Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154912 dokumen yang sesuai dengan query
cover
Rismayati
"ABSTRAK
Misalkan G-(p,q) adalah sebuah graf dengan p=│V(G)│ dan q=│E(G)│. Graf G disebut harmonis jika terdapat suatu pemetaan injektif f:V(G)→ Zq sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ Zq dengan f*( uv)=f(u)+f(v) (mod q). Fungsi disebut fungsi pelabelan harmonis dari graf . Graf disebut harmonis ganjil jika terdapat suatu pemetaan injektif f:V(G)→ {0, 1, 2, …, 2q-1} sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ {1, 3, 5, …, 2q-1} dengan f*(uv)=f(u)+f(v). Fungsi f disebut fungsi pelabelan harmonis ganjil dari graf G. Pada tesis ini diberikan konstruksi dan pelabelan harmonis ganjil pada graf korona, graf matahari, graf hairy cycle HC(n; ri), graf shadow lingkaran D2(Cn) dan graf generalisasi shadow lingkaran Dm(Cn) untuk n = 0 (mod 4) .

ABSTRACT
Let G-(p,q) is a graph with p=│V(G)│and q=│E(G)│ . A graph G is said to be harmonious if there exist an injection f:V(G)→ Zq , such that the induced function f*:E(G)→ Zq defined by f*( uv)=f(u)+f(v) (mod q) is an bijection. A function f is said to be the harmonious labeling of G. A graph G is said to be odd harmonious if there exist an injection f:V(G)→ {0, 1, 2, …, 2q-1} such that the induced function f*:E(G)→ {1, 3, 5, …, 2q-1} defined by f*(uv)=f(u)+f(v) is an bijection. A function is said odd harmonious labeling of . In this thesis is given the proof that corona, sun graph, hairy cycle HC(n; ri), cycle shadow D2(Cn) and generalized of cycle shadow Dm(Cn) for are odd harmonious graphs."
Universitas Indonesia, 2013
T32964
UI - Tesis Membership  Universitas Indonesia Library
cover
Gusti Ayu Saputri
"ABSTRAK
Misalkan G(p,q) adalah suatu graf dengan p dan q masing-masing adalah banyaknya simpul dan busur dari G. Pelabelan harmonis ganjil pada adalah suatu fungsi injektif f : V(G) → {0,1,2,…,2q-1} yang sedemikian sehingga menginduksi fungsi bijektif f*:E(G)→{1,3,5,…, 2q-1} yang didefinisikan oleh f *(uv) = f (u) + f (v). Graf yang memiliki pelabelan harmonis ganjil disebut graf harmonis ganjil. Pada tesis ini diberikan suatu konstruksi pelabelan harmonis ganjil pada kelas graf yang memuat lingkaran yaitu graf tangga, graf dumbbell, graf pohon palem, graf pot bunga, graf generalisasi prisma, dan graf matahari.

ABSTRACT
Let G(p,q) is a graph with p and q be respectively the number of vertices and the number of edges of G. The odd harmonious labeling of is an injection f : V(G) → {0,1,2,…,2q-1} such that the induced function f*:E(G)→{1,3,5,…, 2q-1} defined by f *(uv) = f (u) + f (v) is a bijection. A graph with odd harmonious labeling is called odd harmonious graph. In this thesis is given the construction of the odd harmonious labeling on classes of graphs containing cycle, that are ladder graphs, dumbbell graphs, palm graphs, generalized prism graphs, and sun graphs."
Universitas Indonesia, 2013
T32963
UI - Tesis Membership  Universitas Indonesia Library
cover
Pahrin Wirnadian
"Misalkan 𝐺 adalah graf dengan himpunan simpul 𝑉=𝑉(𝐺) dan himpunan busur 𝐸=𝐸(𝐺). Suatu pemetaan 𝜆 dari 𝑉 ke 𝑍|𝐸| dimana 𝐸(𝐺) ≥ 𝑉(𝐺) disebut pelabelan harmonis jika 𝜆 merupakan pemetaan injektif sedemikian sehingga ketika setiap busur 𝑥𝑦 diberi label dengan 𝑤 𝑥𝑦 =𝜆 𝑥 +𝜆(𝑦) mod 𝐸(𝐺) menghasilkan label yang berbeda. Pada tesis ini, diberikan konstruksi pelabelan harmonis pada kombinasi gabungan graf caterpillar dan graf firecracker teratur. Pertama dibuktikan pelabelan harmonis untuk sembarang graf caterpillar dan gabungan beberapa graf caterpillar. Selanjutnya dibuktikan pelabelan harmonis untuk graf firecracker teratur dan gabungan beberapa graf firecracker teratur. Dengan menggunakan pelabelan yang telah diberikan, ditunjukkan bahwa untuk masing-masing graf caterpillar atau firecracker teratur boleh terdapat dua simpul (sepasang simpul) dengan label yang sama. Selanjutnya ditunjukkan konstruksi pelabelan harmonis pada kombinasi gabungan graf caterpillar dan graf firecracker teratur. Dengan menggunakan pelabelan yang telah diberikan, ditunjukkan boleh terdapat 𝑛 pasang label simpul yang sama untuk kombinasi gabungan dari n graf caterpillar teratur dan graf firecracker teratur.

