Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 91934 dokumen yang sesuai dengan query
cover
Rully Soelaiman
"Pengenalan teknologi DNA microarray membuat perolehan data microarray menjadi lebih mudah. Hal ini semakin memicu persoalan tentang bagaimana cara terbaik dalam mengekstraksi dan memilih fitur dari data yang berdimensi besar tersebut. Metode-metode terdahulu mengabaikan adanya hubungan antargen sehingga memungkinkan hilangnya informasi penting yang tersimpan dalam suatu gen pada saat ekstraksi fitur. Meskipun berbagai macam metode telah digunakan, pengembangan metode ekstraksi dan seleksi fitur dari data microarray yang lebih powerful dan efisien masih diperlukan untuk meningkatkan performa klasifikasi kanker. Dalam penelitian ini diimplementasikan sebuah metode dalam melakukan ekstraksi fitur dari data microarray yang memanfaatkan model klasifikasi berbasis informasi pasangan gen, yaitu pasangan gen yang memiliki perbedaan signifikan pada dua jenis sampel tissue. Hasil uji coba terhadap dua data microarray menunjukkan bahwa fitur hasil ekstraksi menggunakan metode ini dapat meningkatkan performa klasifikasi. Bahkan akurasi 100% dapat diperoleh pada uji coba terhadap data lymphoma."
Surabaya: Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember, 2009
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Noval Saputra
"

Analisis triclustering merupakan teknik analisis pada data 3D (observasi – atribut – konteks). Analisis triclustering dapat mengelompokkan observasi pada beberapa atribut dan konteks secara bersamaan. Analisis triclustering telah sering diterapkan untuk menganalisis data ekspresi gen microarray. Penelitian ini menggunakan metode δ-Trimax untuk melakukan analisis triclustering pada data ekspresi gen microarray. Metode δ-Trimax bertujuan untuk menemukan tricluster yang memiliki mean square residual kecil dari δ dan volume maksimal. Tricluster diperoleh dengan cara melakukan penghapusan node dari data 3D dengan menggunakan algoritma multiple node deletion dan single node deletion. Kandidat tricluster yang telah didapatkan, dilakukan pengecekan  kembali dengan menambahkan beberapa node yang telah dihapus sebelumnya menggunakan algoritma node addition. Pada penelitian ini dilakukan perbaikan program pada metode δ-Trimax dan juga menambahkan penghitungan evaluasi tricluster yang dihasilkan.  Implementasi metode δ-Trimax dilakukan pada data ekspresi gen dari proses diferensiasi human induced pluripoten stem cell (HiPSC) dari pasien penyakit jantung. Ekspresi gen diukur pada 12 titik waktu dan 3 replikasi. Dari beberapa simulasi yang dilakukan, metode δ-Trimax memberikan hasil terbaik ketika δ=0,0068 dan λ=1,2. Berdasarkan tricluster yang dihasilkan dari simulasi terbaik tersebut, dipilih 5 tricluster yang diduga sebagai ciri-ciri penyakit jantung. Lima tricluster ini dapat menjadi pertimbangan bagi ahli medis untuk melakukan tindakan lebih lanjut terhadap pasien.


Triclustering analysis is an analysis technique on 3D data (observation - attribute - context). Triclustering analysis can group observations on several attributes and contexts simultaneously. Triclustering analysis has been frequently applied to analyze microarray gene expression data. This study used the δ-Trimax method to perform triclustering analysis on microarray gene expression data. The δ-Trimax method aims to find a tricluster that has a mean square residual smaller than δ and a maximum volume. Tricluster is obtained by deleting nodes from 3D data using multiple node deletion and single node deletion algorithms. The tricluster candidates that have been obtained are checked again by adding some previously deleted nodes using the node addition algorithm. In this research, the program improvement of the δ-Trimax method was carried out and also the calculation of the resulting tricluster evaluation. The implementation of the δ-Trimax method was carried out on gene expression data from the differentiation process of human induced pluripotent stem cells (HiPSC) from patients with heart disease. Gene expression was measured at 12 time points and 3 replications. From several simulations performed, the δ-Trimax method gives the best results when δ = 0.0068 and λ = 1.2. Based on the tricluster generated from the best simulation, 5 tricluster were selected which were suspected as a characteristic of heart disease. These five tricluster can be a consideration for medical experts to take further action on patients.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosalia Deviana Cahyaningrum
"Penelitian ini bertujuan untuk mengimplementasikan spectral clustering-PAM dengan menggunakan algoritma similaritas serial dan mengimplementasikan algoritma similaritas paralel berbasis CUDA dalam metode spectral clustering pada data microarray gen karsinoma. Implementasi dibantu dengan perangkat lunak R berbasis open source yang digunakan pada algoritma spectral clustering-PAM dengan algoritma similaritas serial dan CUDA yang digunakan pada algoritma similaritas paralel. Pengelompokan data microarray gen karsinoma diawali dengan menormalisasi data menggunakan normalisasi min-max. Pada algoritma spectral clustering-PAM, pertama-tama similaritas antar gen karsinoma dihitung. Selanjutnya, membentuk matriks Laplacian ternormalisasi dari matriks diagonal dan matriks Laplacian tak ternormalisasi. Langkah berikutnya yaitu menghitung eigenvalue dari matriks Laplacian ternormalisasi dan menentukan eigenvector dari eigenvalue terkecil matriks Laplacian ternormalisasi yang disusun menjadi dataset baru untuk dipartisi setiap barisnya menggunakan metode PAM. Berdasarkan running time, waktu yang dibutuhkan untuk menghitung nilai similaritas secara paralel di CUDA 378 kali lebih cepat daripada secara serial di R. Hasil penelitian menunjukkan bahwa spectral clustering-PAM mengelompokkan data microarray gen karsinoma menjadi dua cluster dengan nilai rata-rata silhouette yaitu 0,6458276.

