Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3872 dokumen yang sesuai dengan query
cover
Restieliani
"Pada tugas akhir ini dibahas mengenai distribusi bivariat Gamma, yang aplikasinya banyak ditemui pada bidang hidrologi. Pembahasan meliputi konstruksi dan sifat – sifat dari distribusi bivariat Gamma. Pada proses konstruksi, digunakan 3 cara yang berdasarkan karakterisasi dari distribusi Gamma dan Beta. Sehingga menghasilkan 3 tipe distribusi bivariat Gamma yaitu tipe I, II, dan III.
Sesudah tahap konstruksi, pada bentuk joint p.d.f dinyatakan dalam fungsi Whittaker. Sifat-sifat yang dibahas meliputi conditional p.d.f, product moment, kovariansi, dan korelasi. Sebagai ilustrasi digunakan data simulasi untuk tipe I, II, dan III. Hasil simulasi menunjukkan kesesuaian dengan teori yang dibahas.

In this final project, discussed the bivariate Gamma distribution, whose applications were encountered in the field of hydrology. The discussion includes the construction and some properties of bivariate Gamma distribution. In the construction process, used 3 ways, which based on the characterization of the Gamma and Beta distributions, resulting bivariate Gamma distribution of 3 types namely type I, II, and III.
After the construction phase, the joint p.d.f is expressed in the form of Whittaker functions. The properties covered include conditional p.d.f, product moment, covariance, and correlation. As an illustration, used simulated data for type I, II, and III. Simulation results demonstrate conformity with the theory are discussed.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45552
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imam Ahmadi
"Tugas akhir ini membahas tentang distribusi Weibull-Pareto yang merupakan distribusi probabilitas kontinu yang dibangun dengan menggunakan metode Transformed-Transformer. Distribusi Weibull-Pareto dapat menggambarkan data yang menceng kanan, menceng kiri, atau simetris serta dapat menggambarkan data yang mempunyai light-tailed maupun heavy-tailed. Pembahasan meliputi fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, dan fungsi hazard. Kemudian dicari karakteristik-karakteristik dari distribusi Weibull-Pareto yang meliputi modus, persentil, dan fungsi pembangkit momen. Terakhir dicari taksiran parameter dari distribusi ini dengan menggunakan metode Alternative Maximum Likelihood (AML). Simulasi data juga dilakukan sebagai ilustrasi.

This paper discusses about Weibull-Pareto distribution, the continuous probability distribution which arised by Transformed-Transformer method. The Weibull-Pareto distribution gives a good fit to right skew, left skew, or symmetric. In particular, Weibull-Pareto distribution can solve light tailed or heavy tailed problem. At first, we study about probability density function, cumulative distribution function, survival function, and hazard function. Then, we find the characteristic of Weibull-Pareto distribution, that is mode, percentile, and moment generating function. Finally, we estimate the parameters of Weibull-Pareto distribution using Alternative Maximum Likelihood (AML) method. Simulation data is used as illustration."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S57837
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafira
"Data count sering diasumsikan berdistribusi Poisson yang hanya memiliki satu parameter dengan mean dan variansi sama. Namun pada kenyataannya, sering ditemukan data count dengan variansi yang lebih besar dari mean, keadaan ini dikenal dengan overdispersi. Saat terjadi overdispersi, maka data count tidak berdistribusi Poisson, sehingga perlu dicari distribusi lain yang dapat digunakan untuk menganalisis data count. Salah satu distribusi yang dapat digunakan adalah distribusi Binomial Negatif yang merupakan distribusi Campuran Poisson-Gamma (Mixture Poisson-Gamma Distribution). Pada tugas akhir ini akan dijelaskan mengenai perumusan distribusi Binomial Negatif sebagai distribusi Campuran Poisson-Gamma (Mixture Poisson-Gamma Distribution), penaksiran parameter pada distribusi Binomial Negatif yang merupakan distribusi campuran Poisson-Gamma, serta mempelajari sifat-sifat taksirannya.

