Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 167907 dokumen yang sesuai dengan query
cover
Ferri Julianto,author
"Pada penelitian ini dirancang High efficiency Concurent Multiband RF Power Amplifier Class-E dengan teknologi CMOS 0.18um type N, yang beroperasi pada frekuensi GSM 900 MHz, GSM 1800 MHz, WIMAX 2300 Mhz, dan LTE 2600 Mhz, dengan menggunakan dua metode perancangan. Rancangan pertama menggunakan metode multiband Class-E Power Amplifier yang konvensional, dan perancangan kedua dengan menambahkan rangkaian Driver Stage untuk menghasilkan Insertion loss yang lebih besar. input matching dan output matching dirancang dengan menggunakan komponen lumped.
Tujuan dari perancangan ini adalah untuk mencapai Insertion loss (S21) bernilai lebih besar dari 15 dB dan Return loss (S11) dibawah -15 dB, Tegangan supply 5 Volt, memenuhi standar kestabilan (K > 1), dan Power Added Efficiency >50%, Rancangan ini disimulasikan menggunakan program Advanced Design System (ADS).
Hasil simulasi perancangan dengan metode rangkaian driver stage mempunyai nilai S21 sebesar 21.934 dB, 25.581 dB, 21.798 dB, dan 19.997 dB pada frekuensi 900MHz, 1800MHz, 2300MHz, dan 2600MHz. Serta nilai S11 sebesar -15.270 dB, -24.404 dB, -19.974 dB, dan -16.584 dB pada frekuensi 900MHz, 1800MHz, 2300MHz, dan 2600MHz. Dan nilai maksimum PAE sebesar 52.98% pada frekuensi-frekuensi tersebut.

In this research is designed High efficiency Concurent Multiband RF Power Amplifier Class-E with 0.18𝜇m CMOS type N, which operates at GSM 900 MHz, GSM 1800 MHz, WIMAX 2300 MHz, and LTE 2600 MHz, using two method of design. First design is using a Conventional Multiband Power Amplifier Class-E and the second design is by adding a Driver Stage to the circuit to achieve much higher Insertion loss. The input matching and output matching is design using lumped component.
The aim of this design is to achieve result of Insertion loss) above 15 dB and Return loss below -15 dB, supply voltage 5 V, power added efficiency above 50%, this design is simulated using Advanced Design System (ADS).
The simulation results using a driver stage circuit shows that S21 of 21.934 dB, 25.581 dB, 21.798 dB, dan 19.997 dB was obtained at 900MHz, 1800MHz, 2300MHz, and 2600MHz. And S11 of -15.270 dB, -24.404 dB, -19.974 dB, and -16.584 dB was obtained at 900MHz, 1800MHz, 2300MHz, and 2600MHz. In terms of maximum PAE was obtain 52.98% at those frequencies.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42668
UI - Skripsi Open  Universitas Indonesia Library
cover
Almer Rashad
"Saat ini, pemanfaatan wireless power transfer untuk menyediakan daya bagi implan medis menjadi krusial dalam meminimalisasi tindakan operasi berulang yang diperlukan untuk penggantian baterai. Akan tetapi sistem Wireless Power dan Data Transfer (WPDT) konvensional memiliki dua koil induktif, sehingga diperlukan rangkaian yang kompleks dan area besar. Pada penelitian ini, diusulkan rangkaian pemancar WPDT koil tunggal dengan modulasi amplitudo shift keying (ASK) yang yang compact dan mampu menghasilkan efisiensi tinggi. Dua buah kapasitor parallel yang dirangkai seri dengan koil pemancar memungkinkan operasi transfer daya dan data berada pada kondisi optimal. Uji coba rangkaian pada level PCB memperoleh efisiensi sebesar 40,47% dan dapat ditingkatkan hingga 96,44% dengan rentang frekuensi 8,5 MHz hingga 11,5 MHz.