This research aims to implement the spectral clustering PAM using serial similarity algorithm and implement parallel similarity algorithm based on CUDA in spectral clustering method on microarray data of carcinoma genes. Implementation assisted with software based on open source R used in spectral clustering algorithm PAM with serial similarity algorithm and CUDA used to parallel similarity algorithm. Clustering microarray data of carcinoma genes preceded by normalizing the data using min max normalization. In the spectral clustering PAM algorithm, first of all, similarity between genes of carcinoma calculated. Furthermore, forming the normalized Laplacian matrix from diagonal matrix and unnormalized Laplacian matrix. The next step is to calculate the eigenvalues of normalized Laplacian matrix and determine the eigenvectors of k smallest eigenvalues of normalized Laplacian matrix is organized into a new dataset to be partitioned each line using PAM. Based on the running time, the time required to calculate the value of parallel similarity in CUDA is 378 times faster than a serial in R. The results showed that spectral clustering PAM classify microarray data of carcinoma genes into two clusters with an average silhouette value is 0,6458276."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47172
UI - Tesis Membership  Universitas Indonesia Library
cover
Sofia Debi Puspa
"Penelitian ini bertujuan untuk mengimplementasikan similarity based biclustering SBB dalam memperoleh bicluster sekumpulan gen dengan ekspresi yang similar di bawah kondisi tertentu yang signifikan pada data microarray. Secara teoritis similarity based biclustering terdiri atas tiga tahap utama, yaitu: membangun matriks similaritas baris gen dan matriks similaritas kolom kondisi , mempartisi masing-masing matriks similaritas dengan hard clustering khususnya dalam penelitian ini menggunakan partisi k-means, dan ekstrak bicluster. Sebelum mengimplementasikan metode SBB, strategi seleksi gen diterapkan dan selanjutnya dilakukan normalisasi. Perolehan evaluasi indeks silhouette pada dataset diabetic nephropathy, diabetic retinopathy dan lymphoma berturut-turut pada cluster kondisi yaitu 0,8304; 0,7853 dan 0,7382, sedangkan indeks silhouette untuk cluster gen yaitu 0,5382; 0,5408 dan 0,5464. Dan dari hasil analisis cluster kondisi, akurasi dari dataset diabetic nephropathy dan diabetic retinopathy yaitu 100 , sedangkan dataset lymphoma yaitu 98 . Selanjutnya dapat diketahui regulasi proses seluler yang terjadi pada bicluster dari ketiga dataset. Hasil analisis menunjukkan bahwa gen-gen yang diperoleh dari bicluster sesuai dengan fungsi gen dan proses biologis didukung oleh GO enrichment sehingga menjadi potensi yang besar bagi praktisi medis dalam tindak lanjut suatu penyakit yang diderita oleh pasien.

