Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 78437 dokumen yang sesuai dengan query
cover
Novi Murniati
"DNA Sequencing by Hybridization (DNA SBH) adalah suatu proses pembentukan barisan nukleotida suatu rantai DNA dari kumpulan fragmen yang disebut spektrum. Spektrum tersebut diperoleh dari proses biokimia yang disebut hibridisasi. DNA SBH dapat dipandang sebagai masalah optimisasi yang dapat diselesaikan dengan menggunakan algoritma genetik. Prinsip kerja algoritma genetik berdasarkan pada teori evolusi Charles Darwin. Pada skripsi ini akan dibahas penerapan kinerja algoritma genetik pada DNA SBH. Terdapat tiga tahapan penting dalam algoritma genetik, yakni proses seleksi, crossover, dan mutasi. Jenis metode yang digunakan pada proses seleksi, crossover, dan mutasi secara berturut-turut adalah metode yang merupakan kombinasi antara roulette wheel dan deterministic, structured crossover, dan swap mutation. Kinerja algoritma genetik akan diuji dengan menggunakan data dari Gen Bank dan masalah DNA SBH yang dibuat secara acak. Selain itu juga akan dilihat pengaruh perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) terhadap kinerja algoritma genetik untuk DNA SBH. Berdasarkan hasil percobaan diperoleh bahwa algoritma genetik cukup baik digunakan pada DNA SBH. Selain itu, perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) ternyata mempengaruhi kinerja algoritma genetik dalam memperoleh solusi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27800
UI - Skripsi Open  Universitas Indonesia Library
cover
Novi Murniati
"DNA Sequencing by Hybridization (DNA SBH) adalah suatu proses pembentukan barisan nukleotida suatu rantai DNA dari kumpulan fragmen yang disebut spektrum. Spektrum tersebut diperoleh dari proses biokimia yang disebut hibridisasi. DNA SBH dapat dipandang sebagai masalah optimisasi yang dapat diselesaikan dengan menggunakan algoritma genetik. Prinsip kerja algoritma genetik berdasarkan pada teori evolusi Charles Darwin. Pada skripsi ini akan dibahas penerapan kinerja algoritma genetik pada DNA SBH. Terdapat tiga tahapan penting dalam algoritma genetik, yakni proses seleksi, crossover, dan mutasi. Jenis metode yang digunakan pada proses seleksi, crossover, dan mutasi secara berturut-turut adalah metode yang merupakan kombinasi antara roulette wheel dan deterministic, structured crossover, dan swap mutation. Kinerja algoritma genetik akan diuji dengan menggunakan data dari Gen Bank dan masalah DNA SBH yang dibuat secara acak. Selain itu juga akan dilihat pengaruh perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) terhadap kinerja algoritma genetik untuk DNA SBH. Berdasarkan hasil percobaan diperoleh bahwa algoritma genetik cukup baik digunakan pada DNA SBH. Selain itu, perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) ternyata mempengaruhi kinerja algoritma genetik dalam memperoleh solusi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maria Widiastuti
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27824
UI - Skripsi Open  Universitas Indonesia Library
cover
Maria Widiastuti
"Salah satu masalah bioinformatika adalah masalah rekonstruksi barisan DNA dengan metode Sequencing by Hybridization (SBH). Untuk melakukan rekonstruksi barisan DNA digunakan jalur Euler yang dicari pada graf DNA. Dalam skripsi ini dibahas beberapa algoritma untuk mencari jalur Euler, berikut kompleksitas algoritmanya, dan penggunaanya dalam SBH. Secara umum algoritma yang dibahas memiliki kompleksitas polinomial. Pada akhir skripsi dibahas algoritma yang dikatakan memiliki kompleksitas "linier"."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yelli Yulfita
"Dalam penelitian ini akan membahas tentang pengembangan sistem sequencing pada kode genetik pada platform web. Sistem sequencing adalah proses untuk menentukan urutan basa nukleotida pada molekul DNA. Sistem yang dimasukkan pada input berupa empat basa nukleotida yang di translasi akan menghasilkan output berupa asam amino dan kode genetik yang di translasikan. Proses translasi pada sistem web menggunakan parameter replace. Sistem sequencing menggunakan variasi parameter sesuai dengan jenis kode genetik yang ditranslasikan. Proses konversi mengasilkan nilai rata-rata maksimum kecepatan pada web sebesar 60 fps.

