Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 158885 dokumen yang sesuai dengan query
cover
Moh. Abdul Latief
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27869
UI - Skripsi Open  Universitas Indonesia Library
cover
Widiyani Suciati
"Misalkan G adalah graf dengan himpunan simpul tak-kosong V dan himpunan busur E, dimana [V(G)] dan [E(G)] masing-masing menyatakan banyak simpul dan busur pada G. Pelabelan harmonis dari graf adalah suatu pemetaan dengan menginduksi pelabelan pada himpunan busur didefinisikan sebagai pemetaan , untuk setiap busur . Jika adalah graf pohon maka tepat satu label simpul berulang atau label simpul dapat dilabelkan dengan menggunakan . Dalam skripsi ini diberikan algoritma untuk menghasilkan semua pelabelan harmonis yang tidak isomorfik pada graf lintasan Pn, graf lingkaran Cn dan graf lobster teratur Ln,r,1 untuk nilai n dan r (untuk graf lobster teratur) yang diberikan. Algoritma-algoritma ini kemudian diimplementasikan dalam program. Diberikan juga simulasi banyak pelabelan harmonis yang mungkin dan tidak isomorfik sampai nilai n tertentu."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27846
UI - Skripsi Open  Universitas Indonesia Library
cover
M. Haryono
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T30010
UI - Tesis Open  Universitas Indonesia Library
cover
Budi Utami
"Misalkan adalah graf dengan himpunan simpul dan himpunan busur , dimana dan menyatakan banyaknya busur dan simpul pada . Suatu pemetaan bijektif dari ke himpunan disebut pelabelan total simpul ajaib (PTSA) jika terdapat konstanta sedemikian sehingga untuk setiap berlaku , dimana adalah himpunan simpul yang bertetangga dengan . Nilai disebut bobot . Algoritma pelabelan sembarang graf secara umum adalah bersifat NP-complete. Dalam skripsi ini diberikan algoritma-algoritma untuk menghasilkan semua PTSA yang tidak isomorfik pada graf friendship, kipas, dan jahangir yang diperumum. Algoritma-algoritma tersebut kemudian diimplementasikan dalam bentuk program. Diberikan juga simulasi banyak PTSA yang berbeda untuk setiap nilai k yang mungkin dari ketiga kelas graf tersebut untuk beberapa nilai n dan m. Untuk graf kipas dengan dan graf jahangir yang diperumum dengan dan , dan , serta dan ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27838
UI - Skripsi Open  Universitas Indonesia Library
cover
Arumella Surgandini
"Misalkan G adalah graf dengan himpunan simpul V = V(G) dan himpunan busur E = E(G), dimana |V(G)| dan |E(G)| menyatakan banyaknya simpul dan busur pada G. Suatu pemetaan λ dari V  E ke himpunan bilangan asli {1, 2, 3, …, |V(G)| + |E(G)|} disebut pelabelan total busur ajaib jika λ merupakan pemetaan bijektif sedemikian sehingga ∀𝑥𝑦∈𝐸(𝐺), bobot busur 𝜆 𝑥 +𝜆 𝑦 +𝜆 𝑥𝑦 =𝑘, untuk suatu konstanta k. Konstanta k disebut sebagai konstanta ajaib dari . Algoritma-algoritma pelabelan sembarang graf secara umum adalah bersifat NP-complete. Dalam skripsi ini akan dibangun algoritma pelabelan total busur ajaib pada graf lingkaran Cn, kipas fn, dan roda Wn. Dengan menggunakan algoritma-algoritma tersebut dapat dihasilkan semua pelabelan total busur ajaib pada graf yang terkait (jika ada). Algoritma-algoritma ini kemudian diimplementasikan dalam bentuk program. Sebagai hasil implementasi dilakukan simulasi yang memberikan banyaknya pelabelan total busur ajaib yang mungkin dan berbeda dari graf lingkaran, kipas, dan roda untuk setiap nilai k yang mungkin. Simulasi banyaknya pelabelan total busur ajaib pada graf lingkaran dilakukan untuk n ≤ 12, sedangkan pada graf kipas dan roda dilakukan untuk n ≤ 10."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27837
UI - Skripsi Open  Universitas Indonesia Library
cover
Widya M. Niagara
"Misalkan G = (V, E) adalah suatu graf berhingga, sederhana dan tak berarah dengan n = |V| simpul dan e = |E| busur. Pelabelan total (a, d)-busur anti ajaib adalah suatu pemetaan bijektif λ dari V  E ke himpunan bilangan bulat {1, 2, …, n + e}, sedemikian sehingga himpunan dari seluruh bobot busur membentuk barisan aritmatika dengan suku awal a > 0 dan beda d ≥ 0. Dalam skripsi ini diberikan konstruksi pelabelan total (a, d)-busur anti ajaib pada beberapa gabungan graf dari kelas graf yang sama, yaitu gabungan graf lingkaran, gabungan graf matahari dan gabungan graf dumbbell, untuk d = 1 dan d = 2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Alif Asyad Kurniatama
"Pelabelan total busur ajaib pertama kali dikenalkan oleh Kotzig dan Rosa. Minat terhadap pelabelan ini diteruskan berkat paper Ringel dan Llad³ tahun 1996. Pelabelan total busur ajaib adalah pemetaan satu-satu pada dari suatu graf dengan menyatakan banyaknya simpul dari dan menyatakan banyaknya busur dari, dan terdapat bilangan bulat positif sedemikan sehingga untuk setiap busur pada. Pelabelan total busur ajaib  pada graf dikatakan total super busur ajaib apabila. Konsep pelabelan total super busur ajaib pertama kali diperkenalkan oleh Enomoto dkk. pada tahun 1998. Graf prisma merupakan sebuah produk cartesian dari graf lingkaran dan graf lintasan. Sedangkan graf tangga merupakan sebuah produk cartesian antara graf lingkaran dan graf lintasan. Pada artikel ini dibahas konstruksi pelabelan total super busur ajaib pada kelas graf prisma dan kelas graf tangga. Kemudian ditunjukkan keterkaitan pelabelan total super busur ajaib antara graf prisma  dan graf tangga.