This study aims to implement similarity based biclustering SBB in obtaining a bicluster a set of genes that exhibit similar levels of gene expression under certain conditions that is significant in microarray data. Theoretically, similarity based biclustering consists of three main phase constructing the row gene similarity matrix and the column condition similarity matrix, partitioning each matrix similarity with hard clustering especially in this research using k means partition, and extracting bicluster. Before implementing the SBB method, the gene selection strategy is applied and subsequently normalized. The acquisition of silhouette index evaluation in diabetic nephropathy, diabetic retinopathy, and lymphoma on cluster condition respectively is 0.8304, 0.7853 and 0.7382, while the silhouette index for the gene cluster is 0.5382, 0.5408 and 0.5464. In addition, according to the cluster condition analysis, accuracy of dataset diabetic nephropathy and diabetic retinopathy is 100 , whereas dataset lymphoma is 98 . Furthermore, it can be known cellular regulation that occurs on the bicluster of the three datasets. The results of the analysis show that the genes obtained from bicluster are relevant to the function of genes and biological processes supported by GO enrichment , therefore it becomes a great potential for medical practitioners in the follow up of a disease suffered by the patient.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49530
UI - Tesis Membership  Universitas Indonesia Library
cover
Nurul Shabrina
"Microarray merupakan salah satu teknologi pada bidang biologi yang memberikan
informasi tentang ekspresi gen. Data microarray mentah berupa gambar, yang harus
diubah menjadi matriks ekspresi gen dimana baris menunjukkan gen, kolom
menunjukkan kondisi eksperimental. Namun, pada praktiknya data microarray banyak
ditemukan missing values yang tentunya akan menghambat proses dari analisis datanya.
Imputasi merupakan salah satu solusi yang dapat mengatasi adanya missing values pada
data microarray. Dengan menggunakan imputasi, nilai missing values yang terdapat pada
matriks data diprediksi atau diestimasi sehingga diperoleh matriks data yang lengkap.
Metode imputasi yang digunakan pada penelitian ini bernama bi-KNN-RLSP, yang
menggunakan konsep biclustering, principal component analysis, dan regresi kuantil.
Dalam proses pembentukan biclustering, dibutuhkan matriks lengkap sementara yang
diperoleh melalui proses praimputasi dengan KNNimpute. Percobaan bi-KNN-RLSP
dilakukan pada data ekspresi gen garis sel kanker serviks dengan menerapkan missing
rate yang berbeda, yaitu 1%, 5%, 10%, 15%, 20%, 25%, dan 30% dengan menggunakan
parameter k=10 pada proses praimputasi KNNimpute. Hasil percobaan tersebut dievaluasi
performanya menggunakan normalized root mean squared error. Nilai rata-rata NRMSE
pada percobaan yang dilakukan sebanyak lima kali memiliki nilai yang lebih rendah
dibandingkan dengan metode bi-RLSP dan row average. Waktu komputasi untuk metode bi-KNN-RLSP dan bi-RLSP tidak jauh berbeda, sehingga dengan waktu yang tidak
signifikan berbeda, metode bi-KNN-RLSP dapat menghasilkan nilai NRMSE yang lebih kecil dibandingkan dengan bi-RLSP. Oleh karena itu, dapat dikatakan bahwa modifikasi praimputasi row average pada metode bi-RLSP menjadi KNNimpute dapat menghasilkan performa imputasi yang lebih bagus. Selain itu, diperoleh hasil bahwa nilai NMRSE untuk metode bi-KNN-RLSP meningkat seiring dengan meningkatnya missing rate.

