Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 88745 dokumen yang sesuai dengan query
cover
Novri Yeni
"ABSTRAK
Carbon loss dengan besar lebih dari 65% menjadi kendala utama dalam produksi
CNT skala pilot menggunakan reaktor gauze. Identifikasi carbon loss dilakukan dengan
menganalisis kemungkinan penyebab carbon loss seperti error pada pengukuran laju
alir produk, evaluasi perubahan laju alir umpan karena adanya katalis dan penumbuhan
CNT dalam reaktor, analisis komposisi gas produk dengan GC FID dan kemungkinan
terbawanya karbon sebagai partikulat dalam aliran produk. Hasil penelitian menunjukkan
bahwa carbon loss awal sebelum dianalisis dengan metoda diatas jauh lebih kecil dari
penelitian sebelumnya yaitu 27,64%. Hal ini dikarenakan laju alir umpan telah
dikalibrasi dengan kondisi reaktor berisi katalis bukan reaktor kosong. Carbon loss
mencapai 69,14% jika laju umpan yang digunakan pada perhitungan adalah hasil
kalibrasi saat reaktor kosong. Adanya katalis menyebabkan laju alir umpan yang masuk
lebih kecil 28% dari saat kondisi kosong. Error laju alir produk karena pengukuran
dengan bubble soap memberikan error perhitungan carbon loss ± 4,14%. Perubahan laju
alir umpan karena penumbuhan CNT dalam reaktor mengurangi besarnya carbon loss
sebanyak 4,97%. Sedangkan terdeteksinya hidrokarbon skunder dengan GC FID selama
produksi CNT berlangsung mengurangi carbon loss sebesar 5,41%. Selain itu, partikulat
yang terbawa oleh aliran produk sangat sedikit dan hanya mengoreksi carbon loss sebesar
0.05%.Dengan memperhitungkan semua faktor diatas, besarnya carbon loss pada
penelitian ini adalah (16,23 ± 4,14)%. Jika diasumsikan 4,14% carbon loss disebabkan
oleh error selama pengukuran laju produk maka besarnya carbon loss adalah 12,09% .
Artinya lebih dari 57% carbon loss pada penelitian ini telah teridentifikasi.

Abstract
Carbon loss by more than 65% was the major obstacles to the pilot-scale
production of CNTs using gauze reactor. Therefore in this study, to be identified by
analyzing the possible causes of carbon loss, such as error of product flow rate due to
measurement of bubble soap and possible of feed flow rate changes due to the catalyst
presence and the CNT growth in the reactor, analysis of product composition by GC FID
and analysis the possibility of particulate carbon in gas products was identified too by
using glass fiber filters. The results showed that the initial carbon loss calculation before
prior to be analized by the above method was much smaller than previous studies, namely
27.64%. This is because feed flow rate has been calibrated with the condition of the
reactor containing the catalyst instead of an empty reactor. Carbon loss will reach 69.14%
if the feed rate used in the calculation was calibration results when the reactor is empty.
This is because the catalyst in the reactor led to feed flow rate less 28% of the total
discharge current when the empty reactor. Product flow rate error due to measurement of
bubble soap give error in the carbon loss calculation up to ± 4.14%. Changes in feed flow
rate because the growth of CNTs in the reactor reduce the amount of carbon loss as much
as 4.97%. While the detection of secondary hydrocarbons by GC FID during CNT
production reduces carbon loss up to 5,41%. In addition, particulate matter carried by the
flow of products is very little and only give carbon loss corrected for 0.05%. Taking into
account all the factors above, the amount of carbon loss in this study were 16.23 ± 4.14%.
If we assume 4,14& carbon loss was caused by error occurred during the study, the
amount of carbon loss is 12.09%. This means that more than 57% carbon loss in this
study have been identified.
"
Fakultas Teknik Universitas Indonesia, 2012
S43596
UI - Skripsi Open  Universitas Indonesia Library
cover
Ghassan Tsabit Rivai
"Pada penelitian ini, Carbon Nanotube CNT akan disintesis menggunakan reaktor vertikal katalis terstuktur gauze stainless steel berbasis ferrocene sebagai sumber karbon dan katalis. Metode yang digunakan adalah Floating Catalyst Chemical Vapor Deposition FC-CVD dengan sistem dua furnace. Sebelum melakukan sintesis, substrat stainless steel tipe 316 dilakukan Oxidative Heat Treatment OHT untuk mengurangi lapisan krom dan meningkatkan kandungan oksigen yang berperan sebagai pengikat senyawa OH-Radikal dan impuritas lainnya seperti Fe2O3, Fe3O4, karbon amorf, dan hexagonal grafit terlihat pada hasil karakterisasi. Pada hasil EDX, ditunjukkan terdapatnya kandungan Fe yang tinggi dan hasil XRD menunjukkan terdapatnya peak impuritas pada hasil CNT dengan variasi substrat. Terdapatnya CNT pada substrat dibuktikan dengan hasil spektrum FTIR dan UV-Vis dengan terdapatnya ikatan C equiv;C pada panjang gelombang 2352 cm-1 dan XRD dengan adanya peak 2? carbon nanotube pada 26 ,43 dan 54,5 . Namun, CNT berbasis ferrocene mengalami pertumbuhan yang belum sempurna dan terdapat pula nanokarbon lain seperti carbon onion dan carbon nanopartikel.

