Ditemukan 94184 dokumen yang sesuai dengan query
"Dalam tulisan ini, dipaparkan hasil pengembangan system klasifikasi bentuk lengkung gigi berbasis algoritma propagasi balik jaringan saraf tiruan. Sejumlah fitur bentuk lengkung gigi dipilih sebagai input jaringan saraf tiruan berdasarkan hasil pengujian secara statistik terhadap variabel bentuk lengkung gigi. Piranti lunak dikembangkan terdiri dari sejumlah fitur yang digunakan untuk pengujian dan pelatihan JST, serta pengenalan bentuk lengkung berdasarkan parameter input yang diberikan oleh peng-guna. Eksperimen dilakukan terhadap data numerik hasil ekstraksi citra digital model cetakan lengkung gigi rahang atas sejumlah 190 orang pasien yang diambil secara acak. Citra lengkung gigi diperoleh dengan melakukan pemindaian terhadap model cetakan lengkung gigi tiga dimensi (3D) pasien ortodonti disejumlah klinik di Jakarta. Hasil uji coba menunjukkan bahwa 76,3158% berhasil diklasifikasikan dengan benar oleh sistem berbasis JST tersebut. Ke depannya sistem akan dikembangkan lebih optimal sehingga dapat digunakan untuk mendukung perawatan ortodonti.
AbstractIn this paper, dental arch form classification system using back propagation algorithm is
proposed. Some features of dental arch are selected for neural network input based on statistical analysis to dependent variables of dental arch. The system contains some features for training and testing the neural network, and for recognizing the arch form based on input parameters. The experiment uses randomly selected data set contains 190 numerical data of upper dental arch that are extracted from dental model
images. The images were obtained by scanning the original 3D dental models of Indonesian patient that were collected from some orthodontic clinics in Jakarta. This experimental result shows that 76,3158% of correctness in classifying the arch form can be reached by neural network system. The system can be applied for supporting the orthodontic treatment."
Universitas Kristen Petra Surabaya, 2008
pdf
Artikel Jurnal Universitas Indonesia Library
Hartati
"Skripsi ini membuat suatu perangkat lunak sistem pengklasifikasi jalan yang berbasis jaringan saraf tiruan. Ratio perbandingan Lalu lintas Harian Rata-rata Bulanan (LHRB) / Monthly Average Daily Traffic (MADT) dengan Lalu-lintas Harian Rata-rata Tahunan (LHR'I) / Annual Average Daily Traffic (AADT) digunakan sebagai komponen untuk tiap bulan dalam pola lalu lintas (traffic pattern) bulanan. Data ini kemudian dimasukkan ke sistem saraf tiruan untuk dikenah pola lalu lintas tiap bulannya selama sate tahun penuh (12 bulan). Sistem ini dapat mengenali pola lalu lintas yang lengkap maupun tidak lengkap dan mengelompokkan jalan-jalan yang memiliki pola lalu lintas yang mirip. Dengan pengklasifikasian ini maka dapat diperoleh informasi mengenai suatu kelas jalan yang memudahkan untuk konstruksi, perbaikan maupun pemeliharaan dari jalan tersebut. Jaringan saraf druan yang digunakan dalam tugas akhir ini memakai topologi jaringan propagasi balik (Backpropagation)."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S38730
UI - Skripsi Membership Universitas Indonesia Library
Andryanto Candra Wijaya
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38760
UI - Skripsi Membership Universitas Indonesia Library
Manik, Edgar Jonathan
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38761
UI - Skripsi Membership Universitas Indonesia Library
Sigit Prasetyo
"Pada skripsi ini dibahas perancangan dan pembuatan suatu model mobil yang dapat bergerok tonpa pengontrolan manusia mengikuti jalan yang ada dihadapannya. Alat ini diberi nama Parikesit. Alat yang dibuat Ini merupakan salah satu dari penerapan salah satu jenis kecerdasan buatan, yaitu jaringan saraf tiruan dengan algoritma propagasi batik.
Jaringan saraf tiruan pada skripsi ini berfungsi untuk mengenali bentuk jalan yang ditangkap oleh kamera. Kemudian hash dari pengenalan tersebut dlkirimkan ke mlkrokontroler 8032. Mikrokontroler inilah yang kemudian menggerakkan coda dari model mobil yang digunakan.
Bentuk jalan yang dapat dkenali oleh jaringan saraf flan yang digunakan hanya jalan lurus dan tikungan 90 derajat. Demikian juga dengan manufer-manufer gerak yang diprogramkan untuk mikrokontroller 8032 hanya sebatas jalan lurus dan tikungan 90 derajat.
Dari hasil uji coba yang dilakukan menunjukkan bahwa jaringan saraf tiruan cukup hondal untuk digunakan pods oplikasi sepetti yang dibuat pada skripsi ini. Hanya saja intensitas cahaya sangat berpengaruh pada keberhasilan dalam menetukan kelas, karena perangkai lunak yang dibuat belum dapat melakukan adaptasi terhadap Intensitas cahaya yang berbeda-beda.