Microarray is a technology in biology that provides information about gene expression. The raw microarray data is in the form of images, which must be converted into a gene expression matrix where rows indicate genes, columns indicate experimental conditions. However, in practice, many missing values are found in microarray data, which of course
will hinder the process of data analysis. Imputation is one solution that can overcome the missing values in microarray data. By using imputation, the missing values contained in the data matrix are predicted or estimated so that a complete data matrix is obtained. The imputation method used in this study is called bi-KNN-RLSP, which uses the concept of
biclustering, principal component analysis, and quantile regression. In the process of forming biclustering, a temporary complete matrix is needed which is obtained through the pre-imputation process with KNNimpute. The bi-KNN-RLSP experiment was carried out on cervical cancer cell line gene expression data by applying different missing rates,
namely 1%, 5%, 10%, 15%, 20%, 25%, and 30% using the parameter k=10. in the KNNimpute pre-imputation process. The results of these experiments were evaluated for their performance using the normalized root mean squared error. The average value of NRMSE in the five times experiment has a lower value than the bi-RLSP and row average methods. The computation time for the bi-KNN-RLSP and bi-RLSP methods is not much different, so with the time that is not significantly different, the bi-KNN-RLSP method can produce a smaller NRMSE value compared to bi-RLSP. Therefore, it can be said that the modification of the row average preimputation in the bi-RLSP method to KNNimpute can produce better imputation performance. In addition, it was found that the NMRSE value for the bi-KNN-RLSP method increased along with the increase in the missing rate.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Abdul Rivai
"ABSTRAK
Clustering adalah metode pembagian data ke dalam kelompok homogen yang disebut cluster. Spectral clustering merupakan salah satu algoritma clustering modern yang memiliki kelebihan dapat mereduksi dimensi data. Pada penelitian ini metode partisi yang diterapkan pada spectral clustering yaitu self-organizing map SOM . SOM memiliki keunggulan tahan terhadap data noise dan outlier, serta SOM dapat mengatasi dataset yang besar. Penelitian ini bertujuan untuk mengimplementasikan spectral clustering-self organizing map pada data microarray ekspresi gen karsinoma yang terdiri dari 7457 gen dari 18 sampel normal dan 18 sampel penderita kanker karsinoma. Sebelum dilakukan spectral clustering-SOM, data microarray ekspresi gen karsinoma dinormalisasi menggunakan normalisasi min-max. Spectral clustering-SOM dilakukan dengan tahapan-tahapan berikut: menghitung matriks similaritas W , menghitung matriks laplacian ternormalisasi Lsym , menghitung eigenvalue dari Lsym, membentuk matriks U yang terdiri dari k eigenvector terkecil, membentuk vektor unit Unorm dari vektor baris pada matriks U sehingga vektor unit memiliki norm 1, mengelompokkan gen pada matriks Unorm menggunakan SOM dan menghitung nilai indeks Davies-Bouldin IDB k . Penentuan jumlah cluster terbaik berdasarkan nilai indeks Davies-Bouldin yang paling minimum. Dengan menggunakan perangkat lunak R, hasil penelitian ini menunjukkan bahwa data microarray ekspresi gen karsinoma terbagi menjadi dua cluster dengan nilai indeks Davies-Bouldin yaitu 0,5843429. Berdasarkan indeks Davies-Bouldin, hasil clustering menggunakan metode spectral clustering-SOM lebih baik daripada hasil clustering yang menggunakan metode SOM tanpa spectral clustering.

ABSTRACT
Clustering is a method the dividing data into a homogeneous group called a cluster. Spectral clustering is one of the modern clustering algorithms that has the advantage of reducing dimensions of data. In this study the partitioning method applied to spectral clustering is self organizing map. SOM has the advantage of robust to noise and outlier, and SOM can handle large datasets. This study aims to implement spectral clustering self organizing map on microarray data of carcinoma gene expression consisting of 7457 genes from 18 normal samples and 18 samples of carcinoma cancer patients. Before spectral clustering SOM, the microarray data of carcinoma genes expression was normalized using min max normalization. The Spectral clustering SOM is done by the following steps calculate similarity matrix W , calculate the normalized Laplacian matrix Lsym , calculate the eigenvalue of Lsym , forming a vector unit Unorm of the row vector of the matrix U so that the vector unit has norm 1, grouping the genes in the matrix Unorm and calculate the Davies Bouldin index values IDB k . Determination of the best number of clusters based on the minimum value of the Davies Bouldin index. By using software R, the result of this research is microarray data of carcinoma gene expression is divided into two clusters with Davies Bouldin index value is 0.5843429. Based on the Davies Bouldin index values, clustering using spectral clustering SOM is better than clustering using only SOM method without spectral clustering."
2017
T48650
UI - Tesis Membership  Universitas Indonesia Library
cover
Fahrezal Zubedi
"Pada penelitian ini mengimplementasikan algoritma Similarity Based Biclustering dengan menggunakan PAM clustering pada tiga dataset ekspresi gen microarray. Penelitian ini bertujuan untuk mengetahui ekspresi regulasi dari masing-masing bicluster yang diperoleh dan mengetahui kinerja algoritma Similarity Based Biclustering-PAM clustering berdasarkan hasil analisis kelompok kondisi. Similarity based biclustering-PAM clustering secara teoritis terdiri dari empat tahap utama yaitu: mentransformasi data, membangun matriks similaritas, proses clustering khususnya dalam tesis ini menggunakan metode partisi PAM dan mengekstrak bicluster. Algoritma similarity based biclustering-PAM clustering dapat mengetahui ekspresi regulasi dari tiap bicluster pada tiga dataset yaitu: Diabetes Melitus tipe II, Diabetes Retinopati, dan Limfoma. Akurasi yang diperoleh dari algoritma Similarity Based Biclustering untuk masing-masing dataset yaitu Diabetes Melitus tipe II sebesar 0.55, Diabetes Retinopati sebesar 0.80 dan Limfoma sebesar 0.83.

