to see the potential for implementing new systems in the future. The different characteristics of the air braking system (conventional) and the electrical system require manipulation of the control with Pulse Width Modulation (PWM) to make braking system fit to the standard. The result is to reduce brake system reaction time caused by air system transmission resistance by up to 30%. This research adds an intelligent method called fuzzy control to obtain the characteristics of the new system which is smoother in terms of dynamics compared to conventional systems. Furthermore, the smart method using artificial intelligence (AI) Convolutional Neural Network (CNN) is embedded by utilizing a stereo camera to help detect objects in front of the driver and provide faster response in braking signals. The application of this method can reduce the driver's reaction time during braking by up to 80%. In addition, this system reduces the steps in the conventional braking process which results in a reduction in system weight by up to 90% from the previous one and a reduction in electrical energy consumption by up to 40%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership Universitas Indonesia Library
Victo Alfritzy Aden
"Skripsi ini membahas perancangan dan manufaktur dari stairlift dengan penggerak rantai beserta sistem pengereman daruratnya yang bertipe locking dengan memanfaatkan descender dan tali sebagai media pengeremannya untuk penyandang disabilitas dan lansia. Penelitian ini dilakukan dengan cara melakukan perancangan dan stress analysis dari stairlift terlebih dahulu menggunakan software Autodesk Inventor Professional 2023 dengan parameter pengujian meliputi nilai tegangan Von Mises maksimum, nilai defleksi maksimum, dan nilai safety factor minimum. Hasil penelitian ini adalah stairlift dengan penggerak rantai sudah memenuhi standardisasi ASME A18.1 tahun 2020 tentang Safety Standard for Platform Lifts and Stairway Chairlifts pada aspek tegangan Von Mises di angka 58,2 MPa dari 100 MPa dan defleksi maksimum di angka 0,386 mm dari 6 mm. Sistem pengereman darurat yang telah dirancang dan dibuat dengan descender dan tali sebagai medianya sudah bekerja sesuai dengan ketentuan namun masih dapat dioptimalkan agar keamanan pengguna dapat ditingkatkan.
This thesis discusses the design and manufacturing of a stairlift with a chain-driven mechanism and a locking-type emergency braking system. The purpose of this system is to assist individuals with disabilities and the elderly in navigating staircases. The research methodology involves the initial design and stress analysis of the stairlift using Autodesk Inventor Professional 2023 software. The testing parameters include the maximum Von Mises stress value, maximum deflection value, and minimum safety factor value. The research findings indicate that the chain-driven stairlift meets the standards set by ASME A18.1-2020 regarding the Safety Standard for Platform Lifts and Stairway Chairlifts. The maximum Von Mises stress value recorded was 58.2 MPa out of 100 MPa, and the maximum deflection value was 0.386 mm out of 6 mm. The designed and implemented emergency braking system, which utilizes a descender and a rope, functions according to the specified guidelines. Nevertheless, further optimization is necessary to enhance user safety."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Diamond Ravi
"Teknologi keselamatan dan keamanan dalam berkendara telah berkembang pesat dalam beberapa dekade terakhir. Kemampuan ABS dalam menjaga roda agar tidak tergelincir, mengurangi jarak pengereman, serta menjaga agar kendaraan masih dapat dikendalikan menjadikan ABS sebagai salah satu sistem keselamatan yang paling penting untuk alat transportasi darat saat ini. Perkembangan teknologi terbaru dari sisi aktuator juga telah memungkinkan modulasi secara kontinu terhadap torsi pengereman, sehingga sistem pengereman aktif seperti ABS dapat diformulasikan menggunakan pengendalian klasik.
Pada penelitian ini diajukan sebuah pengendali untuk ABS dengan pendekatan Model Predictive Control (MPC) agar mampu memberikan nilai torsi pengereman yang sesuai dengan nilai slip roda yang diinginkan. Model dinamik nonlinier setengah bagian mobil digunakan sebagai plant yang dikendalikan karena memberikan gambaran yang cukup lengkap mengenai dinamika pengereman, termasuk fenomena transfer beban dari roda belakang ke roda depan. Respons diskrit dari model ini kemudian dimodelkan dalam bentuk ruang keadaan dengan menggunakan metode Least Square.
Model ruang keadaan ini kemudian digunakan dalam perancangan MPC. Nilai konstanta gesek ban terhadap jalan dihitung berdasarkan model Burckhardt yang merepresentasikan berbagai tipe jalan yang berbeda hanya dengan menggunakan tiga parameter. Slip roda dipilih sebagai variabel yang dikendalikan karena secara dinamik lebih robust jika dibandingkan dengan pengendalian perlambatan roda. Pengendali MPC yang dirancang mampu memberikan pengereman yang optimal di kondisi jalan aspal kering, aspal basah dan es.
