Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15465 dokumen yang sesuai dengan query
cover
Widita Endyarini
"Misalkan graf G adalah sebuah graf sederhana tak berarah dengan himpunan simpul V dan himpunan busur E, di mana 𝑛=|𝑉| dan 𝑚=|𝐺| berturut-turut menyatakan banyaknya simpul dan busur graf G. Pelabelan graceful adalah suatu pemetaan injektif f yang memetakan himpunan simpul ke {0,1,2…m} yang menginduksi pemetaan bijektif 𝜆 yang memetakan himpunan busur ke {1,2,…m}, dimana label busur tersebut merupakan selisih dari label simpul yang dihubungkan oleh busur tersebut. Graf yang mempunyai pelabelan graceful disebut graf graceful.Untuk graf G dengan m busur dan pemetaan 𝑓:𝑉(𝐺)→ 0,1,2,…𝑚 maka matriks adjacency diperumum adalah matriks 𝐴 𝑚+1 ×(𝑚+1) dengan entri 𝑎𝑖𝑗 adalah 1 apabila terdepat busur vivj yang menghubungkan simpul vi berlabel i dan simpul vj berlabel j. Matriks adjacency diperumum akan digunakan untuk mengkonstruksi graf graceful baru dari graf yang telah diketahui graceful. Konstruksi dilakukan dengan tiga cara. Pertama adalah dengan pemindahan entri matriks adjacency. Kedua adalah dengan pengabungan matriks adjacency dan penggantian entri diagonal tertentu. Ketiga adalah penggabungan matriks adjacency dan penambahan baris dan kolom. Hasil lain yang diperoleh adalah kelas graf graceful baru: 𝑃𝑝△𝐶𝑛 dan 𝐾1⋄𝑝𝐺."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widita Endyarini
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27874
UI - Skripsi Open  Universitas Indonesia Library
cover
Stefi Rahmawati
"Misalkan 𝐺=𝐺 𝑉,𝐸 adalah graf sederhana berhingga dengan 𝑉 simpul dan 𝐸 busur. Pelabelan simpul busur antiajaib (a,d) (PSBAA-(a,d)) adalah pemetaan satu-satu pada 𝑓 dari 𝑉 𝐺 pada 1,2,…, 𝑉 , dengan sifat bahwa untuk setiap busur 𝑥𝑦∈𝐸 𝐺 , himpunan bobot busur adalah 𝑓 𝑥 +𝑓 𝑦 ∶𝑥,𝑦∈𝑉 𝐺 = 𝑎,𝑎+𝑑,𝑎+2𝑑,…,𝑎+ 𝐸 −1 𝑑 , untuk suatu bilangan bulat positif 𝑎,𝑑. Suatu graf yang memiliki PSBAA-(a,d) disebut graf SBAA-(a,d). Untuk graf SBAA-(a,d) 𝐺, didefinisikan matriks adjacency yaitu matriks 𝐴𝐺= 𝑎𝑖𝑗 berukuran 𝑉 × 𝑉 dengan 𝑎𝑖𝑗 bernilai 1 jika terdapat busur yang menghubungkan simpul berlabel i dan simpul berlabel j, serta bernilai 0 jika tidak ada. Dalam skripsi ini diberikan pembahasan mengenai konstruksi graf SBAA-(a,2) baru dari graf SBAA-(a,2) yang sudah ada dengan menggunakan matriks adjacency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27870
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yosep Pangky Nugroho Saputra
"Misalkan graf G = (V,E) terdiri dari V, suatu himpunan tak kosong dari simpul dan E, himpunan dari busur. Setiap busur mempunyai paling tidak satu atau dua simpul yang terhubung, atau biasa disebut titik ujung. Pelabelan graceful adalah suatu pemetaan injektif yang menginduksi pemetaan bijektif, dimana, dengan. Matriks adjacency tergeneralisasi adalah suatu matriks bujur sangkar yang entrinya merepresentasikan ada tidaknya busur yang menghubungkan dua simpul dengan label tertentu pada graf. Suatu matriks yang merepresentasikan graf berlabel graceful disebut matriks graceful. Dalam skripsi ini diberikan algoritma untuk mengkonstruksi graf graceful yang baru dengan memodifikasi matriks graceful yang ada. Graf graceful baru hasil konstruksi merupakan kelas graf graceful baru yang belum pernah ditemukan sebelumnya.