In this research implements Similarity Based Biclustering algorithm by using PAM Clustering method in three dataset of microarray gene expression. Aim of this research is to know the regulated expression of each obtained bicluster and to know the performance of Similarity Based Biclustering PAM Clustering algorithm based on the result of group condition analysis. Similarity Based Biclustering is theoretically composed of four main stages transforming data, constructing matrix similarity, clustering process, especially in this thesis using PAM partition algorithm and extracting bicluster. Similarity Based Biclustering PAM is able to know the regulatory expression of each bicluster in three datasets Diabetes Mellitus type 2, Diabetes Retinopathy, and Lymphoma. Accuracy obtained from Similarity Based Biclustering algorithm for each dataset is 0.55 in data of type 2 diabetes mellitus, 0.80 in diabetic retinopathy data and 0.83 in lymphoma data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49505
UI - Tesis Membership  Universitas Indonesia Library
cover
Syamira Merina
"Adenoma merupakan jenis tumor jinak pada lapisan epidermis jaringan. Adenoma dapat berubah menjadi kanker ganas yang kemudian disebut Adenocarcinoma. Terdapat salah satu bentuk data biologi molekuler yang sedang berkembang saat ini, yaitu data ekspresi gen microarray. Microarray dapat digunakan untuk pendeteksian dan penelitian dalam bidang onkologi. Salah satu metode untuk mengolah dan menganalisis data ekspresi gen microarray adalah dengan biclustering. Dalam skripsi ini akan dilakukan implementasi salah satu metode biclustering pada data ekspresi gen microarray, yaitu dengan algoritma Binary Inclusion-Maximal. Algoritma akan diimplementasi pada data Adenoma kolon yang terdiri dari 7070 gen dengan 4 sampel sel adenoma dan 4 sampel sel normal. Implementasi tersebut membutuhkan waktu kurang dari 1 detik dan menghasilkan 22 bicluster yang terdiri dari 25 gen secara keseluruhan.

Adenoma is a benign type of tumor in the epidermal layer of a tissue. Adenoma can turn into a malignant cancer which is then called Adenocarcinoma. There is a form of molecular biology data which is developing today, namely microarray gene expression data. Microarray can be use for detection and research in the field of oncology. One method for processing and analyzing microarray gene data is by biclustering. In this study the writer will be using one method of biclustering, the Binary Inclusion Maximal algorithm, and implement it on microarray gene expression data. The algorithm will be implemented on Colon Adenoma data consisting of 7070 genes with 4 adenoma cell samples and 4 normal cell samples. The implementation took less than one second and resulted in 22 biclusters composed of 25 genes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nyoman Arda Wibawa
"Penelitian ini bertujuan untuk mencari gen terdiferensiasi dan informasi biologis dari data ekspresi gen penyakit Alzheimer. Data yang digunakan merupakan data microarray penyakit Alzheimer yang berukuran 54675 peobes × 161 sampel. Data tersebut diperoleh dari National Centre for Biotechnology Information (NCBI) yang dapat diakses melalui laman: http://www.ncbi/nlm.nih.gov/. Gen yang memiliki ekspresi terdiferensiasi diseleksi menggunakan algoritma Delta Relative Deviation dan Absolute Deviation (DARDAD). 7089 gen dengan ekspresi terdiferensiasi pada sampel sakit selanjutnya dianalisis menggunakan metode biclustering. Bicluster didapatkan dengan menggunakan model BicMix yang memodelkan matriks ekspresi gen sebagai perkalian dua parameter ditambah matriks eror. Hasil faktorisasi dari Singular Value Decomposition (SVD) digunakan untuk menginisialisasi proses estimasi parameter model BicMix menggunakan metode iteratif Variational Expectation Maximization (VEM). Hasil bicluster selanjutnya dianalisis menggunakan Gene Ontology dan Disease Ontology. Didapatkan 30 bicluster dan beberapa penyakit yang berkaitan dengan penyakit Alzheimer.

The purpose of this research is to find genes that differentially expressed and biologic information from Alzheimer's gene expression data. Microarray data of Alzheimer's disease with 54675 probes × 161 samples were used in this research. Data downloaded from National Centre for Biotechnology Information (NCBI), http://www.ncbi/nlm.nih.gov/. Delta Relative Deviation and Absolute Deviation (DARDAD) were used to find differentially expressed genes. 7089 differentially expressed genes then analyzed using biclustering method with BicMix model. BicMix modeled gene expression matrix data as multiplication two parameters and an error matrix. Parameters in the model estimated using Singular Value Decomposition (SVD) - Variational Expectation Expectation Maximization (VEM). Bicluster result then analyzed using Gene Ontology and Disease Ontology. Result of this research are 30 biclusters and disease that are active in Alzheimer.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54494
UI - Tesis Membership  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>