Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 125456 dokumen yang sesuai dengan query
cover
Chairil
"Pada skripsi ini dilakukan perancangan co-design quadband LNA dan BPF dengan menggunakan CMOS teknologi 0.18 𝜇𝑚 yang beroperasi pada frekuensi tengah 0.95 GHz dan 1.85 GHz untuk aplikasi GSM, 2.35 GHz untuk aplikasi WiMAX, dan 2.65 GHz untuk aplikasi LTE secara simultan dengan topologi inductive souece degeneration. LNA dirancang agar memiliki spesifikasi 𝑆11<-10 dB, 𝑆21>10 dB, VSWR bernilai 1 ? 2, dan NF < 3 dB. LNA yang telah memenuhi kriterai perancangan kemudian digabung dengan sebuah quadband BPF yang beroperasi pada frekuensi tengah yang sama. Hasil simulasi co-design LNA dan BPF memiliki kinerja yang lebih baik daripada quadband LNA pada frekuensi 0.95 GHz, 1.85 GHz, 2.35 GHz, dan 2.65 GHz. Co-design LNA dan BPF memiliki nilai 𝑆11 antara -26,0 dan -18,9 dB, 𝑆21 antara 13,2 dB dan 19,2 dB, VSWR senilai 1,2, dan NF antara 0,6 dB dan 1,5 dB.

In this thesis, a concurrent quadband LNA is built in inductively source degeneration topology using 0.18 𝜇𝑚 CMOS technology. Another optimization technique called co-design is also used to find the better solution in the wider design field. Whatever the LNA and Filter are powerful; there should be a better design once they are combined together. Considering multiple components in RF front-end together, co-design can reduce the device number, thereby reduce system size, weight and price. As the result, a concurrent LNA which operates in band 0.95 GHz, 1,85 GHz, 2,35 GHz, and 2,65 GHz with gain >10 dB and NF below 1 dB is presented."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42732
UI - Skripsi Open  Universitas Indonesia Library
cover
Puspita Sulistyaningrum
"Concurrent multiband LNA merupakan salah satu tipe multiband LNA yang mampu bekerja pada beberapa frekuensi berbeda secara simultan dalam satu waktu. Pada skripsi ini dirancang concurrent multiband LNA yang bekerja pada empat pita frekuensi (quadband) yaitu 950 MHz, 1.85 GHz, 2.35 GHz, dan 2.75 GHz. LNA yang dirancang menggunakan topologi inductive source degeneration dan menggunakan teknologi CMOS 0.18 μm. Spesifikasi LNA yang dirancang adalah memenuhi standar kestabilan (K > 1), gain (S21) > 10 dB, input return loss (S11) < -10 dB, Noise figure (NF) < 3 dB, dan konsumsi daya ≤ 20 mW.
Berdasarkan hasil simulasi yang dilakukan, rancangan LNA telah memenuhi spesifikasi yaitu memiliki K > 1, S21 sebesar 17.007 dB pada frekuensi 950 MHz, 15.542 dB pada frekuensi 1.85 GHz, 14.974 dB pada frekuensi 2.35 GHz, dan 14.380 dB pada frekuensi 2.75 GHz. S11 sebesar -29.261 dB pada frekuensi 950 MHz, -17.915 dB pada frekuensi 1.85 GHz, -15.325 dB pada frekuensi 2.35 GHz, dan -15.921 dB pada frekuensi 2.75 GHz. NF sebesar 0.906 dB pada frekuensi 950 MHz, 0.606 dB pada frekuensi 1.85 GHz, 0.658 dB pada frekuensi 2.35 GHz, dan 0.636 dB pada frekuensi 2.75 GHz. Besarnya konsumsi daya rangkaian adalah sebesar 20 mW. Simulasi dilakukan dengan perangkat lunak Advance Design System (ADS).