Counts data, often assumed follows a Poisson distribution has same mean and variance value. But in fact, count data often has variance value greater than mean value, this condition is called by overdispersion. When overdispersion occured, data count doesn't have a Poisson distribution, so need to find another distribution which can be applied for data count analyzing. One of distribution which often be applied is Negative Binomial distribution which is form as a mixture Poisson-Gamma distribution. In this minithesis, estimators of Negative Binomial distribution (Mixture Poisson-Gamma distribution) and their characteristics will be explained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S210
UI - Skripsi Open  Universitas Indonesia Library
cover
Yola Oktavia Mabel
"Data lifetime merupakan data yang berisi lama waktu hidup suatu individu ataupun suatu produk yang diukur dari awal waktu penelitian hingga terjadinya suatu event. Salah satu distribusi yang sering digunakan untuk analisis data lifetime adalah distribusi Weibull karena memiliki bentuk fungsi hazard konstan, naik, dan turun. Akan tetapi, terdapat data lifetime dengan bentuk fungsi hazard lain yaitu bentuk unimodal. Oleh karena itu, dilakukan pengembangan distribusi Weibull menggunakan metode compounding sehingga menghasilkan distribusi Weibull-Geometrik (WG) yang dapat memodelkan data lifetime dengan bentuk fungsi hazard unimodal. Pada kenyataannya, terdapat data lifetime yang berbentuk diskrit (count data). Oleh karena itu, pada skripsi ini dibahas pembentukan distribusi yang dapat memodelkan data lifetime diskrit, yang diperoleh dengan cara melakukan diskritisasi pada distribusi WG kontinu. Diskritisasi yang dilakukan yaitu dengan mempertahankan salah satu karakteristik yang dimiliki distribusi Weibull-Geometrik, yaitu fungsi survivalnya. Distribusi yang dihasilkan yaitu distribusi Discrete Weibull Geometrik (DWG), memiliki bentuk fungsi hazard turun, naik, dan unimodal serta cukup baik dalam memodelkan data lifetime diskrit (count data). Diakhir skripsi ini, juga dibahas penggunaan distribusi DWG yang diilustrasikan pada data waktu hidup pasien lupus nephritis dalam waktu hari sehingga merupakan data diskrit. Kemudian, ditunjukkan bahwa distribusi DWG sesuai untuk memodelkan data waktu hidup pasien lupus nephritis.