In this study, Carbon Nanotubes CNTs will synthesized using vertical structured gauze catalyst reactor based on ferrocene as a carbon source and catalyst. Floating Catalyst Chemical Vapor Deposition FC CVD method used with double furnace system. Prior to synthesis, stainless steel as substrate type 316 was prepared with Oxidative Heat Treatment OHT to remove the coating and add oxygen compound used to binder OH Radical compounds and other impurities such as Fe2O3, Fe3O4, amorphous carbon, and hexagonal graphite were seen in the characterization results. In EDX results, there is evidence of high Fe content and XRD results indicating peak of impurities on CNTs with substrate. The occurrence of CNTs on substrates is evidence by the results of FTIR and UV Vis spectrum with the provision of C equiv C bonds at wavelengths 2352 cm 1 and XRD with peak peaks 2 of carbon nanotube at 26 , 43 , and 54,5 . However, ferrocene based CNTs induce imperfect carbon growth and other nanocarbons such as carbon onion and carbon nanoparticles."
Depok: Fakultas Teknik Universitas Indonesia, 2018
Spdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Danu Rahatwan
"Kebutuhan akan penggunaan carbon nanotube (CNT) dalam negeri terus meningkat setiap tahunnya. Sampai saat ini, produksi dan komersialisasi CNT terkendala pada proses yang mahal. Bahan baku CNT yang berpotensi karena harganya lebih murah adalah liquified petroleum gas (LPG). Untuk merealisasikan produksi CNT di Indonesia, diperlukan analisis tekno ekonomi produksi CNT dari LPG. Produksi CNT dilakukan dengan metode chemical vapor deposition (CVD) menggunakan katalis Fe-Co-Mo/MgO. Produksi dilakukan dalam reaktor fluidized bed yang dilengkapi cyclone untuk memisahkan CNT dengan gas sisa. Sintesis CNT dalam reaktor berlangsung pada suhu 900oC dan tekanan 1 atm. Purifikasi CNT hasil sintesis dilakukan dengan perlakuan asam menggunakan HNO3, yang diikuti netralisasi menggunakan H2O dan pengeringan. Produksi dapat menghasilkan CNT yang memiliki kemurnian 99% dengan kapasitas 228,35 kilogram per tahun. Argon recovery dilakukan untuk menghemat penggunaan gas argon sampai dengan 85%. Proses produksi keseluruhan membutuhkan lahan 15 m2 dan konsumsi energi 209203 kJ/hari. CNT yang diproduksi memiliki harga jual Rp5.300 per gram. Hasil analisis keekonomian menunjukkan nilai IRR sebesar 18,88%, NPV sebesar Rp1.281.356.353, dan payback period kurang dari 5 tahun. Hal ini menandakan pengembangan produksi CNT menguntungkan secara investasi sehingga dapat membuka peluang pembangunan fasilitas produksi CNT dengan harga jual lebih murah di Indonesia.