Concurrent multiband LNA is one type of multiband LNA that works at several frequency bands one time simultaneously. This final project presents a design of Concurrent multiband LNA that works at four frequency bands (quadband) namely 950 MHz, 1.85 GHz, 2.35 GHz, and 2.75 GHz. The simulated LNA uses inductive source degeneration topology in 0.18 μm CMOS technology. The design specifications of LNA are K > 1, gain (S21) > 10 dB, input return loss (S11) < -10 dB, Noise figure (NF) < 3 dB, and power consumption ≤ 20 mW.
Based on the simulation result, the design of LNA achieves specifications; K > 1, S21 are 17.007 dB at 950 MHz, 15.542 dB at 1.85 GHz, 14.974 dB at 2.35 GHz, and 14.380 dB at 2.75 GHz. S11 are -29.261 dB at 950 MHz, -17.915 dB at 1.85 GHz, -15.325 dB at 2.35 GHz, and -15.921 dB at 2.75 GHz. NF are 0.906 dB at 950 MHz, 0.606 dB at 1.85 GHz, 0.658 dB at 2.35 GHz, dan 0.636 dB at 2.75 GHz. Power comsumption is 20 mW. Simulation performed with Advance Design System (ADS) software.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43287
UI - Skripsi Open  Universitas Indonesia Library
cover
A. Syihabuddin P.
"Penelitian mengenai Integrated Circuit (IC) khususnya untuk aplikasi komunikasi nirkabel masih sangat kurang di Indonesia. Padahal, komunikasi nirkabel di Indonesia sedang berkembang pesat mengenai teknologi LTE dan WIMAX. Oleh karena itu, penelitian tentang IC di Indonesia harus mulai dirintis untuk mendukung perkembanagan komunikasi nirkabel tersebut. Concurrent multiband Low Noise Amplifier (LNA) merupakan salah satu penelitian IC untuk aplikasi komunikasi nirkabel karena dapat bekerja empat pita frekuensi (quadband) yaitu 0.900 GHz dan 1.800 GHz untuk aplikasi GSM, 2.300 GHz untuk aplikasi WIMAX, dan 2.600 GHz untuk aplikasi LTE di Indonesia.
Pada penelitian yang telah banyak dilakukan sebelumnya, hasil perancangan concurrent multiband LNA tidak mampu mendapatkan spesifikasi gain yang tinggi. Untuk itu, dalam penelitian ini LNA dirancang menggunakan konfigurasi transistor secara cascade dan teknik power constrained simultaneous noise and input matching (PCSNIM) pada topologi inductive source degeneration yang mampu mendapatkan nilai gain tinggi, dan noise yang rendah.
Perancangan dilakukan dengan menggunakan perangkat lunak Advanced Design System (ADS) versi 2009 dan Altium Designer Summer 09, kemudian hasil perancangannya difabrikasi di atas PCB. Berdasarkan hasil simulasi yang dilakukan, rancangan LNA telah memenuhi spesifikasi yaitu memiliki K > 1, S21 sebesar 28.584 ~ 33.348 dB, S11 sebesar -20.679 ~ -30.817 dB, S22 sebesar -15.66 ~ -18.581 dB, NF sebesar 0.44 ~ 0.573 dB untuk keempat band frekuensinya. Hasil pengukuran PCB menunjukkan hasil S11 sebesar - 5.48763 ~ -6.7214 dB, S21 sebesar -17,7247 ~ -27.0854 dB dan S22 sebesar - 4.13519 ~ -9.30733 dB pada keempat band frekuensinya.

Research about Integrated Circuit (IC), specifically for wireless communication applications is still lacking in Indonesia. In fact, wireless communication is growing rapidly in Indonesia about LTE and WiMAX technologies. Therefore, research about IC in Indonesia should be initiated to support the development of the wireless communication. Concurrent Multiband Low Noise Amplifier (LNA) is one of the research IC for wireless communication applications because it can work four frequency bands (quadband) is 0.900 MHz and 1.800 GHz for GSM applications, 2.300 GHz for WIMAX applications, and 2.600 GHz for LTE applications in Indonesia.
In the research that has been done before, the results of concurrent multiband LNA design is not able to get a high gain specification. Therefore, in this study LNA designed using transistors in cascade configurations and techniques of power constrained simultaneous noise and input matching (PCSNIM) on inductive source degeneration topology that is able to get the value of high gain, and low noise.