Over the past half-century, vehicle safety technology has evolved considerably. Antilock braking system (ABS) is now one of the most important active safety system for road vehicles since it prevents the wheels from locking up and reduces the total braking distance while retaining drivability during braking. Recent technological advances in actuators have enabled a continuous modulation of the braking torque, thereby allowing us to formulate active braking control as a classical regulation problem. The main objective of this research is to develop a controller for ABS based on Model Predictive Control (MPC) strategy, which allows the desired wheel slip to be reached and improves the vehicle?s braking distance in any road condition. A double-corner vehicle is employed as the controlled plant since it provides a sufficiently rich description of the braking dynamics, including the load transfer phenomena. Discrete responses of this model are identified using Least Square method to reproduce the model in a state-space form as the main component of MPC design. As for the tyre-road friction model in this research, the Burckhardt friction model will be employed, as it only has three parameters to model many different tyre-road friction conditions. Wheel slip is chosen as the controlled variable since its dynamics is more robust than speed deceleration control. The designed MPC is able to perform optimal braking in dry asphalt, wet asphalt, and icy road condition"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65669
UI - Skripsi Membership Universitas Indonesia Library
Luthfi Arif Radriyantomo
"Simulasi ini membahas tentang perancangan, dan desain DC to DC Converter Bidirectional untuk aplikasi sistem Regenerative Braking yang akan digunakan pada kendaraan listrik. Dimana sistem Regenerative Braking ini merupakan sistem yang biasa digunakan pada kendaraan beroda untuk memanfaatkan energi kinetik balik saat dilakukan pengereman, dan diubah menjadi energi listrik, sehingga energi tersebut tidak terbuang sia-sia dan dapat dimanfaatkan secara efektif.
Pada simulasi ini ditunjukan proses pendesainan Full-Bridge Push-Pull DC-DC Converter Bidirectional 400V menjadi 10.8V dan sebaliknya, dengan menggunakan transformator berfekruensi tinggi 50kHz. Full-Bridge Push-Pull DC-DC Converter Bidirectional yang telah didesain tersebut akan digunakan untuk menyimpan energi lebih dari sistem Regenerative Braking menuju supercapacitor, lalu energi yang tersimpan tersebut dapat dikembalikkan lagi menuju Dc Link untuk digunakan kembali energinya sebagai energi cadangan yang nantinya dapat diimplementasikan pada kendaraan listrik. Supercapacitor dipilih karena sifatnya yang ideal untuk sistem, yaitu dapat dengan cepat melakukan charge/discharge, dan dapat menyuplai energi dengan densitas yang besar.
This simulation discusses the process, and the design of DC to DC Bidirectional Converter for Regenerative Braking system applications that will be used on electric vehicle. Where the Regenerative Braking system is a system commonly used in wheeled vehicles to utilize reverse kinetic energy when braking is carried out, and converted into electrical energy, so that energy is not wasted and can be utilized effectively. In this simulation the design process for Full-Bridge Push-Pull DC-DC Bidirectional 400V Converter to 10.8V and vice versa, using a transformer with a high frequency of 50kHz. The Full-Bridge Push-Pull Bidirectional DC-DC Converter that has been designed will be used to store extra energy from the Regenerative Braking system towards the supercapacitor, then the stored energy can be returned to Dc Link to be reused as a backup energy which can later be implemented on electric vehicles. Supercapacitor was chosen because it is ideal for systems, which can quickly charge / discharge, and can supply energy with a large density."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Dian Widayanti
"Penelitian ini membahas tentang model perhitungan konsumsi energi dan emisi karbon yang dihasilkan pada pengoperasian MRT Jakarta. Model ini selanjutnya memberikan perhitungan uji kelayakan pada investasi regenerative braking dan memberikan perhitungan pendapatan non-farebox yang diperoleh dari Clean Development Mechanism (CDM) dengan penekanan emisi karbon. Pendekatan Co-Benefits dan framework ASIF digunakan untuk melakukan perhitungan konsumsi energi dan emisi karbon.
Hasil penelitian menunjukkan bahwa MRT Jakarta harus memaksimalkan penggunaan regenerative braking dengan tingkat efisiensi minimal sebesar 17% untuk memperoleh keuntungan secara finansial. Selanjutnya, MRT Jakarta harus memaksimalkan model operasi untuk mendapatkan tingkat efisiensi semaksimal mungkin sehingga mendapatkan keuntungan finansial yang lebih besar dan menciptakan lingkungan yang lebih baik dengan penekanan emisi karbon.
This research discusses an assessment model of energy consumption and carbon emissions generated in the operation of MRT Jakarta. The model provides feasibility study of investment on regenerative braking technology and gives the calculation of non-farebox revenue derived from reduction of carbon emissions through Clean Development Mechanism (CDM). Co-Benefits approach and ASIF framework are used to perform calculations of energy consumption and carbon emissions. The results show that MRT should maximize the use of regenerative braking with a minimum efficiency level of 17% for significant financial gain. Furthermore, MRT Jakarta should maximize the model operation to obtain the maximum level of efficiency so that it will lead to larger financial benefit and creating a better environment by reducing carbon emissions."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55816
UI - Skripsi Membership Universitas Indonesia Library