Demand of carbon nanotube (CNT) in Indonesia is increasing every year. Until this time, CNT production and commercialization is constrained by expensive processes. CNT carbon source that is potential because of its low price is liquified petroleum gas (LPG). To realize the CNT production in Indonesia, techno-economic analysis of CNT production from LPG is needed. CNT is produced by chemical vapor deposition (CVD) method using Fe-Co-Mo/MgO catalyst. Production is done using fluidized bed reactor equipped by cyclone for separating CNT from residual gas. CNT synthesis in the reactor is done at temperature 900oC and pressure 1 atm. CNT purified with HNO3 acid treatment, followed by netralization using H2O and drying. The process produce 99% purity CNTs with capacity 228.35 kilograms per year. Argon recovery is applied on the process to reduce argon utilization up to 85%. Whole process required 15 m2 space and 209203 kJ/day energy consumption. CNT produced would have IDR 5300 selling price. Economic analysis result shows it have 18.88% on IRR, IDR 1,281,356,353 on NPV, and less than 5 years on payback period. These values shows that CNT production is a profitable investation and could open opportunity for developing CNT production with low price in Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Intanasa Nurdenti
"Dalam penelitian ini, karbon aktif dari limbah kulit pisang digunakan sebagai sumber karbon untuk pertumbuhan CNT. Setelah proses aktifasi dengan KOH, karbon aktif diberi dua perlakuan: dikeringkan dan tidak dikeringkan untuk melihat pengaruh proses tersebut terhadap hasil akhir. Proses pertumbuhannya adalah dengan menggunakan metode pirolisis sederhana pada suhu 1100oC dengan campuran minyak mineral sebagai prekursor. Proses penumbuhan CNT juga ada yang dengan tambahan katalis eksternal dan tanpa tambahan katalis eksternal.
Hasil pirolisis dikarakterisasi dengan XRD dan FE-SEM. Karbon aktif yang mengalami pengeringan tidak dapat menghasilkan CNT, baik ketika ditambahkan katalis maupun tidak. Sedangkan karbon aktif yang tidak mengalami pengeringan berhasil ditumbuhkan CNT, Karbon aktif dari limbah kulit pisang ini dapat menghasilkan CNT dengan kualitas yang cukup baik.

In this study, the activated carbon from waste banana peel is used as a carbon source for growth of CNT. After the process of activation by KOH, different treatments are given to the activated carbon: dried and then heated to 600oC and directly heated to 600oC to see the influence of the process towards the final CNT result. CNT growth process is using a simple method of pyrolysis temperature 1100oC with a mixture of mineral oils as a precursor. The process of growth of CNT is varied with additional external catalysts and without additional external catalysts.
Results of pyrolysis are characterized with XRD and FE-SEM. Characterization results show activated carbon that undergoes drying cannot produce CNT, both when catalyst is added or not. While activated carbon that does not have a drying successfully grown CNT, activated carbon from waste banana peels can generate CNT with quite good quality.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46769
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firda Dimawarnita
"Reaktor pirolisis suhu tinggi dirancang untuk sintesis Carbon Nanotube (CNT) dari karbon aktif limbah kulit pisang sebagai sumber karbon. Proses pertumbuhannya menggunakan metode pirolisis. Dibutuhkan suhu yang tinggi untuk menghasilkan CNT yaitu 1000oC. Minyak mineral ditambahkan pada karbon aktif kulit pisang sehingga berfungsi sebagai promotor tumbuhnya CNT. Perbandingan karbon aktif : minyak mineral 1:2 ternyata belum mampu menghasilkan CNT. Katalis memenuhi badan CNT yang akan terbentuk, sehingga dilakukan variasi perbandingan jumlah karbon aktif dengan minyak mineral.
Variasi yang dilakukan 1:10 dan 1:15 (karbon aktif : minyak mineral). Tenyata penambahan jumlah minyak mineral mempengaruhi hasil CNT yang terbentuk. Perbandingan karbon aktif : minyak mineral 1:10 adalah yang terbaik. CNT yang dihasilkan bamboo-shaped like CNT. Hal ini menunjukkan limbah kulit pisang dapat digunakan sebagai sumber bahan baku pembuatan CNT menggunakan reaktor pirolisis suhu tinggi.

High temperature pyrolysis reactor designed for the synthesis of Carbon Nanotubes (CNT) from banana peel waste activated carbon as carbon source. Process growth of CNT using pyrolysis method. High temperatures needed to produce CNT is 1000oC. Mineral oil was added to the activated carbon from banana peel as a promoter of growth of CNT. Comparison of activated carbon: 1:2 mineral oil was not able to produce CNT. CNT catalyst that will meet the agency is formed, so to vary the ratio of activated carbon with mineral oil.
Variation is 1:10 1:15 (activated carbon: mineral oil). Poorer addition of mineral oil affect the outcome of CNT formed. Comparison of activated carbon: mineral oil is the best 1:10. CNT produced bamboo-shaped like CNT. This shows waste banana peels can be used as a source of raw material for making CNTs using high temperature pyrolysis reactor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52662
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Riyandi Chairul
"Evaluasi dan perbaikan desain scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity. Menggunakan basis data scale up laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter wire 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm2. Penelitian ini bertujuan untuk memperbaiki desain reaktor dan sistem produksi pada reaktor dengan katalis terstruktur wire melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al untuk memproduksi nanokarbon dan hidrogen. Pada reaktor katalis terstruktur wire ini dilakukan uji kinerja selama 860 menit pada suhu 700_C. Konversi metana tertinggi adalah 41,66% dan kemurnian hidrogen tertinggi adalah 30,45%. Yield karbon yang dihasilkan oleh 4,71 gram katalis adalah 179,15 gram karbon.