This design is using software Advanced Design System (ADS) version 2009 and Altium Designer Summer 09, then the results of LNA design was fabricated on top of the PCB. Based on the simulation results, the design of LNA has fullfiled the specifications that have K > 1, S21 is 28 584 ~ 33 348 dB, S11 is ~ -30 817 -20 679 dB, S22 is -15.66 ~ -18 581 dB, NF is 0.44 dB ~ 0573 on desired frequency bands. PCB measurement results show the results of S11 is -5.48763 ~ -6.7214 dB, S21 is -17,7247 ~ -27.0854 dB and S22 is -4.13519 ~ -9.30733 dB on desired frequency bands."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47087
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budiman Budiardhianto
"ABSTRAK
Pada penelitian ini, dirancang suatu Concurrent Multiband Low Noise Amplifier (LNA) yang mampu bekerja pada frekuensi 950 MHz dan 1.85 GHz untuk aplikasi GSM, 2.35 GHz untuk aplikasi WIMAX/LTE, dan 2.65 GHz untuk aplikasi LTE di Indonesia. Transistor yang digunakan adalah jenis HJ-FET n-channel NE3210S01 dengan karakteristik high gain dan low noise. Konfigurasi transistor yang digunakan adalah cascade untuk menghasilkan gain yang tinggi dan topologi inductive-resistive source degeneration. Penggunaan topologi inductive source degeneration memang dapat meningkatkan derajat kebebasan dalam input matching serta mampu mengurangi noise dengan mengatur nilai induktor source namun konsumsi dayanya masih tinggi sehingga dalam perancangan LNA ini dikombinasikan dengan resistive source degeneration untuk mengatasi hal tersebut. Desain yang dirancang disimulasikan dengan menggunakan perangkat lunak Advance Design System (ADS) 2009. Berdasarkan hasil simulasi yang dilakukan, rancangan LNA telah memenuhi spesifikasi yaitu memiliki K > 1 yaitu 40.216, 3,207, 1.98, dan 2.044. S21 > 20 dB yaitu 29.871 dB, 33.323 dB, 32.537 dB, dan 30.568 dB. S11 < -10 dB yaitu -22.447 dB, -24.273 dB, -30.604 dB, dan -23.885 dB. S22 < -10 dB yaitu -33.438 dB, -14.868 dB, -29.747 dB dan -16.273 dB. NF < 1 dB yaitu sebesar 0.447 dB, 0.462 dB, 0.634 dB, dan 0.769 dB pada keempat frekuensi tengah serta dengan suplai DC sebesar 1.5 V dan konsumsi daya 93 mW. Hasil pengukuran PCB menunjukkan terjadi pergeseran frekuensi tengah yaitu di 1.135 GHz, 1.37 GHz, 1.67 GHz, dan 2.1 GHz dengan nilai S11 sebesar -16.5~-22.46 dB. Output matching hanya menghasilkan dualband yaitu di frekuensi 1 GHz dan 1.1 GHz dengan nilai S22 sebesar -13.17~-26.14 dB. Kemudian, hasil pengukuran S21 menunjukan terjadinya loss pada LNA dengan nilai S21 < 0.24 dB dengan nilai S21 tertinggi sebesar 0.24 dB di frekuensi 1.6 GHz.