Let G = (V,E) be a graph that consist of V, a non empty set of vertices, and E, a set of edges. Every edge connects two vertices which called endpoints. A graceful labeling is an injection that induce bijection, where, with. Generalized adjacency matrix is a square matrix where its entries represent the existency of edges that connect two vertices with certain label in graph. A matrix that represents graceful graph is called graceful matrix. This skripsi gives algorithms for constructing new graceful graphs by modifiying known graceful matrices. The graceful graphs constructed are new, which are not known before."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1558
UI - Skripsi Open  Universitas Indonesia Library
cover
Ikhlas Pratama Sandy
"Pelabelan graf, atau juga dikenal sebagai valuation graf, adalah pemetaan dari elemen graf ke himpunan bilangan yang disebut sebagai label, yang memenuhi beberapa ketentuan sesuai dengan jenis pelabelannya. Pemetaan ?? disebut sebagai pelabelan graceful dari graf dengan busur sebanyak "jika" adalah suatu fungsi injektif dari himpunan simpul di ke himpunan 0,1, hellip;, "sedemikian sehingga ketika masing-masing busur" diberi label "minus", label yang dihasilkan untuk semua busur adalah berbeda. Tidak banyak teknik umum yang diketahui untuk menghasilkan pelabelan graceful. Secara khusus, konjektur Ringel-Kotzig yang menyatakan bahwa semua graf pohon adalah graceful masih terbuka sampai saat ini. Pada dasarnya, semua graf pohon dapat direpresentasikan sebagai suatu graf pohon berakar, yaitu graf pohon dengan sebuah simpul yang dibedakan dan disebut sebagai simpul akar. Di dalam tesis ini dibahas tentang konstruksi pelabelan graceful pada graf pohon berakar khusus menggunakan matriks ketetanggaan.

A graph labeling, also known as a valuation of a graph, is a mapping which carries graph elements onto numbers called labels that meet some properties depending on the type of labeling that is being considered. A function is called a graceful labeling of a graph with edges if is an injection from the vertices of to the set 0,1, hellip, such that, when each edge is assigned the label minus, the resulting edge labels are distinct. Not many general techniques are known in order to generate graceful labeling of graphs. In particular the famous Ringel ndash Kotzig conjecture which states that all trees are graceful remains open until present. Every tree can be represented as a rooted tree with a distinguished vertex called the root. In this thesis we discuss on construction of specific graceful rooted tree using the adjacency matrix."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50045
UI - Tesis Membership  Universitas Indonesia Library
cover
"Graf G=(V, E) adalah suatu sistem yang terdiri dari himpunan takkosong simpul V dan himpunan busur E. Pelabelan pada graf G adalah penetapan nilai pada simpul, busur, atau simpul dan busur dengan aturan tertentu. Pelabelan Skolem graceful γ pada graf G adalah suatu fungsi injektif γ : V {1,2,…,|V|} yang menginduksi fungsi bijektif γ’ : E {1,2,…,|E|} yang didifinisikan dengan γ(uv) = |γ(u) – γ(v)|, dimana u,vV dan uvE. Pelabelan pada graf G adalah fungsi injektif λ : V {0,1,2,…,|V|} yang menginduksi fungsi bijektif λ’ : E {1,2,…,|E|+1} yang didefinisikan dengan λ(uv) = |λ(u) – λ(v)|, dimana u,vV dan uvE.Pada skripsi ini dibuktikan bahwa graf 2Sn , gabungan graf bintang dengan graf sapu bentuk khusus memiliki pelabelan Skolem graceful dan pelabelan . Selain itu, gabungan graf bintang dengan graf cumi-cumi bentuk khusus memiliki pelabelan . Diberikan juga hubungan antara pelabelan Skolem graceful dan pelabelan pada gabungan 2 graf pohon."
Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febrian Marcovan Lewis
Depok: Universitas Indonesia, 2010
S27858
UI - Skripsi Open  Universitas Indonesia Library
cover
Emhaka Yudhistira
"Misalkan G adalah suatu graf dengan V(G) yang merupakan himpunan simpul tak kosong dan E(G) yang merupakan himpunan busur. Hubungan tetangga antar simpul dalam suatu graf dapat direpresentasikan dalam bentuk matriks yang disebut matriks adjacency, dengan entrinya bernilai 1 apabila terdapat busur di antara dua simpul dan bernilai 0 untuk lainnya. Jika A adalah matriks adjacency dari graf berarah G, maka dapat dibentuk suatu det(xA+I). Pada skripsi ini dijelaskan representasi bentuk det(XA+I) dengan A merupakan matriks adjacency dari graf berarah sederhana.

