Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 129871 dokumen yang sesuai dengan query
cover
Yogi Kurnia
"Algoritma data mining membutuhkan sumber data yang berkualitas untuk mendapatkan hasil yang optimal. Kualitas sumber data dapat ditingkatkan kualitasnya dengan menggunakan teknik preprosessing data yang tepat. Kemampuan dalam menampilkan output dari proses data mining yang mudah dimengerti sangat penting untuk mendapatkan pengetahuan. Penelitian ini bertujuan untuk mengembangkan aplikasi yang bisa menjawab kebutuhan dari algoritma data mining. Hasil dari penelitian ini adalah aplikasi yang dapat melakukan keseluruhan proses baik preprocessing data dalam hal pemilihan data dan pengolahan data awal, penyediaan metadata, sampai dengan analisis data menggunakan algoritma data mining. Sehingga, analisis jumlah data yang besar dapat dilakukan dengan efisien dan efektif, tetapi hasil prediksi yang didapatkan tetap optimal.

Data mining algorithms require high quality data sources to obtain optimal results. Quality of data sources can be enhanced by using appropriate data preprocessing techniques. Ability to display easily understood output of the data mining process is essential to gain knowledge. This study aims to develop applications that can address the needs of data mining algorithms. The results of this study is an application that can do the whole steps from data preprocessing until data analysis using data mining algorithms. Data processing itself includes data and preliminary data processing and provision of metadata.. So, analyzing large amount of data can be done in efficient and effective fashion without disregarding necessary need of optimal prediction result."
Depok: Universitas Indonesia, 2012
S43461
UI - Skripsi Open  Universitas Indonesia Library
cover
Ranni R.
"Perkembangan teknologi basis data, khususnya data mining saat ini sangat pesat. Oleh karena itu, dibutuhkan suatu sarana untuk dapat mempelajari dan membandingkan metode-metode yang terdapat di dalam data mining. University of Waikato telah memiliki data mining tools yang disebut sebagai WEKA yang berisi koleksi b'rbagaialgoritma di dalam data mining. Akan tetapi, WEKA tidak memiliki algoritma klasifikasi data mining yang telah dikenal secara umum. Fokus utama dari bagian ini adalah pengembangan algoritma teknik classi cation pada data mining. Laporan Tugas Akhir ini akan membahas hasil analisis dua algoritma teknik classification data mining yang merupakan bagian dari data mining tools yang sedang dikembangkan, yaitu CMAR (Classification Based on Multiple Association Rules ) dan CSFP(Classification Based on Strong Frequent Pattern ). Selain analisis, di dalam tugas akhir juga dilakukan implementasi algoritma CMAR. Kedua algoritma tersebut menggunakan prinsip association rules dalam proses menghasilkan rules. Uji coba CMAR dilakukan terhadap satu data set kecil dan data set besar. Selain itu, uji coba juga dilakukan dengan membandingkan hasil CSFP dan CMAR pada kedua data set tersebut. Algoritma CMAR pernah dikembangkan sebelumnya di Liverpool. Akan tetapi, algoritma tersebut hanya dapat diuji coba dengan menggunakan data yang telah disediakan oleh pembuat, sehingga algoritma ini tidak dapat diuji coba dengan menggunakan data set lain.
Berdasarkan uji coba yang telah dilakukan, tingkat confidence sangat menentukan banyak rules yang dihasilkan. Walaupun CSFP dan CMAR menggunakan prinsip association rules, terdapat perbedaan pada rata-rata jumlah rules yang dihasilkan dan akurasi terhadap data set. Secara umum, algoritma CSFP lebih unggul dari CMAR dalam hal rules yang dihasilkan dan akurasi.
Kata kunci: CFP-Tree, classi cation, classifier, CMAR, CSFP, FP-Tree, "
Depok: Universitas Indonesia, 2007
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pandapotan, Adolf
"Tujuan Tugas Akhir ini adalah mengimplementasikan algoritma clustering (sebagai bagian dari Data Mining Algorithms Collection) menggunakan bahasa pemrograman C++. Ada 2 algoritma clustering yang diimplementasikan yaitu Cobweb dan Iterate. Uji coba dilakukan dengan membandingkan kecepatan eksekusi dari implementasi Cobweb dengan Cobweb pada WEKA dan implementasi Iterate, serta membandingkan kualitas partisi implementasi Cobweb dengan Cobweb pada WEKA dan implementasi Iterate. Ada 2 jenis data uji coba yaitu dataset kecil dan dataset besar. Hasil uji coba menunjukan algoritma Cobweb pada WEKA bukan algoritma Cobweb murni, waktu eksekusi Cobweb implementasi lebih cepat dari WEKA namun lebih lambat dari Iterate implementasi, urutan data berpengaruh terhadap hasil Cobweb, dan kualitas Iterate lebih baik dari Cobweb. Kata kunci: clustering, Cobweb, data mining, dataset, Iterate.