ABSTRAK
In this research, has been designed a Concurrent Multiband Low Noise Amplifier (LNA) that could work at 950 MHz and 1.85 GHz for GSM application, 2.35 GHz for WiMAX/LTE and 2.65 for LTE in Indonesia. Transistor which is used in this design is HJ-FET n-channel transistor NE3210S01 that has high gain and low noise characteristic. Using cascade transistor configuration to yield high gain and inductive-resistive source degeneration topology. The use of inductive source degeneration may increase the degree of freedom in input matching and can reduce noise by adjusting the value of source inductor but power consumption is still high so the LNA design is combined with a resistive source degeneration to overcome it. The designed LNA has been simulated with Advance Design System (ADS) 2009 software. Based on the simulation result, the designed LNA achieves specifications such as K >1 they are 40.216, 3,207, 1.98, dan 2.044. S21 > 20 dB they are 29.871 dB, 33.323 dB, 32.537 dB, dan 30.568 dB. S11 < -10 dB they are -22.447 dB, -24.273 dB, -30.604 dB, dan -23.885 dB. S22 < -10 dB they are -33.438 dB, -14.868 dB, -29.747 dB dan -16.273 dB. Noise Figure NF < 1 dB they are 0.447 dB, 0.462 dB, 0.639 dB, dan 0.769 dB on the desired frequency bands with DC supply of 1.5 V and power consumption of 93 mW. PCB measurement results indicate shift in centre frequencies, they are at 1.135 GHz, 1.37 GHz, 1.67 GHz and 2.1 GHz with S11 value of -13.17~-26.14 dB. Output matching produces only dualband at frequency of 1 GHz and 1.1 GHz with S22 value of -13.17 ~ -26.14 dB. Then, the measurement results indicate the occurrence of loss in LNA with value S21 < 0.24 dB with the highest value at 0,24 dB at a frequency of 1.6 GHz."
2015
S59157
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Teknologi worldwide interoperability for mobile access (WiMAX) mampu mentransfer data dengan kecepatan tinggi
dan cakupan area yang luas. Teknologi WiMAX telah dikembangkan lagi menjadi teknologi untuk komunikasi bergerak
yang dinamakan mobile WiMAX sesuai standar IEEE 802.16e dengan frekuensi kerja 2,3–2,4 GHz. Bandpass filter
(BPF) digunakan untuk menyeleksi frekuensi berdasarkan spesifikasi standar WiMax yang telah ditetapkan agar tidak
terjadi gangguan dengan channel lain saat melakukan komunikasi. Perancangan BPF menggunakan filter aktif
mikrostrip Hairpin dengan rangkaian resistansi negatif. Rangkaian resistansi negatif berfungsi untuk mengkompensasi
rugi resistansi parasitik yang ditimbulkan dari komponen induktor kapasitor dan menggunakan komponen aktif bipolar
junction transistor (BJT) BFR-183. Penggunakan filter aktif mikrostrip hairpin mempunyai keuntungan yaitu ukuran
menjadi lebih kecil, rugi-rugi yang diakibatkan adanya resistansi parasitik menjadi lebih rendah sehingga faktor Q dapat
ditingkatkan dan dapat diterapkan pada frekuensi tinggi. Substrat PCB yang digunakan FR4. Hasil simulasi yang diperlihatkan yaitu jalur frekuensi dioperasikan pada 2,3-2,4 GHz, return loss, insertion loss, dan VSWR."
621 ELIT 2:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Taufiq Alif Kurniawan
"ABSTRAK
To support the WiMAX infrastructure development in Indonesiaa dualband
2.3/3.3 GHz low noise amplifier (LNA) is designed and analyzed. The LNA
is designed by combining the inductive source degeneration architecture and the
proposed switchable inductor for controlling gain. The chipis implemented by
TSMC 0.18-μm CMOS technology.
First of all, the mathematical analysis of the proposed LNA architecture is
conducted. It includesinput-impedance, gain and noise figure analysis. The
proposed input-impedance analysis modifies the input impedance of the inductive
source degeneration LNA architecture, includes devices selection to fulfill S11
requirement. Furthermore, the gain analysis is performed to explain the proposed
switchable inductor structure for controlling gain. It shows that combining onchip
inductor paralleled with series bond-wire and on-board inductor will obtain a
flatter gain for two bands of interest. The noise figure for source inductive
degeneration LNA architecture is derived. The noise figure described by the
derived equations agrees well with that obtained from the simulation.