Let G be a graph with component of vertice V = V (G) and edge E = E (G). A mapping of 𝜆 from the V to the 𝑍|𝐸|, where 𝐸(𝐺) ≥ 𝑉(𝐺) , is called a harmonious labeling if 𝜆 is an injection such that, when each edge 𝑥𝑦 is assigned the label 𝑤 𝑥𝑦 =𝜆 𝑥 +𝜆(𝑦) mod 𝐸(𝐺) , the resulting edges are distinct. In this research, we study how to construct a harmonious labeling to union combination of caterpillar graph and regular firecracker graph. First, construction ways of a harmonious labelling will be presented for caterpillar graphs and combination of some caterpillar graphs. A construction of harmonious labeling will also be presented for firecracker graphs and union of some firecracker graphs. By using the labelling that is assigned, it will be shown that for each caterpillar graph or firecraker can have two edges (a paired of edge) with a same labeling. And a construction ways of harmonious labeling of union combination of caterpillar graph and regular firecrcaker graph will be presented. By using the assigned label, it will be proved that for combination of caterpillar graphs and firecracker graph there are n edges that has the same labeling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T28833
UI - Tesis Open  Universitas Indonesia Library
cover
Anggie Juli Asih
"Misalkan G adalah graf dengan himpunan simpul V = V(G) dan him-punan busur E = E(G), dimana |E(G)| dan |V(G)| menyatakan banyaknya busur dan simpul pada G. Suatu pemetaan λ dari V ke Z|E| dimana |V(G)| ≤ |E(G)| disebut pelabelan harmonious jika λ merupakan pemetaan injektif sedemikian sehingga ketika setiap busur xy dilabel dengan w(xy) = λ(x)+ λ(y) (mod |E|) menghasilkan label busur yang berbeda. Jika w(xy) = λ(x)+ λ(y) menghasilkan pelabelan berurutan s, s + 1, s + 2, …, s + |E| - 1 maka λ disebut pelabelan sekuensial. Dalam skripsi ini akan diberikan pelabelan harmonious yang juga sekuensial untuk graf firecracker, graf hairy cycle dan graf korona yang dihasilkan dari transformasi graf caterpillar. Selain itu juga dibahas pelabelan harmonious yang tidak sekuensial pada graf korona"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggie Juli Asih
Depok: Universitas Indonesia, 2009
S27827
UI - Skripsi Open  Universitas Indonesia Library
cover
Timothy Harel
"Misalkan G(p,q) adalah suatu graf dengan p simpul dan q busur dengan himpunan simpul V dan himpunan busur E. Suatu graf G(p,q) dikatakan harmonis ganjil jika terdapat fungsi injektif f: V(G) → {0,1,2,….,2q-1} sedemikian sehingga menginduksi pemetaan f*(uv) = f(u) + f(v) yang merupakan fungsi bijektif f*: E(G) → {1,3,5,….,2q-1}. Pelabelan harmonis ganjil untuk graf korona, (Cn⊚Kr Komplemen) dan graf gabungan korona isomorfis, m(Cn⊚Kr Komplemen) untuk n ≡ 0(mod 4) sudah diketahui. Pada skripsi ini akan diberikan konstruksi pelabelan harmonis ganjil pada graf korona (Cn⊚Kr Komplemen) dan graf gabungan korona isomorfis, m(Cn⊚Kr Komplemen) untuk n ≡ 2(mod 4) sebagai pelengkap dari hasil yang sudah ada.