Lifetime data is data that contains the lifetime of an individual or a product that is measured from the beginning of the research time until an event occurs. One distribution that is often used for lifetime data analysis is Weibull distribution, because it has a constant, increasing, and decreasing hazard function. However, there is lifetime data with another form of the hazard function, that is the unimodal form (upside-down bathtub). Because of this, we developed Weibull distribution using the compounding method to produce a Weibull-Geometric distribution that can model lifetime data in unimodal hazard function form. But in fact, there are discrete lifetime data (count data). Hence, this paper discuss the formation of distributions that can model discrete lifetime data, which is obtained by discretizing a continuous Weibull-Geometric distribution (WG). Discretization is carried out by maintaining one of the characteristics of the Weibull-Geometric distribution, that is, its survival function. The result distribution, discrete Weibull Geometric distribution (DWG), has a form of increasing, decreasing, and unimodal hazard function, and quite good at modelling discrete lifetime data (count data). At the end of paper, the DWG distribution is used to illustrate dataset of lifetime patients lupus nephritis and shown that the DWG distribution is the appropriate model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rury Mulanda
"Salah satu aspek penting dalam inveri seismik adalah estimasi wavelet yang bisa mewakili data seismik secara komprehensif. Dalam tesis ini akan dijabarkan konsep dan implementasi algoritma Kolmogoroff dalam estimasi wavelet. Secara prinsip, dalam metoda Komogoroff, spektrum fasa minimum ditentukan atas spektrum amplitudo yang diberikan. Jika diberikan spektrum amplitudo dengan panjang wavelet n+1 maka terdapat 2n wavelet dengan spektrum fasa yang berbeda, namun hanya satu dari 2n wavelet yang mmiliki spektrum fasa minimum.
Pendekatan yang unik ini diharapkan bisa memberikan estimasi wavelet yang representative. Dalam proses ini, kondisi data seismik diasumsikan terdiri dari deret reflektivitas yang acak dan merupakan hasil konvolusi dari wavelet berfasa minimum. Keabsahan dari asumsi tersebut telah diuji dengan deret reflektivitas dari suatu data sumuran dan trace seismik sintetik.
Untuk verifikasi dari unjuk kerja algoritma Kolmogoroff, terlebih dahulu diaplikasikan ke data sintetik. Lebih lanjut aplikasi dengan data real dilakukan untuk menentukan distribusi impedansi akustik melalui inversi seismik. Sebagai acuan dalam mengevaluasi hasil inversi seismik dilakukan komparasi terhadap teknik Band Limited inversion yang dihasilkan dari software komersiil. Hasil koparasi menunjukkan korelasi yang optimum."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
T20984
UI - Tesis Membership  Universitas Indonesia Library
cover
Irene Devina Putri
"Penentuan tarif premi adalah hal yang krusial bagi perusahaan asuransi agar perusahaan tidak mengalami kerugian dan pemegang polis mendapatkan tarif premi yang sesuai dengan profil risikonya. Salah satu indikator penting dalam penentuan tarif premi adalah frekuensi klaim. Frekuensi klaim pada asuransi kendaraan bermotor sangat penting karena dapat menjadi indikator risiko yang berpengaruh pada seberapa tinggi tarif premi yang harus dibayarkan oleh pemegang polis. Salah satu metode perhitungan tarif premi adalah experience ratemaking, yang terdiri dari dua tahapan perhitungan premi, yaitu a-priori dan a-posteriori. Tahapan a-priori menggunakan skema klasifikasi risiko berdasarkan karakteristik atau faktor risiko dari masing-masing pemegang polis yang diketahui dan terukur hanya di satu waktu tertentu saja. Namun, seiring berjalannya waktu, perusahaan asuransi memperoleh informasi frekuensi klaim, faktor risiko, dan faktor heterogenitas (random effect) dari pemegang polis dari waktu ke waktu sebagai data longitudinal yang digunakan dalam tahapan perhitungan tarif premi a-posteriori. Untuk mengetahui hubungan antara karakteristik risiko dengan banyaknya klaim, dikembangkan beberapa model statistika untuk perhitungan tarif premi a-priori, salah satunya adalah Generalized Linear Model (GLM). Namun, GLM tidak dapat mengakomodasi faktor heterogenitas pada data longitudinal sehingga diperlukan model statistika berikutnya, yaitu Hierarchical Generalized Linear Model (HGLM). Dalam penelitian ini, frekuensi klaim berdistribusi Poisson dan random effect berdistribusi Gamma sehingga model HGLM yang digunakan adalah HGLM Poisson-Gamma. Untuk mengestimasi parameter HGLM Poisson-Gamma, digunakan metode maximum likelihood. Sebagai implementasi HGLM Poisson-Gamma, digunakan pada dua data frekuensi klaim asuransi kendaraan bermotor yang bersifat longitudinal, yaitu data Claimslong dan data Automobile Common Statistics. Berdasarkan data claimslong dengan kovariat usia pengemudi, diperoleh tarif premi tahunan a posteriori untuk setiap kelompok usia. Sedangkan, untuk data Automobile Common Statistics tanpa kovariat, diperoleh tarif premi tahunan a posteriori yang meningkat seiring dengan bertambahnya frekuensi klaim di tahun sebelumnya.