Secondly, the proposed dual-band 2.3/3.3 GHz LNA is simulated. At lowband
mode, simulated results show the maximum S21 of 18.69 dB, an S11 below -
29 dB, and a flat noise figure of 2.3 ~ 2.33 dB from 2.3 to 2.4 GHz. The LNA
presents the IIP3 and the P1dB of -12.1 dBm and -23.3 dBm, respectively, while
consuming 18.4 mW at 1.5 V power supply. At high-band mode, the simulation
results show the S21 of 17.01 ~ 17.48 dB, the S11 below -21 dB, and an flat noise
figure of 2.36 ~ 2.37 dB from 3.3 to 3.4 GHz. The LNA consumes only 12.9 mW
at high-band mode, while exhibiting the IIP3 and the P1dB of -11.3 dBm and -22.1
dBm, respectively.
And then, the proposed LNA is verified by the post-simulation in which
the bond-wire effects are considered for an on-board deployment. At low-band
mode, the post-simulation results show the S11 of -29.11 dB ~ -32 dB, the S21 of
17.18 ~ 17.42 dB, and the flat noise figure of 2.67 ~ 2.71 dB. The LNA exhibits
the IIP3 and P1dB of -13.4 dBm and -24.2 dBm respectively, while consuming
16.32 mW power. At high-band mode, the LNA exhibits the S21 of 15.5 ~ 15.88
dB, the S11 of -12.94 ~ -16.82 dB, and the flat noise figure of 2.52 ~ 2.54 dB while
consuming 11.75 mW. The IIP3 and P1dB for the high-band mode are -12.3 dBm
and 23.3 dBm, respectively. The total chip area ofthe proposed LNA is 0.9 mm2,
including the IO pads."
2011
T29993
UI - Tesis Open  Universitas Indonesia Library
cover
Simanjuntak, Daniel
"ABSTRAK
Pada skripsi ini dilakukan perancangan concurrent quadband bandpass filter yang beroperasi pada frekuensi tengah 950 MHz dan 1.85 GHz untuk aplikasi GSM, 2.35 GHz untuk aplikasi WiMAX, dan 2.65 GHz untuk aplikasi LTE secara simultan. Rangkaian filter tersebut dibangun dengan menggunakan komponen lumped yang berupa induktor (L) dan kapasitor (C). Filter yang dirancang harus memenuhi spesifikasi, antara lain memiliki input return loss (S11) < -10 dB, insertion loss (S21) > -3 dB, bandwidth S21 sebesar 50 MHz pada frekuensi tengah 950 MHz dan 100 MHz pada frekuensi 1.85 GHz, 2.35 GHz, serta 2.65 GHz, dan VSWR antara 1-2 dengan group delay kurang dari 10 ns.Perancangan yang dilakukan dengan menggunakan perangkat lunak Advance Design System (ADS) versi 2011.05 menunjukkan bahwa filter yang dirancang telah memenuhi spesifikasi yang diinginkan, tetapi hasil fabrikasi menunjukkan bahwa filter tersebut tidak mencapai spesifikasi yang telah ditetapkan antara lain pada S11, S21, bandwidth, dan VSWR. Selain itu, terjadi pergeseran frekuensi kerja pada filter hasil fabrikasi. Hasil simulasi dan fabrikasi group delay juga menunjukkan perbedaan, tetapi nilainya masih di bawah 10 ns.

ABSTRACT
In this final project, a concurrent quadband bandpass filter is design to operate at four specific center frequencies of 950 MHz and 1.85 GHz for GSM application, 2.35 GHz for WiMAX application, and 2.65 GHz for LTE application simultaneously. The filter circuit is built with lumped element consists of inductor (L) and capacitor (C). The design of filter must meet some requirenment such as input return loss (S11) < -10 dB, insertion loss (S21) > -3 dB, bandwidth S21 of 50 MHz on center frequency 950 MHz and 100 MHz on center frequencies 1.85 GHz, 2.35 GHz, and 2.65 GHz, VSWR between 1-2 with group delay less than 10 ns. The result of filter's design that simulated with Advanced Design System (ADS) software 2011.05 version shows that filter's design have met the requirement but the fabricated result didn't acheive the requirement on S11, S21, bandwidth, and VSWR. Else, there are also operating frequencies shifting in the fabricated filter. The simulated and fabricated filter on group delay also shown a diffrence but the value is still less than 10 ns.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42624
UI - Skripsi Open  Universitas Indonesia Library
cover
Muh. Wildan
"Low Noise Amplifier (LNA) dan Bandpass Filter (BPF) merupakan bagian depan rangkaian radio frequency (RF) pada sebuah receiver maupun RF field detector. Rancangan rangkaian dual band LNA dan BPF merupakan solusi menggabungkan dua perangkat dengan frekuensi kerja yang berbeda menjadi sebuah perangkat multi fungsi dan memiliki kemampuan dual band secara simultan.