Evaluation and improvement design of Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity. Seize on scale up data, 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm wire diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to improve reactor design and production system by gauze-type structural catalyst reactor through catalytic decomposition of methane with Ni-Cu-Al catalyst. Performance experiment that have already done during 860 minutes at 700_C are stability test for 17 hours and activity test for 20 minutes of gauze structural catalyst at 700_C. The highest conversion of methane is 41,66% and the highest hydrogen purity is 30,45%. Yield carbon that produced by 4,71 gram catalyst is 179,15 gram carbon."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51701
UI - Skripsi Open  Universitas Indonesia Library
cover
Hendrik
"Carbon Nanotube (CNT) merupakan material multifungsi yang akan dibutuhkan dalam jumlah besar di masa depan. Terdapat metode yang sangat menjanjikan untuk memproduksi CNT dalam jumlah besar yaitu dengan Chemical Vapor Deposition (CVD) dalam reaktor unggun terfluidisasi. Oleh karena itu, penelitian ini difokuskan untuk dapat menghasilkan model reaktor unggun terfluidsasi sehingga dapat dikembangkan menjadi reaktor skala pabrik yang mampu memproduksi CNT dalam skala besar secara efisien. Persamaan peristiwa perpindahan untuk fenomena fisik yang berlangsung dalam reaktor akan dikombinasikan dengan persamaan kinetika reaksi dengan menggunakan Computational Fluid Dynamics (CFD) dalam COMSOL Multiphysics sehingga dihasilkan sebuah model reaktor. Selanjutnya model akan disimulasikan dengan variasi parameter proses.
Hasil simulasi menunjukkan bahwa profil konsentrasi metana dipengaruhi oleh suhu dinding reaktor, rasio umpan, laju alir gas, tekanan umpan, dan ukuran katalis. Konversi metana dan yield karbon meningkat seiring dengan peningkatan suhu dinding reaktor, kandungan hidrogen dalam umpan, dan kecepatan fluida di dalam reaktor. Sedangkan konversi metana menurun seiring meningkatnya tekanan umpan dan ukuran katalis. Konversi metana pada model reaktor unggun terfluidisasi yang disimulasikan adalah sebesar 77% dengan Yield CNT yang dihasilkan sebesar 0.66 gCNT/gCat dalam waktu reaksi selama 5 jam.

Carbon Nanotube (CNT) is well known material having an unique properties and will become future materials. Promising way to synthesize a large scale of CNT is through the Chemical Vapor Deposition in fluidized bed reactor. Focus of this research is to get fluidized bed reactor model which representate the condition and performance in the real reactor. Method of this research is develop model of mathematic equation based on mass, momentum, and energy balance. COMSOL Multiphysics is used to develop the model and for running simulation for several process parameter such as temperature, pressure, etc.
The simulation results show that the methane concentration profile is influenced by the temperature of the walls of the reactor, the feed ratio, gas flow rate, feed presure, and radius of catalyst particles. Conversion of methane and carbon yield increases with increasing temperature of the reactor wall, the addition hydrogen in reactant and the velocity of the fluid in the reactor. Conversion of methane decreases with increasing of feed pressure and radius of catalyst particles. In this model, conversion of methane was about 77% and Yield of CNT was about 0.66 gCNT/gCat for 5 hours of reaction.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63460
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramaniya Anindita Wandawa
"Penelitian dilakukan untuk melakukan uji kinerja reaktor katalis terstruktur pelat untuk produksi carbon nanotube dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis Ni-Cu-Al dengan perbandingan molar 2:1:1. Reaksi dekomposisi katalitik metana dilakukan pada suhu 700oC selama 5 jam, dengan variasi space time 0,0006; 0,0032; 0,006 gr min/mL. Hasil uji kinerja tertinggi didapatkan pada space time 0,006 gr min/mL dengan konversi metana tertinggi 83,01% , kemurnian hidrogen tertinggi 70,23% , dan yield karbon 2,5 gr/gr katalis. Carbon nanotube yang dihasilkan memiliki diameter dalam 7,5-15 nm dan berbentuk Y-junction.