Premium ratemaking is a critical aspect of insurance company operations, ensuring financial stability and equitable pricing for policyholders. Claim frequency serves as a pivotal risk indicator, influencing premium rates assigned to individual policyholders. Experience ratemaking, a prevalent premium calculation method, comprises two stages: a priori and a posteriori. The a priori stage employs a risk classification scheme based on static characteristics or risk factors associated with each policyholder. These factors are known and quantifiable only at a specific point in time. The Generalized Linear Model (GLM) exemplifies a common statistical technique employed for a priori premium rate calculation. However, insurance companies accumulate longitudinal data over time, encompassing information on claim frequency, risk factors, and individual-level random effects (heterogeneity). This necessitates a posteriori premium rate determination that can effectively exploit such longitudinal data. Traditional approaches struggle to account for heterogeneity, necessitating the implementation of statistical models capable of accommodating this complexity. Hierarchical Generalized Linear Models (HGLMs) offer a robust solution for this purpose. This study focuses on the Poisson-Gamma HGLM, where claim frequencies are assumed to follow a Poisson distribution and random effects follow a Gamma distribution. The maximum likelihood method is employed to estimate the model's parameters. The effectiveness of the Poisson-Gamma HGLM is assessed through its application to two longitudinal motor vehicle insurance claim frequency datasets: Claimslong and Automobile Common Statistics. The Claimslong dataset incorporates driver age as a covariate, enabling the estimation of a posteriori annual premium rates for distinct age groups. Conversely, the analysis of the Automobile Common Statistics dataset, absent any covariates, reveals an increase in a posteriori annual premium rates along with the increase of claim frequency from the preceding year."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hairurahman
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27793
UI - Skripsi Open  Universitas Indonesia Library
cover
Astuti Halimah
"Skripsi ini menbahas rancangan sekuensial dan Uji Rasio Probabilitas Sekuensial untuk menguji mean distribusi binomial. Untuk meperjelas pembahasan, diberikan aplikasi teori pengujian ini, yaitu dengan menguji proprsi barang produksi yang rusak yang diasumsikan berdistribusi binomial. Rancangan dan pengambilan data dilakukan di Pabrik Pipa Baja Talang Tirta, PT Bakrie and Brothers, Jakarta."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1993
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ranti Nugraheni
"Random walk sederhana merupakan suatu proses stokastik yang memenuhi aturan rantai Markov. Pada random walk sederhana dapat dibentuk suatu variabel banyak singgah di suatu state pada satu putaran berhingga. State disini merupakan nilai dari jumlah kumulatif random walk. Dalam skripsi ini akan dibahas distribusi dari banyak singgah di suatu state pada satu putaran berhingga dari sebuah random walk sederhana. Distribusinya adalah distribusi geometri termodifikasi di nol. Distribusi banyak singgah akan diaplikasikan untuk melakukan uji kerandoman pada barisan bilangan biner berhingga.

Simple random walk is a stochastic process that meets the Markov chain property. In a simple random walk can be established a number of visits variable within an excursion to a given state. State here the value of the cumulative random walk. In this paper will discuss the distribution of the number of visits within an excursion of a simple random walk to a given state. The distribution of the number of visits is zero-modified geometric. The distribution of the number of visits is applied for testing randomness on a finite binary sequence."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S696
UI - Skripsi Open  Universitas Indonesia Library
cover
Dheni Triadi Sudewo
"Tugas akhir ini membahas mengenai penentuan distribusi dari banyaknya 'hit' kerandoman barisan bilangan biner pada metode Overlapping Template Mathcing Test. Metode ini merupakan suatu metode yang terfokus pada sering atau tidaknya muncul 'pola' acak pada tiap blok barisan bilangan biner dengan menggunakan suatu template. Penentuan distribusi ini dimulai dengan menggunakan distribusi Compound Poisson , lebih khusus lagi menggunakan distribusi Geometric Poisson. Lebih lanjut lagi digunakan transformasi Confluent Hypergeometric Function (Kummer's Function). Selain itu, dalam tugas akhir ini juga diberikan ilustrasi dalam menguji kerandoman barisan bilangan biner dengan menggunakan metode Overlapping Template Mathcing Test.

This paper discusses about determining distribution number of hit of bit sequence randomness in Overlapping Template Matching Test. This method focusses on how often the pattern appears in each blok of bit sequence by using a template. This determining distribution starts by using Compound Poisson distribution, specifically by using Geometric Poisson distribution. Moreover, Confluent Hypergeometric Function is used as transformation's method. Besides, this paper also gives illustration about how to test the randomness of bit sequence using Overlapping Template Matching Test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1042
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>