In this research, we will discuss the development of sequencing systems on genetic codes on web platforms. The sequencing system is the process of determining the sequence of nucleotide based in DNA molecules. The system entered into the input in the form of four nucleotides based that are translated will produce an output in the form of amino acids and the translated genetic code. The translation process on the web system uses the replace parameter. The sequencing system uses variations of parameters according to the type of genetic code being translated. The conversion process produces an average value of maximum speed on the web of 60 fps."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Waas, Arisha Octiany
"Generalized Assignment Problem (GAP) adalah masalah penugasan sehimpunan berhingga tugas ke sehimpunan berhingga agen. Setiap tugas mempunyai bobot dan biaya penyelesaian yang mungkin berbeda untuk setiap agen. Setiap agen mempunyai kapasitas sumber daya dan tidak boleh mengerjakan tugas melebihi kapasitasnya. Pada skripsi ini dilihat kinerja dari algoritma genetik dalam menyelesaikan GAP. Algoritma genetik terinspirasi oleh teori evolusi biologi. Operator utama yang digunakan adalah binary tournament selection, one point crossover, dan swap mutation. Untuk meningkatkan kinerja, ditambahkan local improvement steps dan replacement scheme. Kinerja algoritma genetik diukur dari kedekatan solusi yang diperoleh dengan Best Known Solution (BKS) dari masalah penguji yang diambil dari OR Library. Selain itu, juga dilihat pengaruh perubahan nilai probabilitas crossover PC dan probabilitas mutasi Pm terhadap kinerja algoritma genetik. Berdasarkan percobaan, disimpulkan bahwa kinerja algoritma genetik dalam menyelesaikan GAP cukup baik, dengan kesalahan relatif nilai fungsi tujuan solusi terbaik terhadap BKS cukup kecil, yaitu tidak lebih dari 0.03. Dari percobaan mengubah nilai parameter, diperoleh dengan PC = 0.6, nilai Pm yang cukup baik adalah 0.25 ? 0.3. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S27616
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nova Yuniarti
"[ABSTRAK
Berdasarkan data WHO tahun 2014, diperkirakan sekitar 15 juta orang di dunia
yang terinfeksi hepatitis B (HBsAg+) juga terinfeksi hepatitis D. Infeksi hepatitis
D dapat terjadi bersamaan (koinfeksi) atau setelah seseorang terkena hepatitis B
kronis (superinfeksi). Penyakit hepatitis B disebabkan oleh virus HBV dan
penyakit hepatitis D disebabkan oleh virus HDV. HDV tidak dapat hidup tanpa
HBV. Hepatitis D erat hubungannya dengan infeksi virus HBV, sehingga sangat
realistis bila setiap usaha pencegahan terhadap hepatitis B, maka secara tidak
langsung mencegah hepatitis D. Pada tesis ini akan dibahas bagaimana hasil
pengelompokan barisan DNA HBV menggunakan algoritma k-means clustering
dengan menggunakan perangkat lunak R. Dimulai dengan mengumpulkan barisan
DNA HBV yang diambil dari GenBank, kemudian dilakukan ekstraksi ciri
menggunakan n-mers frequency, dan hasil ekstraksi ciri barisan DNA tersebut
dikumpulkan dalam sebuah matriks dan dilakukan normalisasi menggunakan
normalisasi min-max dengan interval [0, 1] yang akan digunakan sebagai data
masukan. Jumlah cluster yang dipilih dalam penelitian ini adalah dua dan
penentuan centroid awal dilakukan secara acak. Pada setiap iterasi dihitung jarak
masing-masing objek ke masing-masing centroid dengan menggunakan Euclidean
distance dan dipilih jarak terpendek untuk menentukan keanggotaan objek di
suatu cluster sampai akhirnya terbentuk dua cluster yang konvergen. Hasil yang
diperoleh adalah virus HBV yang berada pada cluster pertama lebih ganas
dibanding virus HBV yang berada pada cluster kedua, sehingga virus HBV pada
cluster pertama berpotensi berevolusi dengan virus HDV menjadi penyebab
penyakit hepatitis D.