Currently, the utilization of wireless power transfer to provide power for medical implants is crucial in minimizing the need for repeated surgical procedures for battery replacement. However, conventional Wireless Power and Data Transfer (WPDT) systems have two inductive coils, requiring complex circuitry and a large area. In this study, a single-coil WPDT transmitter circuit with amplitude shift keying (ASK) modulation is proposed, which is compact and capable of achieving high efficiency. Two parallel capacitors connected in series with the transmitter coil enable power and data transfer operations to be in optimal condition. Circuit testing at the PCB level achieved an efficiency of 40.47% and can be improved up to 96.44% within the frequency range of 8.5 MHz to 11"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simanjuntak, Daniel
"Radio-Frequency Identification (RFID) telah menjadi salah satu segmen teknologi yang memiliki pertumbuhan pesat pada industri pengumpulan data dan identifikasi otomatis. Salah satu bagian terpenting dari sistem RFID adalah power amplifier yang memungkinkan terjadinya transfer daya antara reader dengan transponder untuk melakukan identifikasi.
Pada penelitian ini diusulkan power amplifier kelas E untuk aplikasi RFID yang bekerja pada frekuensi 13.56 MHz. Power amplifier pertama kali disimulasikan dengan menggunakan software Advance Desain System (ADS) dan kemudian hasil simulasi difabrikasi.
Power amplifier kelas E yang dirancang memiliki kestabilan K sebesar 1.758, return loss masukan (S11) sebesar -23.587 dB, return loss keluaran (S22) sebesar -19.123 dB, gain (S21) sebesar 22.742 dB, VSWR sebesar 1.142, dan PAE maksimal 79.331% pada frekuensi 13.56 MHz.
Sedangkan power amplifier hasil fabrikasi memiliki performansi yang cukup berbeda dengan hasil simulasi dimana hasil fabrikasi memiliki return loss masukan (S11) sebesar -14.926 dB, return loss keluaran (S22) sebesar -12.812 dB, dan gain (S21) sebesar 0.852 pada frekuensi 13.56 MHz.

Radio-Frequency Identification (RFID) has become a technology segment that growth rapidly in data collecting industry and automatic identification. One of the most important part of RFID system is power amplifier that enable power transfer between reader and transponder for identification purpose.
This research propose power amplifier class E for RFID application at 13.56 MHz frequency’s. The power amplifier is simulated with Advanced Design System (ADS) software then the simulation design is fabricated.
The simulation result of class E power amplifier has stability factor K of 1.758, input return loss (S11) of -23.587 dB, output return loss (S22) of -19.123 dB, gain (S21) of 22.472 dB, VSWR of 1.142, and maximum PAE of 79.331% on frequency of 13.56 MHz.
The fabrication result of power amplifier has a difference performance to the simulation result where the fabrication result has input return loss (S11) of -14.926 dB, output return loss (S22) of -14.926 dB, gain (S21) of 0.852 dB on frequency of 13.56 MHz.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35521
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Raja Lumayang
"Perangkat implan medis memainkan peran penting sebagai perangkat medis karena manfaatnya dalam memantau dan mendeteksi gejalan penyakit. Pada perangkat implant medis yang bekerja secara nirkabel, dibutuhkan Wireless power dan data transfer (WPDT) sebagai alat komunikasi berdaya rendah antara implan dengan penerima di luar tubuh pasien. Namun, topologi rangkaian WPDT yang sederhana masih menjadi tantangan karena rangkaian WPDT yang sudah dikembangkan sebelumnya masih menggunakan rangkaian yang kompleks dengan dua tautan daya induktif untuk pengiriman daya dan data secara terpisah. Pada penelitian ini diusulkan rangkaian WPDT yang dapat mengirim daya dan data pada satu tautan daya induktif yang sama dengan menggunakan teknik modulasi amplitude-shift keying (ASK) sebagai metode pengiriman data. Pada rangkaian yang diajukan, tingkat efisiensi yang didapat sebesar 40,2% dengan daya terkirim ke beban sebesar 51,5 mW. Pada frekuensi pengiriman data 1 MHz; 1,5 MHz; dan 2 MHz bit error rate (BER) yang terukur kurang dari 10-8.

