Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2298 dokumen yang sesuai dengan query
cover
Sandi Setiawan
Yogyakarta: Andi, 1991
001.642 SAN m
Buku Teks SO  Universitas Indonesia Library
cover
Pudji Setyani
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28482
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosandi Prarizki
"ABSTRAK
Algoritma pembelajaran jaringan saraf tiruan dewasa ini semakin beragam.
Masing-masing algoritma memiliki kelebihan dan kekurangan dan menjadi hal
yang menarik untuk dipelajari. Pada penelitian ini akan dibahas mengenai
algoritma pembelajaran metode Levenberg-Marquardt yang akan digunakan
untuk jaringan saraf tunggal dan Ensemble Neural Network. Hasil percobaan
menunjukan bahwa metode Levenberg-Marquardt memiliki keunggulan dalam
kecepatan dan kestabilan.

ABSTRACT
Neural network learning algorithm is more diverse today. Each algorithm has
advantages and disadvantages, and those are interesting thing to learn. This
research will be discussed on the learning algorithm Levenberg-Marquardt
method to be used for a single neural network and Ensemble Neural Network.
Results of this research shows Levenberg-Marquardt learning algorithm has a
good speed and stability."
Fakultas Teknik Universitas Indonesia, 2012
S42239
UI - Skripsi Open  Universitas Indonesia Library
cover
Evi Lutfiati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28481
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ganjar Giwangkoro
"Estimasi biaya proyek jalan layang dengan akurasi yang tinggi pada fase konseptual pengembangan proyek sangat penting untuk perencanaan dan studi kelayakan. Namun, sejumlah kesulitan muncul ketika melakukan estimasi biaya selama tahap konseptual. Mayor masalah yang dihadapi adalah kurangnya informasi awal, kurangnya database jalan layang, kurangnya metode estimasi biaya yang sesuai, dan faktor ketidakpastian. Untuk mencapai optimasi model, perlu digunakan variabel yang tepat dan baik sebagai input sehingga keakurasian output yang dihasilkan dapat dipertanggungjawabkan. Variabel yang mempengaruhi biaya proyek jalan layang yang digunakan pada penelitian ini adalah panjang, lebar, lokasi, tipe pondasi, tahun pembuatan. Variabel tersebut kemudian dimasukkan dalam arsitektur jaringan yang paling cocok dan terbaik sehingga akurasi mencapai 28% sesuai standar AACE.

Project cost estimating of flyover with high accuracy in the conceptual phase of project development is essential for planning and feasibility studies. However, a number of difficulties arise when performing cost estimates during the conceptual stage. The major problems encountered is the lack of initial information, the lack of database, the lack of appropriate methods of cost estimation, and uncertainty factors. To reach model optimization, correct and good variables are needed as inputs to gain output which is accurate and accountable. The variables which affect the project cost and use in this research are length, width, type of pondation, location and year. The variables then run in the most suitable network architecture and the best, so that the accuracy reached 28% according to the standard AACE."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44697
UI - Skripsi Membership  Universitas Indonesia Library
cover
Florentina Ariani Kumala Sari
"Keselamatan dan Kesehatan Kerja (K3) menjadi salah satu aspek yang wajib dilaksanakan oleh penyelenggara jasa konstruksi baik. Hal ini diatur dalam peraturan pemerintah mengenai pelaksanaan jasa konstruksi. Sektor konstruksi merupakan penyumbang kasus kecelakaan terbesar di Indonesia dengan rata-rata kejadian sekitar 32% setiap tahunnya Angka kecelakaan kerja didunia konstruksi setiap tahunnya terus meningkat. Salah satu aspek keberhasilan pelaksanaan keselamatan kerja adalah dengan tersedianya anggaran yang layak dan secara khusus dialokasikan untuk pelaksanaan K3 di proyek konstruksi, namun alokasi biaya K3 secara aktual pada sebagian besar proyek saat ini masih belum mencukupi apabila dibandingkan dengan pedoman yang berlaku di lingkungan Kementrian PUPR. Hal tersebut dapat meningkatkan anggaran biaya awal dan menyebabkan kerugian finansial. Sehingga perlu dikembangkan model estimasi biaya yang mampu melakukan estimasi biaya dengan cepat dan akurat.
Tujuan dari penelitian ini adalah untuk melakukan estimasi biaya K3 Kontruksi dengan cepat dan mempunyai tingkat akurasi yang tinggi. Penelitian akan melakukan pembelajaran biaya K3 dengan metode fuzzy dan jaringan saraf tiruan (Artificial Neural Network). Hasil dari penelitian ini adalah model estimasi biaya K3 yang memiliki tingkat akurasi yang tinggi dengan nilai MAPE (Mean Absolute Percentage Error) sebesar 9,906%. Model yang didapat memiliki tingkat akurasi yang lebih baik apabila dibandingkan dengan perhitungan estimasi biaya menggunakan analisa regresi.