Abstract
The purpose of this research is to test the performance of plate structured catalyst to produce carbon nanotube and hydrogen via catalytic decomposition of methane. In this research, catalyst of Ni-Cu-Al with the molar ratio by 2:1:1 was used. The decomposition reaction took place at 700oC temperature for 5 hours, using 0,0006; 0,0032; and 0,006 gr min/mL space time variations. The maximum performance space-time was 0,006 gr min/mL with 83,01% for the highest number of methane conversion, 70,23% for the highest number of hydrogen purity, and 2,5 gr C/ gr catalyst carbon yield. The carbon nanotubes produced from the research were Y-junction-shaped and have 7,5-15 nm inner diameter.
;"
Fakultas Teknik Universitas Indonesia, 2012
S43475
UI - Skripsi Open  Universitas Indonesia Library
cover
Francy
"Scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity menghasilkan laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter gauze 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm 2. Penelitian ini bertujuan untuk memproduksi nanokarbon dan hidrogen dengan katalis terstruktur gauze melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al. Pada reaktor katalis terstruktur gauze ini dilakukan uji aktifitas selama 20 menit dan uji stabilitas selama 17 jam pada suhu 700°C. Untuk uji stabilitas dengan 20 L/jam metana, konversi metana tertinggi adalah 96,77% dan kemurnian hidrogen tertinggi adalah 97,46%. Yield karbon yang dihasilkan oleh 1,83 gram katalis adalah 170,36 gram karbon. Untuk uji aktivitas dengan laju alir metana 6 L/jam diperoleh konversi metana tertinggi adalah 76,1% dan kemurnian hidrogen tertinggi adalah 79,3%. Yield karbon yang dihasilkan oleh 1,81 gram katalis adalah 57,34 gram karbon. Dari hasil percobaan diperoleh bahwa kapasitas reaktor ini adalah 393,19 gram/hari.

Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity results in 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm gauze diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to produce nanocarbon and hydrogen by gauze-type structural catalyst through catalytic decomposition of methane with Ni-Cu-Al catalyst. Two experiment that have already done are stability test for 17 hours and activity test for 20 minutes at 700°C. In stability test with 20 L/h methane flow, the highest conversion of methane is 96,77% and the highest hydrogen purity is 97,46%. Yield carbon that produced by 1,83 gram catalyst is 170,36 gram carbon. In activity test with 6 L/h methane flow, the highest conversion of methane is 76,1% and the highest hydrogen purity is 79,3%. Yield carbon that produced by 1,81 gram catalyst is 57,34 gram carbon. From the experiment, the production capacity of the reactor is 393,19 gram C/day."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52239
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Dzulfahmi
"Kelangkaan bahan bakar fosil dan pemanasan global langsung mengarahkan perhatian pada pencarian bahan bakar alternatif. Bahan bakar alternatif secara luas diharapakan bahwa penggunaan karbon bebas pembawa energi dapat membalikkan fenomena rumah kaca. Hidrogen dianggap sebagai bahan bakar alternatif ideal untuk banyak pengubah energi karena memiliki pembakaran alami yang bersih dan sebagai pembawa energi yang efisien mengurangi dampak terhadap lingkungan. Meskipun hidrogen memiliki keuntungan yang signifikan, hidrogen pun memiliki kekurangan dalam pemanfaatannya. Masalahnya adalah biaya produksi dan kakteristik penyimpanan. Karateristik penyerapan hidrogen khusus oleh CNT (Carbon Nanotubes) membuat CNT sedikit lebih cocok sebagai tempat penyimpanan hidrogen. Tulisan ini membuat sebuah kasus simulasi molekular adsorpsi hidrogen pada CNT. Simulasi ini mengidentifikasi pengaruh variasi panjang CNT terhadap kuantitas jumlah hidrogen yang masuk ke dalam CNT.

The scarcity of fossil fuels and global warming have directed attention towards the search of alternative fuels. It is widely hoped that the use of carbon-free energy carriers could reverse the greenhouse phenomenon. Hidrogen is considered as an ideal alternative fuel for many energy converters because of its clean-burning nature and efficient energy carrier with a significantly reduced impact on the enviro nment. Although hidrogen possesses significant advantages, it also exhibits major drawbacks in its utilization. The probems are production costs and storage characteristics. The special hidrogen adsorbing characteristics of carbon nanomaterials make them rather suited as hidrogen storage devices. This paper make a case that molecular simulation of hidrogen adsorbtion with variation of CNT length. It is identify the influence of CNT length to number quantity of hidrogen inside to CNT."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42398
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>