Let G(p,q) be a graph with p vertices and q edges with set of vertices V and set of edges E. A graph G (p, q) is said to be odd harmonious if there exists an injection f: V(G) → {0,1,2,…,2q-1}, such that induced mapping f* (uv) = f(u) + f(v) is a bijection f*: E(G) → {1,3,5,…,2q-1}. Odd harmonious labeling for corona graph, (Cn⊚Kr Complement) and union of isomorphic corona graphs, m(Cn⊚Kr Complement) for n ≡ 0(mod 4) have been found. In this skripsi, it will be given a construction of an odd harmonious labeling on the corona graph, C_n⊚(K_r ) ̅ and union of isomorphic corona graph, m(Cn⊚Kr Complement) for n ≡ 2(mod 4) as a complement of the known result.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S58393
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dina Eka Nurvazly
"ABSTRAK
Pada tahun 2009 Lu menggunakan notasi graf ? yang merupakan graf amalgamasi sisi lingkaran yang dibangun oleh buah lingkaran dimana satu busur merupakan busur tetap. Graf ? ini bisa pula disebut sebagai graf buku dengan merupakan banyaknya lembaran dan merupakan banyaknya simpul pada setiap lembaran. Pada tesis ini dibahas mengenai pelabelan graceful, pelabelan , dan pelabelan graceful ganjil-genap pada graf serta pelabelan graceful pada graf untuk .

ABSTRACT
In 2009 Lu used to denote the graph that made from copies of cycle that has vertices that share an edge. We can call graph as book graph that has pages and is the total of vertices in each page. In this thesis we discuss about graceful labeling, labeling, and odd even graceful labeling of graph and graceful labeling of graph for ."
Depok: Universitas Indonesia, 2018
T50265
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Lucy Kurniadini
"Misalkan adalah suatu graf dengan | | dan | | masing-masing adalah banyaknya simpul dan busur dari . Graf disebut harmonis ganjil jika terdapat suatu pemetaan injektif { } sedemikian sehingga menginduksi pemetaan bijektif { } dengan . Fungsi disebut fungsi pelabelan harmonis ganjil dari graf . Pada tesis ini diberikan konstruksi pelabelan harmonis ganjil pada graf k-spl untuk dan graf k-spl untuk.

Let be a graph with | | and | | be the number of vertices and the number of edges of respectively. A graph is said to be odd harmonious if there exist an injection { } such that the induced function { } defined by is a bijection. Function is called an odd harmonious labeling of . In this thesis is proved that k-spl for and k-spl for are odd harmonious graphs.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T35607
UI - Tesis Membership  Universitas Indonesia Library
cover
Zeveliano Zidane Barack
"Misalkan G = (V,E) adalah graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Pelabelan tak teratur dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} dari graf G sedemikian sehingga bobot dari seluruh simpul berbeda. Bobot dari simpul u ∈ V didefinisikan sebagai wtφ(u) = v∈N(u) φ(uv), dengan N(u) adalah himpunan simpul yang bertetangga dengan u. Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur dengan label paling besar k disebut sebagai kekuatan tak teratur dari graf G. Misalkan G adalah graf dengan order n, pelabelan tak teratur modular dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} sedemikian sehingga terdapat fungsi bobot yang bijektif wtφ : V → Zn , dengan Zn adalah grup bilangan bulat modulo n. Bobot modular didefinisikan dengan wtφ(u) = v∈N(u) φ(uv). Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur modular dengan label paling besar k disebut kekuatan tak teratur modular dari graf G. Graf friendship dibangun dari kumpulan graf lingkaran C3 dengan sebuah simpul pusat bersama. Pada penelitian ini, akan dikonstruksi pelabelan tak teratur modular untuk graf friendship dan ditentukan kekuatan tak teratur modular untuk graf friendship.

Let G = (V,E) be a graph with V is the vertex set and E is the edge set of G. Irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} of a graph G such that every weights of the vertices are all different. The weight of vertex u ∈ V is defined by wtφ(u) = v∈N(u) φ(uv), where N(u) denotes the set of all vertices that adjacent to u. The minimum number k such that a graph G has irregular labeling with largest label k is called irregularity strength of G. Let G be a graph with order n, modular irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} such that there exists a bijective weight function wtφ : V → Zn, where Zn is a group of modulo n. The modular weight is defined by wtφ(u) = v∈N(u) φ(uv). The minimum number k such that a graph G has modular irregular labeling with largest label k is called modular irregularity strength of G. The friendship graph is constructed by a set of cycle graphs C3 with a common central vertex. In this research, we construct the modular irregular labeling for friendship graph and determine its modular irregularity strength."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>