"
Depok: Fakultas Teknik Universitas Indonesia, 1997
S39429
UI - Skripsi Membership Universitas Indonesia Library
Edi Gunawan
"Skripsi ini membahas tentang Sistem Pengenalan Kendaraan dengan menggunakan Jaringan Saraf Tiruan (JST). Sistem yang digunakan bersifat off-line, dalam arti bahwa sistem tidak bekeda langsung pads saat kendaraan memasuki suatu tempat lalu sekaligus diambil citranya akan tetapi bekerja dengan pola citra statis kendaraan itu sendiri. Sistem jugs bersifat khusus dan terbatas hanya untuk mengenali 4 jenis kendaraan : sedan, jip, wagon dan mini. Sistem tidak dikembangkan untuk mengenali kendaraan dengan ukuran besar seperti trek dan bus. Jaringan yang dipakai pada skripsi ini disusun dengan topologi kaskade yang menggabungkan antara topologi JST Kohonen SOM dengan topologi JST Backpropagation. Kohonen SOM belajar dalam mode tak disupervisi, yang mampu melakukan proses pemisahan setup data masukan yang berlainan. Masing-masing data masukan dipetakan dengan data keluaran kemudian diajarkan kepada jaringan Backpropagation - bekerja dalam mode disupervisi -, yang kemudian mengingat pola pemetaan data masukan menjadi data keluaran tanpa melalui pendefirusian fungsi pemetaan. Dengan menggabungkan Kohonen SOM dan Backpropagation, diharapkan akaa aiperoleh hasil yang lebih balk daripada bila kedua topologi tersebut bekeda sendiri-sendiri."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S38822
UI - Skripsi Membership Universitas Indonesia Library
[Universitas Kristen Petra Surabaya, Universitas Indonesia], 2001
pdf
Artikel Jurnal Universitas Indonesia Library
Edwin Iskandar
"Pada skripsi ini akan dirancang suatu sistem pengendalian ketinggian air untuk sistem coupled tank pp-00 berdasarkan pengendali jaringan syaraf tiruan dengan metode pelatihan adaptive interaction. Sistem yang digunakan disusun berdasarkan bentuk tangki terhubung dengan satu masukan dan satu keluaran (SISO). Sesuai dengan waktu cuplik yang telah ditentukan, komputer akan menerima data-data hasil cuplikan sensor berupa ketinggian air pada tangki kedua dengan memberikan masukan air pada tangki pertama.
Pengendalian ketinggian air didasarkan pada error yang dihasilkan antara data-data yang berasal dari sensor pada tangki kedua sebagai titik ketinggian air sistem yang akan diatur dan titik acuan yang telah didefinisikan terlebih dahulu sebagai nilai setpoint. Digunakan dua buah masukan pada pengendali jaringan syaraf tiruan yaitu error pada waktu pencuplikan sekarang dan waktu pencuplikan sebelumnya. Untuk melihat bagaimana kerja dari pengendali jaringan syaraf tiruan ini akan dilakukan perubahan parameter-parameter dari jaringan syaraftiruan ini, seperti banyaknya neuron pada lapisan tersembunyi, dan konstanta pelatihan. Untuk membantu pengendali jaringan syaraf tiruan, akan diberikan pengendali tambahan yaitu pengendali feedforward. Pengendali ini kemudian akan dibandingkan performa kerjanya dengan pengendali konvensional yang telah lama dikenal, yaitu pengendali PI.
Hasil simulasi memperlihatkan bahwa pengendali jaringan syaraftiruan ini dapat memberikan hasil yang lebih baik dengan pengendali PI, selain itu dengan melakukan perubahan-pembahan pada parameter jaringan syaraf tiruan dapat membantu kinerja pengendali agar dapat mengendalikan sistem menjadi lebih baik. Pada akhirnya rancangan pengendali jaringan syaraf tiruan ini ditambahkan dengan pengendali feedforward yang terbukti dapat meningkatkan kinerja pengendali jaringan syaraftiruan ini."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40129
UI - Skripsi Membership Universitas Indonesia Library
M. Ilham Fauzi
"
ABSTRAKTesis ini membahas identifikasi sistem kiln semen dengan Jaringan Syaraf Tiruan (JST), yang meliputi penentuan parameter yang dibutuhkan untuk pemodelan sistem tersebut, dan perancangan JST yang digunakan untuk identifikasi tersebut. Dalam tesis ini digunakan struktur Multi-Layer Feedforward Network yang terdiri dari lapisan masukan, lapisan keluaran dan 2 buah lapisan tersembunyi. Data diperoleh dari kiln semen yang sebenarnya yaitu dari Pabrik Tuban-II PT. Semen Gresik (Persero) tbk., kemudian data tersebut digunakan untuk melatih JST. Untuk melakukan identifikasi menggunakan model masukan-keluaran dengan struktur serial-paralel dan pelatihan JST tersebut menggunakan algoritma Error Back Propagation. Hasil identifikasi selanjutnya disimulasikan dan dibandingkan dengan plant yang sebenarnya.
ABSTRACTThis thesis discuss about system identification of cement kiln using Artificial Neural Network (ANN). The process of system identification using ANN requires to define of the input and output parameters, and to decide ANN's structure. In this thesis, the Feedforward Multi-Layer Network is used which contain input layer, output layer and two hidden layers. The data are collected from the real cement kiln at Pabrik Tuban-II PT. Semen Gresik (Persero) tbk, then good data are selected for training the ANN. In this thesis is using Serial-Parallel Structure and training algorithm is using Error Back Propagation method. The result of the identification is then simulated and compared to the real plant."
Fakultas Teknik Universitas Indonesia, 2001
T-Pdf
UI - Tesis Membership Universitas Indonesia Library
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.
In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open Universitas Indonesia Library