ABSTRACT
Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D., Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D.]"
2015
T44666
UI - Tesis Membership  Universitas Indonesia Library
cover
New Jersey: Humana Press, 1993
574.87 DNA
Buku Teks  Universitas Indonesia Library
cover
Andry Widiasti Pramono
"ABSTRACT
TIn order to optimize gas resources properly, it is necessary to maintain the balancing between the level of domestic demand for gas and the supply itself. However, gas producers have to face the problem since the resources are spread out through all Indonesia's islands while the major consumers are concentrated only in one island, Java island. Due to natural gas resources cannot be stored and gas is provided mostly based on the demand level for it, physical distribution have to be done by inter-island pipeline system to fulfill the demand.
The optimization of transmission is limited to the each day contractual nomination during the year period. These situation leads transmission optimization getting complicated and difficult to handle manually. Transferring gas should be done in accordance to the determination of quality specification to ensure stabilization system.
In this study genetic algorithms will be discussed in order to solve the problem properly. Originally, genetic algorithms theory come from biological genetic evolution theory. Genetic algorithms theory come from biological genetic evolution theory. Genetic algorithms is applied in pipeline system because genetic algorithms can provide optimal global solution relatively abrupt without distracting local solution. This study will only elaborate power optimization in gas compression process. To minimize total horsepower from the compressor in conjunction with the real condition is an objective function.
The application Genetic Algorithms of optimization in gas compression process was implemented. By implementing genetic algorithms in gas pipeline system will.

ABSTRAK
Dalam upaya pemanfaatan gas secara optimal keseimbangan antara penyaluran dengan kebutuhan dalam negeri harus selalu dijaga. Permasalahan yang dihadapi oleh produsen gas adalah sumber yang ada menyebar di seluruh Indonesia sedangkan konsumen gas terbesar terdapat di Pulau Jawa. Penyediaan gas alam tergantung dari permintaan karena tidak dapat ditampung maka untuk memenuhi permintaan secara fisik, distribusi komoditi dilakukan melalui jaringan pipa yang menyeluruh di kepulauan.
Optimasi transmisi menjadi sangat kompleks dan sukar untuk dipecahkan secara manual, karena terbatas pada nominasi kontraktual setiap hari pada sepanjang tahun, penyerahan gas pada kualitas spesifikasi yang ditetapkan dan dalam pengoperasian dan pemeliharaan dengan cara aman, ekonomis dan efisien agar menjamin kestabilan sistem.Untuk memecahkan permasalahan tersebut, dalam studi ini diperkenalkan Algoritma Genetik yang meniru teori evolusi genetika dalam biologi. Algoritma Genetik dapat diaplikasikan pada bidang teknologi. Pada penelitian ini, metode tersebut diaplikasikan dalam sistem perpipaan, karena dapat menemukan solusi global optimal dengan cepat tanpa terganggu solusi lokal. Pada studi ini lingkup permasalahan dibatasi pada optimasi daya yang digunakan pada proses kompresi gas. Sebagai fungsi obyektif adalah meminimumkan total horsepower dari kompresor dengan batasan-batasan sesuai dengan kondisi nyata.
Dalam tesis ini dihitung total horsepower dan prosentase utilisasi kompresor terhadap kompresor yang tersedia. Aplikasi Algoritma Genetik pada optimisasi kompresi dalam sistem transmisi gas dapat meningkatkan kinerja dari total horsepower yang sangat membantu dalam pengambilan keputusan dalam merencanakan.sarana transportasi gas."
Depok: Fakultas Teknik Universitas Indonesia, 1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>