Medical implant devices play an important role as medical devices due to their benefits in monitoring and detecting disease conditions. In wireless medical implant devices, Wireless power and data Transfer (WPDT) is required as a low-power communication tool between the implant and an external receiver outside the patient's body. However, the simplicity of WPDT circuit topology remains a challenge as previously developed WPDT circuits still use complex circuits with two separate inductive power links for power and data transmission. This research proposes a WPT circuit that can transmit power and data over the same inductive power link using the Amplitude-Shift Keying (ASK) modulation technique as the data transmission method. In the proposed circuit, the achieved efficiency level is 40.2% with a power delivered to the load of 51.5 mW. At data transmission frequencies of 1 MHz, 1.5 MHz, and 2 MHz, the measured Bit Error Rate (BER) is less than 10-8"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sartika Setiawan
"[ABSTRAK
Kebutuhan akan layanan data pada jaringan telekomunikasi terus meningkat, jumlah trafik data setiap tahun selalu bertambah sedangkan trafik voice cenderung sudah jenuh. Teknologi 4G LTE (Generasi ke-empat Long Term Evolution) sebagai teknologi jaringan telekomunikasi terbaru dari 3GPP (Thrid Generation Pathnership Project) mampu memberikan kecepatan dan kapasitas lebih baik dari teknologi sebelumnya. Implementasi 4G LTE ini menjawab tantangan trend kebutuhan akan layanan data yang terus meningkat. Dalam proses implementasinya terdapat 2 tantangan besar yaitu terbatasnya lebar pita frekuensi di 1800 Mhz dikarenakan harus berbagi dengan sistem eksisting 2G DCS 1800 Mhz, dan kondisi demografi Indonesia yang bervariasi. Model dibangun dengan mengkombinasikan tipe area dengan lebar pita yang digunakan mulai dari 3 Mhz, 5 Mhz, 10 Mhz, 15 Mhz dan 20 Mhz. Dengan melakukan simulasi pada berbagai tipe area di Jabodetabek dan berbagai lebar pita frekuensi dihasilkan lebar pita yang berbeda pada masing-masing area berdasarkan aspek teknis (coverage dan kapasitas) dan kelayakan ekonomi yang diharapkan.

ABSTRACT
The need for data services in telecommunication network continues to increase, payload of data traffic every year is always increasing while the voice traffic is saturated. 4G LTE (fourth-generation Long Term Evolution) as the latest technology telecommunication networks of the 3GPP (Third Partnership Generation Project) is able to provide the speed and capacity better than previous technologies. 4G LTE implementation answering the challenge of increment data needed. In the process of implementation, there are two major challenges, the limited bandwidth at 1800 MHz due to be shared with existing 2G systems DCS 1800 MHz, and demographic conditions of Indonesia that different from one area to another area. The model is built by combining the type of area with the bandwidth used ranging from 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz. The model is built by combining the type of area with the bandwidth used ranging from 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz. By simulating the various types of areas in Greater Jakarta and various bandwidth generated different bandwidths in each area based on the technical aspects (coverage and capacity) and the expected economic feasibility., The need for data services in telecommunication network continues to increase, payload of data traffic every year is always increasing while the voice traffic is saturated. 4G LTE (fourth-generation Long Term Evolution) as the latest technology telecommunication networks of the 3GPP (Third Partnership Generation Project) is able to provide the speed and capacity better than previous technologies. 4G LTE implementation answering the challenge of increment data needed. In the process of implementation, there are two major challenges, the limited bandwidth at 1800 MHz due to be shared with existing 2G systems DCS 1800 MHz, and demographic conditions of Indonesia that different from one area to another area. The model is built by combining the type of area with the bandwidth used ranging from 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz. The model is built by combining the type of area with the bandwidth used ranging from 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz. By simulating the various types of areas in Greater Jakarta and various bandwidth generated different bandwidths in each area based on the technical aspects (coverage and capacity) and the expected economic feasibility.]"
2015
T45563
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Farras Archi M.
"Komunikasi mmWave merupakan komunikasi yang menjanjikan dan menarik bagi kalangan akademik dan industri karena ketersediaan spektrum yang berlimpah, akan tetapi spektrum mmWave mmiliki karakteristik kanal propagasi yang buruk. Teknik beamforming dengan perarahan yang tinggi menjadi solusi yang efektif untuk hal tersebut. Penggunaan teknik tersebut memiliki masalah waktu tunda yang tinggi dalam mekanisme initial access (IA). Hal ini dapat berdampak pada kinerja yang buruk untuk dapat mendukung implementasinya di teknologi komunikasi saat ini, yaitu 5G low end-to-end latency. Metode meta-heuristic dengan menggunakan algoritma Genetic Algorithm (GA) merupakan salah satu metode yang telah dilakukan untuk menyelsaikan permaslahan tersebut. Namun, kinerja yang dihasilkan belum cukup baik dan masih dilakukan penelitian untuk menghasilkan peningkatan kinerja waktu tunda terbaik dengan meninjau pada algoritma berbasis alam. Pada penelitian ini, kami melakukan perancangan dan penentuan suatu algoritma berdasarkan algoritma berbasis alam yang memiliki kinerja lebih baik dari GA yang telah dilakukan untuk kasus IA pada komunikasi mmWave. Algoritma yang telah dirancang dan ditentukan adalah algoritma hybrid genetic algorithm and particle swarm optimization (HGAPSO). Hasil kinerja algoritma tersebut menunjukkan nilai kapasitas terbaik (Gbit/s) dan waktu tunda yang cukup rendah (jumlah iterasi) dibandingkan algoritma GA yang telah diajukan dan particle swarm optimization (PSO). Oleh karena itu, dapat disimpulkan bahwa HGAPSO merupakan algoritma yang memiliki kinerja lebih baik dari GA yang telah diajukan dan dapat menjadi algoritma alternatif untuk kasus IA pada komunikasi mmWave.