Pada tesis ini membahas rancang bangun rangkaian co-design dual band LNA dan BPF pada Radio Navigation Aids (RNA) khususnya peralatan Very High Frequency Omni Range (VOR) / Instrument Landing System Localizer (ILS LOC) yang bekerja pada band VHF 108 - 118 MHz dan ILS Glide Slope (GP) pada band UHF 328,6 MHz ? 335,4 MHz yang digunakan untuk monitoring ground check. Rangkaian co-design adalah rangkaian LNA dan BPF yang digabungkan dalam sebuah rangkaian.
Bandpass filter yang dirancang juga berfungsi sebagai pengganti output matching impedance dari LNA, sehingga memiliki keuntungan komponen pasif menjadi lebih sedikit dan dimensi dari perangkat menjadi lebih kecil akan tetapi tetap memiliki spesifikasi parameter yang sama dengan rangkain dual band LNA dan BPF yang dipasang secara cascade (metode konvensional). Rancangan rangkaian co-design dual band LNA dan BPF disimulasikan, dipabrikasi, diukur dan dianalisa hasilnya. Sebagai pembanding juga dirancang rangkaian dual band LNA tanpa BPF dan rangkaian dual band LNAdan BPF secara cascade.
Hasil simulasi menunjukkan performa yang baik pada ketiga rangkaian dan masih memenuhi standar spesifikasi perancangan. Pada rangkaian co-design untuk frekuensi tengah 113,0 MHz dan frekuensi 332,0 MHz berturut turut didapatkan gain (S21) sebesar 24.116 dB/17.213 dB, input return loss (S11) sebesar -24.885 dB/-30.223 dB, noise figure sebesar 1.283 dB/ 1.250 dB, stability factor adalah 1.159 / 1.778 serta nilai VSWR mencapai 1.121 dan 1.064. Sedangkan hasil pengukuran fabrikasi peralatan nilai gain dan input return loss sedikit mengalami penurunan nilai dari hasil simulasi tetapi masih memenuhi standar spesifikasi perancangan untuk band VHF, namun pada band UHF masih diluar toleransi dari spesifikasi perancangan.

Low Noise Amplifier (LNA) and Bandpass Filter (BPF) are radio frequency (RF) frond-end circuit of a receiver or RF field detector. The design of dual-band LNA circuit and BPF are a solution to combining two devices with different working frequencies into a multi-function device and has simultaneous dual band capability.
This thesis discusses the design circuit co-design dual-band LNA and BPF at Radio Navigation Aids (RNA) in particular equipment Very High Frequency Omni Range (VOR) / Instrument Landing System Localizer (ILS LOC) working at band working on band VHF 108-118 MHz and ILS Glide Slope (GP) on band UHF 328.6 MHz - 335.4 MHz are used for ground check monitoring. The co-design is a series of LNA and BPF are combined in a circuit.
Bandpass filters are designed also serves as a substitute for the output matching impedance of the LNA, so it has the advantage of passive components becomes less and dimensions of the devices become smaller, but still have same performance with a dual-band LNA and BPF are designed in cascade by the conventional method. The circuit of co-design dual-band LNA and BPF simulated, fabricated, measured and analyzed the results. For comparison also designed a dual-band LNA circuit without dual band BPF and a dual band LNA and BPF in cascade.