Let G be a graph with V(G) is a nonempty set of vertices and E(G) is a set of arcs. A graph can be representated by a matrix called adjacency matrix, with its entry equal to 1 if there is an edge between two vertices in and equal to 0 for others. If A is the adjacency matrix of a directed graph , it can be formed det(xA+I). In this Skripsi is given a representation of det(xA+I) with A is an adjacency matrix of simple directed graph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanifah Sulasri
"Graf G terdiri atas himpunan simpul V(G) dan himpunan busur E(G). Graf G dengan V(G)={v_1,v_2,v_3,…,v_n} dan E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} disebut sebagai graf lintasan yang dinotasikan sebagai P_n. Pelabelan graceful (disebut juga sebagai β-valuation) adalah pemetaan injektif dari himpunan simpul dari G ke himpunan bilangan bulat {0,1,…,|E(G)|} sedemikian sehingga jika untuk setiap busur 𝑢𝑣 diberikan label |𝑓(𝑢) − 𝑓(𝑣)|, label tersebut berbeda untuk setiap busurnya. Pelabelan antiajaib dari graf G adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} sedemikian sehingga bobot simpul (jumlahan dari label busur yang hadir pada simpul yang diberikan) berbeda untuk tiap simpulnya. Pada perkembangannya, terdapat variasi pada pelabelan antiajaib, salah satunya adalah pelabelan simpul antiajaib lokal. Pelabelan antiajaib lokal adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} dengan bobot simpul yang berbeda untuk tiap simpul yang bertetangga. Nilai minimum dari banyaknya bobot berbeda pada pelabelan simpul antiajaib lokal pada graf G disebut sebagai bilangan kromatik dan dinotasikan sebagai χ_la (G). Untuk kelas graf lintasan, nilai χ_la (P_n )=3. Varian lain dari pelabelan antiajaib ialah pelabelan antiajaib yang diinduksi oleh pelabelan graceful. Pelabelan ini disebut sebagai pelabelan antiajaib graceful. Pelabelan-pelabelan yang telah disebutkan memberikan ide untuk konsep pelabelan antiajaib lokal graceful, yaitu pelabelan antiajaib graceful yang memiliki bobot simpul berbeda untuk tiap simpul yang bertetangga. Penelitian ini akan membahas pelabelan antiajaib lokal graceful untuk graf lintasan P_n. Kemudian, akan ditunjukkan pula bilangan kromatik χ_gla (P_n).

The graph G consists of a set of vertices V(G) and a set of edges E(G). A graph G with V(G)={v_1,v_2,v_3,…,v_n} and E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} is called a path graph and denoted as P_n . The graceful labeling (also known as β-valuation) is an injective mapping of the set of vertices from G to the set of integers {0,1,…,|E(G)|} such that if for each edge uv is assigned a label |f(u) - f (v)|, the label is different for each edge. The antimagic labeling of a graph G is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} such that the vertex weights (sum of the edge labels incident at a given vertex) are different for each vertex. In its development, there are variations on antimagic labeling, one of which is local antimagic vertex labeling. Local antimagic labeling is is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} with a different node weight for each neighboring vertex. The minimum value of the number of different weights in the local antimagic vertex labeling on a graph G is called the chromatic number and is denoted as χ_la (G). For path graph, the value of χ_la (P_n)=3. Another variant of antimagic labeling is an antimagic labeling which is induced by graceful labeling. This labeling is called graceful antimagic labeling. These labelings lead to the idea for the concept of graceful local antimagic labeling, namely graceful antimagic labeling that has different weight for each neighboring vertex. This research will discuss about graceful local antimagic labeling on path graphs P_n. It will also be shown the chromatic number χ_gla (P_n).

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Milla Rachmawati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>