The purpose of this mini thesis is to implement clustering algorithms (as part of Data Mining Algorithms Collection) using C++. There are two clustering algorithms that are implemented, that are Cobweb and Iterate. The experiment is done by comparing the execution speed of Cobweb implementation with Cobweb in WEKA and Iterate implementation, also comparing the partition quality of Cobweb implementation with Cobweb in WEKA and Iterate implementation. There are two kinds of experiment data, which are small dataset and large dataset. The test results show that Cobweb algorithm in WEKA is not pure Cobweb algorithm, the execution time of Cobweb implementation is faster than WEKA but slower than Iterate implemetation, the data sorted affected to the Cobweb result and the quality of Iterate is better than Cobweb."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Hancock, Monte F., Jr.
Boca Raton: CRC Press, 2012
006.312 HAN p
Buku Teks SO  Universitas Indonesia Library
cover
Han, Jiawei
"Summary:
Equips you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets. This title focuses on important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data."
Burlington: Elsevier, 2012
006.312 HAN d
Buku Teks SO  Universitas Indonesia Library
cover
Amiruddin
"Persaingan dalam dunia bisnis khususnya perbankan yang semakin ketat membuat para pelakunya harus selalu memikirkan strategi-strategi terobosan yang dapat menjamin keberlangsungan bisnis mereka. Kepuasan pelanggan merupakan salah satu faktor yang sangat perlu diperhatikan untuk mengikat pelanggan agar tetap setia pada produk atau layanan yang ditawarkan. Salah satu aset utama yang dimiliki oleh perusahaan perbankan dewasa ini adalah data transaksi bisnis dalam jumlah yang sangat besar. Hal ini menciptakan sebuah kebutuhan akan adanya teknologi yang dapat memanfaatkannya untuk menggali pengetahuan-pengetahuan baru, yang dapat membantu dalam perencanaan strategi bisnis di masa depan. Dalam hal tersebut teknologi data mining hadir sebagai sebuah solusi yang dapat diterapkan.
Dalam tulisan ini akan dibahas implementasi data mining untuk menemukan model berupa association rules yang bisa diinterpretasikan menjadi pengetahuan baru mengenai karakteristik beberapa obyek layanan perbankan Bank XYZ. Pengetahuan baru tersebut nantinya bisa digunakan sebagai bahan analisis untuk menentukan rencana strategis ke depan khususnya dalam rangka meningkatkan kinerja layanan sehingga pelanggan tetap setia terhadap produk dan layanan Bank XYZ.

The tighter competition in banking industry motivates the actors to always think of new strategies to ensure their business sustainability. Customer satisfaction must be maintained to make customers remain loyal to the offered products or services. One of the main assets of banking organization or corporate is a large number of business transaction data. This creates a need of new technologies to mine new knowledges, which can assist management in making future business strategy plans. Data mining technology is one applicable solution.
This thesis describes the implementation of data mining in order to find association rules model which can be further interpreted as new knowledges on banking service characteristic of Bank XYZ. The new knowledges will be useful to determine strategic plans in the future, especially in increasing the performance of products or services. They finally can make the customers loyal to products or services of Bank XYZ.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Angelina Prima Kurniati
"Process Mining adalah bidang ilmu yang relatif baru dan masih terus berkembang. Bidang ini menarik dan dibutuhkan dalam berbagai domain karena dapat digunakan untuk menggali informasi tentang proses bisnis dari sekumpulan besar data yang dimiliki perusahaan dalam bentuk event log.
"
Bandung: Informatika, 2023
006.312 ANG p
Buku Teks SO  Universitas Indonesia Library
cover
Kantardzic, Mehmed
Hoboken: NJ IEEE Press, 2020
006.312 KAN d
Buku Teks SO  Universitas Indonesia Library
cover
Elis
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1999
S25642
UI - Skripsi Membership  Universitas Indonesia Library
cover
Witten, I.H. (Ian H.)
"Part I. Machine Learning Tools and Techniques: 1. What?s iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what?s been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer."
Amsterdam: Elsevier , 2011
006.312 WIT d
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>