Occupational Safety and Health (OHS) is must be implemented in construction project. This is regulated in government regulations regarding the implementation of construction services. The construction sector is the biggest contributor to accident cases in Indonesia with an average occurrence of around 32% every year. The number of work accidents in the construction world continues to increase every year. Implementation of Occupational Safety and Health (OHS) can be success if the availability of budget are specifically allocated for the implementation of OHS in construction projects, but the actual allocation of OHS costs in most projects is still insufficient when compared with the applicable guidelines in Kementrian PUPR. This can increase the initial budget and cause financial losses. So it is necessary to develop a cost estimation model that is able to estimate costs quickly and accurately.
The purpose of this study is to estimate OHS Construction costs quickly and have a high degree of accuracy. The study will conduct OHS cost learning with fuzzy method and artificial neural network. The results of this study are the OHS cost estimation model that has a high level of accuracy with a MAPE (Mean Absolute Percentage Error) of 9.906%. The model has a higher accuracy than the calculation of estimated costs using regression analysis.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lauren
"ABSTRACT
Skripsi ini membahas mengenai reduksi suatu kumpulan data menggunakan metode penggabungan data. Kumpulan data yang digunakan dalam penelitian ini adalah data bunga iris dengan 3 macam kelas dan data aroma dengan 18 macam kelas. Hasil penggabungan kumpulan data tersebut akan menjadi data masukan dalam pembelajaran algoritma jaringan saraf tiruan propagasi balik dan jaringan saraf probabilistik yang dipergunakan dalam penelitian ini. Hasil pembelajaran menggunakan data hasil penggabungan tersebut akan dibandingkan dengan hasil pembelajaran menggunakan data tanpa penggabungan. Hasil penelitian ini menyatakan bahwa penggunaan data hasil penggabungan akan mempercepat pembelajaran dan meningkatkan kestabilan keluaran sistem, namun mengurangi akurasi tingkat pengenalan

ABSTRACT
This thesis discusses about reduction of a data set using data merging method. The data set used in this study are iris set data with 3 kinds of classes and odor set data with 18 kinds of classes. The result of merging the data set become the input data in the learning algorithm backpropagation neural network and probabilistic neural network on learning part. Learning output using data with merging method will be compared with the results of the learning using data without merging. The results of this study suggest that the use of data resulting from this combination will accelerate learning and improve stability of output system, but reduces the level of recognition accuracy."
2014
S56492
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Astari Pratiwi
"Tesis ini bertema tentang optimasi dari sistem chiller adsorpsi untuk mencari koefisien performa (COP) dan kapasitas pendinginan. Optimasi dilakukan dengan menggunakan gabungan antara jaringan saraf tiruan dan algoritma genetika (GA). Simulasi yang dilakukan adalah pengembangan sistem chiller adsorpsi yang data simulasinya sudah pernah di validasi dengan data eksperimen sebelumnya. Parameter laju alir massa, temperatur, dan waktu siklus divariasikan sebagai variabel penentu. Sementara COP dan kapasitas pendinginan mejadi fungsi objektifnya.
Pada tesis ini, jaringan saraf tiruan yang terbentuk menunjukkan bahwa error terkecil jaringan yang terbentuk adalah 0.001532624 atau 0.153%. Hal ini menyatakan bahwa jaringan yang terbentuk dapat memprediksi fungsi objektif COP dan SCP dengan tingkat akurasi sebesar 99.85. Selisih (error) terkecil titik optimum prediksi jaringan saraf tiruan chiller adsorpsi dua bed Silica Gel 123 dan Air dengan nilai simulasi software-nya sebesar 0.027 untuk SCP dan 0.034 untuk nilai COP.

The optimization of adsorption chiller system that purposed to approach the optimal coefficient of performance (COP) and cooling capacity is presented in this thesis. The combination of artificial neural network (ANN) and genetic algorithm (GA) is applied to optimize the simulation of adsorption chiller. The adsorption chiller system simulation is an integrated two adsorption bed that developed from previous simulation and experiment that had been done. In this thesis, mass flow, temperature, and time cycle are varied and considered as decision variable while the COP and cooling capacity is chosen as the objective function.
In this thesis, the artificial neural network that formed presents the smallest network error is 0.001532624 or 0.153. This states that the formed network can predict the objective functions of COP and SCP with an accuracy rate of 99.85. The smallest optimum point difference (the error) between the value prediction of neural network adsorption chiller two bed Silica Gel 123 and Water and the software simulations value is 0.027 for SCP and 0.034 for COP.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T55183
UI - Tesis Membership  Universitas Indonesia Library
cover
Suharyadi Joko Pamungkas
"Pertumbuhan tingkat konsumsi bahan bakar minyak bumi untuk keperluan kendaraan bermotor semakin hari semakin meningkat, sehingga perlu dikembangkan bahan bakar alternatif selain minyak bumi. Salahnya satunya adalah biogasoline berbahan dasar minyak sawit. Hambatan utama yang sering dihadapi dalam pengembangan bahan bakar alternatif adalah mahalnya biaya untuk menentukan angka oktan sebagai satu parameter penting dalam penilaian kualitas bahan bakar.
Kemajuan teknologi komputasi saat ini memungkinkan untuk memprediksi angka oktan bogasoline berdasarkan densitas dan suhu destilasi 50% dengan menggunakan jaringan saraf tiruan. Model jaringan yang dapat digunakan untuk memprediksikan angka oktan biogasoline adalah Multi Layer Feed Forward, Radial Basis, Generalized Regression dan Recurrent Network.
Hasil simulasi menunjukkan tidak ada satupun model yang dapat digunakan untuk semua kondisi data masukan, namun dapat memprediksikan angka oktan dengan cukup baik jika syarat data masukan yang diberikan memenuhi syarat yang diharuskan.

The fuel demand for engine vehicle is increasing by the time while, thus the development for fuel alternative should be more paid attention. One of the prosperous product as fuel alternative is biogasoline made from crude palm oil. The most common problem occurred on developing biogasoline is the high cost on determination of the octane umber as a critical parameter on quality.
Recently, technology computation has been applied to estimate the octane number of biogasoline based on density and temperature of 50% destilation properties by using the artificial neural network. Neural network models known for this purpose are multi layer feed forward, generalized regression, radial basis and recurrent neural network.
Using the GUI MATLAB, four models network mentioned, showed that none of them could be used for any conditions of input data. The typical model is works properly for typical data input only.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52201
UI - Skripsi Open  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>