MmWave communication is a promising and attractive communication for academic and industry because of the abundant available spectrum, but mmWave spectrum has poor propagation channel characteristics. High beamforming technique is an effective solution for the problem. The technique has a high delay in the initial access (IA) mechanism. This can have an impact on bad performance to be able to support its implementation in current communication technology, namely 5G low end-to-end latency. The meta-heuristic method using the Genetic Algorithm (GA) is one of the methods that have been used to solve the IA problem. However, the performance result is not good enough and research is still being carried out to produce the best delay time performance improvement by using nature inspired algorithms. In this research, we design and determine an algorithm based on nature inspired algorithms that have better performance than the GA that has been proposed for the IA case in mmWave communication. The algorithm that has been designed and determined are the hybrid genetic algorithm and particle swarm optimization (HGAPSO). The performance of the algorithm shows the best capacity value (Gbit/s) and the delay time is quite low (number of iterations) compared to the GA algorithm that has been proposed and particle swarm optimization (PSO). Therefore, it can be concluded that HGAPSO is an algorithm that has better performance than the GA that has been proposed and can be alternative algorithm for the IA case in mmWave communication."
Depok: Fakultas Teknik Universitas Indonesia , 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Hasyim
"ABSTRACT
Propagasi gelombang radio dapat diartikan sebagai proses perambatan gelombang radio dari pemancar ke penerima. Gelombang ini akan merambat melalui udara bebas menuju antena penerima dan mengalami redaman di sepanjang lintansannya, redaman perangkat dan saluran transmisi, sehingga ketika sampai di antena penerima, energi sinyal sudah sangat lemah. Line of sight (LOS) merupakan salah satu jenis propagasi di mana diantara stasiun pengirim dan stasiun penerima tidak terdapat penghalang. Kendala geografis dan kelengkungan bumi menyebabkan adanya keterbatasan untuk transmisi line of sight, namun masalah ini secara umum dapat dikurangi melalui perencanaan, perhitungan dan penggunaan teknologi tambahan. Dalam perencanaan sistem komunikasi radio, kinerja LOS perlu direncanakan cadangan daya akibat fluktuasi sinyal serta analisis kehandalannya. Sistem radio gelombang mikro digital antar titik yang menggunakan frekuensi 13 GHz dengan modulasi 16 QAM, bit rate 140 MBps,dan noise figure 0,7 dB memerlukan daya pancar -4,488 dBm, fading margin sebesar 85,51 dB dan kehandalannya sebesar 99,9999999%."