Originally the edge magic total labeling was introduced and studied by Kotzig and Rosa who called it magic valuations. Interest in these labelings has been rekindled due to Ringel and Llad³’s paper in 1996. Edge magic total labelling is a one-one onto mapping of graph with numbers of vertices of and number of edges of, so that there exist integer such that for every edge in. Edge magic total labeling of graph is called super edge magic total labeling if. The concept of super EMT graphs was introduced by Enomoto et al. in 1998. Prism graph is a cartesian product of cycle and path. While ladder graph is a cartesian product of dan. In this article, the construction of super edge magic total labeling is discussed of prism graphs and ladder graphs. Then it is shown the super edge magic total labeling relation between prism graph  and ladder graph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Graf G=(V, E) adalah suatu sistem yang terdiri dari himpunan takkosong simpul V dan himpunan busur E. Pelabelan pada graf G adalah penetapan nilai pada simpul, busur, atau simpul dan busur dengan aturan tertentu. Pelabelan Skolem graceful γ pada graf G adalah suatu fungsi injektif γ : V {1,2,…,|V|} yang menginduksi fungsi bijektif γ’ : E {1,2,…,|E|} yang didifinisikan dengan γ(uv) = |γ(u) – γ(v)|, dimana u,vV dan uvE. Pelabelan pada graf G adalah fungsi injektif λ : V {0,1,2,…,|V|} yang menginduksi fungsi bijektif λ’ : E {1,2,…,|E|+1} yang didefinisikan dengan λ(uv) = |λ(u) – λ(v)|, dimana u,vV dan uvE.Pada skripsi ini dibuktikan bahwa graf 2Sn , gabungan graf bintang dengan graf sapu bentuk khusus memiliki pelabelan Skolem graceful dan pelabelan . Selain itu, gabungan graf bintang dengan graf cumi-cumi bentuk khusus memiliki pelabelan . Diberikan juga hubungan antara pelabelan Skolem graceful dan pelabelan pada gabungan 2 graf pohon."
Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahardika Putra Raes
"Pelabelan total busur ajaib diperkenalkan pertama kali oleh Wallis pada tahun 2001. Pelabelan total busur ajaib pada graf dengan himpunan simpul dan himpunan busur adalah suatu fungsi bijektif sehingga untuk setiap busur di berlaku untuk suatu konstanta. Jika maka pelabelannya disebut pelabelan total super busur ajaib. Enomoto membuktikan bahwa memiliki pelabelan total super busur ajaib untuk setiap memiliki pelabelan total super busur ajaib untuk setiap dan graf memiliki pelabelan total super busur ajaib jika dan hanya jika adalah bilangan ganjil. Misalkan terdapat dua graf yaitu graf dan dengan banyaknya simpul masing-masing adalah dan. Graf hasil korona dari didefinisikan sebagai suatu graf yang dihasilkan dari dan dengan mengambil satu salinan dari dan salinan dari dan menambahkan busur yang menghubungkan setiap simpul dari salinan ke dari dengan simpul ke dari. Pada skripsi ini akan dibahas studi literatur tentang pelabelan total super busur ajaib pada kelas graf korona dan dimana dan.

Edge total magic labeling was first introduced by Wallis in 2001. Edge magic total labeling a graph with the set of vertices V and set of edges E is a bijective mappin for every edge in for a constant If then the labeling is called super edge magic total labeling. Enomoto proved that have super edge magic total labeling for every Graph have super edge magic total labeling for every and graph have super edge magic total labeling if and only if is an odd number. Suppose there are two graphs and H with number of its vertices are Corona product graph defined as a graph that obtain from and H by taking one copy from and copy from H and connects with an edge from each vertex on the copy of H with vertex i in In this undergraduate thesis, we will discuss the literature study on super edge magic total labeling in the corona graph class and where and."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirunnisa
"Salah satu cabang dari teori graf yang sedang berkembang saat ini adalah pelabelan graf. Pelabelan graf pertama kali di perkenalkan oleh Sedláček pada tahun 1963. Pelabelan adalah pemetaan satu-satu dari himpunan elemen-elemen graf ke himpunan bilangan (biasanya bilangan bulat positif) yang disebut label (Bača dan Miller, 2008). Beberapa jenis pelabelan yang dikenal sekarang ini antara lain pelabelan ajaib, pelabelan anti ajaib, pelabelan jumlah, pelabelan jumlah eksklusif, pelabelan graceful, pelabelan skolem graceful, pelabelan harmonis dan pelabelan harmonis ganjil. Pelabelan anti ajaib pun juga terdiri dari berbagai jenis, beberapa diantaranya adalah pelabelan simpul anti ajaib busur, pelabelan total anti ajaib simpul, pelabelan total anti ajaib busur, dan masih banyak lagi.

One branch of graph theory that is emerging today is graph labeling. Graph labeling was first introduced by Sedlacek on 1963. Labeling is one-to-one from the set of elements graf to set (usually a positive integer) called label (Read and Miller, 2008). Some types of labeling known today among other magical labeling, labeling anti magical, labeling amount, labeling number of exclusive, graceful labeling, labeling Skolem graceful, labeling harmony and harmonious labeling odd. Labeling anti magic was also composed of various types, some of which are anti-magic labeling knot bow, anti-magic total labeling knot, anti-magic total labeling arc, and still much more."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T45143
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>