Simulation results show good performance in all curcuits and still meet the design specifications. In a co-design for the center frequency of 113.0 MHz and 332.0 MHz frequencies obtained consecutive gain (S21) 24.116 dB/17.213 dB, input return loss (S11) -24.885 dB/-30.223 dB, noise figure 1.283 dB/ 1.250 dB, stability factor 1.159 / 1.778 and VSWR 1.121 dan 1.064. While the value of the measurement results of fabrication equipment and input return loss gain slightly decreased the value of simulation results but still meet the design specifications for the VHF band, UHF band but still out of tolerance from the design specifications.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41675
UI - Tesis Membership  Universitas Indonesia Library
cover
Rhyando Anggoro Adi
"ABSTRAK
Skripsi ini membahas tentang rancang bangun sistem receiver pada payload komunikasi IiNUSAT (Indonesian Inter University Satelite) yang mempunyai orbit LEO (low earth orbit) sun synchrounous dengan ketinggian 700 Km, payload komunikasi dengan jenis regenerative, sistem receiver dengan jenis superheterodyne, dan frekuensi kerja 145.95 MHz. Pembahasan akan dilakukan lebih spesifik pada low noise amplifier (LNA) dan bandpass filter (BPF).
LNA dan BPF disimulasikan dengan menggunakan perangkat lunak advanced design system (ADS). LNA mempunyai spesifikasi kelas A dengan menggunakan komponen aktif bipolar transistor junction (BJT) 2SC5006 yang dirancang dengan menggunakan smith chart dan mempunyai hasil simulasi gain 22.8 dB serta noise figure 1.2 dB pada frekuensi 145.95 MHz. Hasil fabrikasi LNA menunjukan pergeseran frekuensi kerja menjadi 70.279 MHz. Bandpass filter mempunyai tipe butterworth orde lima yang dirancang dengan metode insertion loss dan mempunyai nilai bandwidth 20 MHz serta insertion loss dB pada frekuensi 145.95 MHz. Hasil fabrikasi BPF menunjukan pergeseran frekuensi kerja menjadi 120.264 MHz.
Adanya perbedaan hasil simulasi dan hasil fabrikasi disebabkan oleh bentuk dan deviasi komponen pasif serta saluran transmisi dan diskontinuitas saluran transmisi yang menyebabkan pengaruh pada respon frekuensi yang dihasilkan karena terdapat reaktansi parasitik berupa komponen pasif induktor dan kapasitor pada rangkaian ekuivalen keduanya.
Hasil simulasi untuk rangkaian gabungan LNA dan BPF menunjukan nilai gain 22.6978 dB yang menunjukan LNA dapat menanggulangi loss pada sistem receiver termasuk insertion loss pada BPF.

ABSTRACT
Receiver system on payload communication of IiNUSAT (Indonesian Inter University Satelite) has sun synchrounous LEO (low earth orbit) with 700 Km altitude, regenerative payload communication, superheterodyne receiver, and 145.95 MHz operating frequency. Study will be done specifically on low noise amplifier (LNA) and bandpass filter (BPF).
Advanced design system (ADS) software is used to simulate LNA and BPF. Low noise amplifier (LNA) with class A specification and 2SC5006 bipolar junction transistor (BJT) active component is designed with smith chart and shows simulation results of 22.8 dB gain and 1.2 dB noise figure at 145.95 MHz operating frequency. Fabrication result of LNA showed a shift in operating frequency of 70.279 MHz. Bandpass filter (BPF) with five orde butterworth type is designed with insertion loss method and shows simulation results of 20 MHz bandwidth and dB insertion loss at 145.95 MHz operating frequency. Fabrication result of BPF showed a shift in operating frequency of 120.264 MHz.
The difference on simulation and fabrication result are caused by not only the shape and deviation of passive components but also transmission lines and discontinuity of transmission lines which has parasitic component of inductor and capacitor in their equivalent circuit.
Simulation result on combination of LNA and BPF circuit is 22.6978 dB gain which show that LNA can compensate loss in receiver system, including insertion loss in BPF."
Fakultas Teknik Universitas Indonesia, 2011
S1091
UI - Skripsi Open  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S38746
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>