Jakarta: Pusat Penelitian dan Pengembangan sumber Daya dan Perangkat Pos dan Informatika,Badan Penelitian dan Pengembangan SDM, Kementerian Komunikasi dan Informatika, 2016
302 BPT 14:2 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Saad abdurrahman Fakhry
"Teknologi Radio Frequency Identification (RFID) adalah teknologi telekomunikasi nirkabel yang memanfaatkan gelombang elektromagnetik frekuensi radio untuk mendeteksi sebuah tag khusus untuk mengirim dan menerima data tanpa bersentuhan. RFID dapat digunakan dalam aplikasi sistem monitoring pasien secara jarak jauh dan real time. Untuk itu dirancang sebuah antena tag RFID yang dapat berkomunikasi pada frekuensi yang dialokasikan untuk RFID di Indonesia yaitu 924 MHz. Antena ini akan diimplan kedalam lengan pasien diantara lapisan kulit dan lemak. Antena yang dirancang berbentuk dipole dengan kombinasi bentuk helical dan folded. Antena kemudian diinsulasi menggunakan silicone untuk mengurangi Specific Absorption Rasio (SAR) dan diimplan ketubuh pasien. Untuk mengetahui karakteristik dan parameter-parameter maka antena disimulasi dengan menggunakan model lengan manusia dengan tipe phantom homogen di frekuensi 924 MHz dan dilakukan fabrikasi antena dan pengukuran menggunakan model phantom liquid di frekuensi 924 MHz. Simulasi dilakukan menggunakan software CST. Setelah disimulasikan didapat bahwa Antena memiliki gain sebesar -15.92 dB dan dengan bandwidth 852.44 MHz – 1006,8 MHz sebesar 154.36 MHz. Dan setelah antena difabrikasi dan diukur didapat bandwidth 844 – 964 MHz. sebesar 120 MHz.

Radio Frequency Identification (RFID) is a wireless telecommunication technology that utilizes electromagnetic waves (EM) at a radio frequency to detect a special tag to transmit and receive data without touching. RFID can be applied in long-distance and real-time patient monitoring system. For this reason, an RFID tag antenna is designed that can communicate at the allocated frequency for RFID in Indonesia at 924 MHz. This antenna will be implanted into the patient’s arm between the skin layer and the fat layer. The designed antenna is a dipole antenna with combination of helical and folded antenna. The Antenna then insulated using silicone to reduce Specific Absorption Ratio (SAR) and implanted in patient’s body. To find out characteristics and parameters of the designed antenna, the antenna is simulated using a human arm model with homogenous phantom at a frequency of 924 MHz and the antenna is fabricated and measured using a tissue equivalent liquid phantom at a frequency of 924 MHz. The simulation is done using CST software. After simulation, it is found that the antenna has a gain of -15.92 dB and a bandwidth of 154.36 MHz from 852.44 MHz to 1006.8 MHz. After fabrication and measurement, it is found that the antenna has a bandwidth of 120 MHz from 844 – 964 MHz."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rudi Saputra
"Radio Frequency Identification (RFID) merupakan teknologi pendeteksian otomatis dengan menggunakan gelombang radio sebagai media transmisinya. Salah satu aplikasi RFID sebagai pendeteksian barang pada gudang bersama dimana dibutuhkan pendeteksian barang yang datang dari berbagai negara dengan frekuensi RFID tag yang berbeda-beda agar dapat dibaca oleh RFID reader. Salah satu solusinya adalah menggunakan antena multiband yang dapat menangkap sinyal dengan frekuensi yang berbeda-beda, kemudian sinyal tersebut dipisahkan oleh power divider agar dapat diterima oleh RFID reader yang sesuai, sebelum mencapai RFID reader sinyal disaring terlebih dahulu dengan filter berdasarkan frekuensi RFID reader yang dituju.
Pada skripsi ini akan dirancang dua buah filter sebagai bagian dari system RFID multiband, yang bekerja pada frekuensi UHF yang biasa digunakan di Indonesia, yaitu 433 MHz dan 923 MHz. Filter dibuat dalam bentuk mikrostrip dengan model hairpin menggunakan lima buah resonator kemudian ditambahkan via ground hole agar dimensi filter menjadi lebih kecil dan bandwidth-nya menjadi lebih sempit.
Hasil pengukuran filter yang telah difabrikasi menunjukkan filter pertama bekerja pada frekuensi 430,5 - 434,5 MHz dengan fractional bandwidth 0,86 % dan filter kedua bekerja pada frekuensi 920,3-927,8 MHz dengan fractional bandwidth 0,81 %.

Radio Frequency Identification (RFID) is an automatic detection technology which uses a radio wave as its trasmission media. One of the applications of RFID is detecting goods from sharing warehouse. The detection of goods that come from many countries with different RFID tag frequency is needed in order to read the information with RFID reader. One of the solution for this detection proccess is to use multiband antenna to detect signal from many different frequencies and then divide the received signal with power divider in order to be received by RFID reader. Before the signal reaches the RFID reader, it will be filtered based on its RFID reader frequency.
In this final projects, two filters are proposed as part of RFID multiband system which operate on the UHF working frequency. The commonly used UHF working frequencies for RFID in Indonesia are 433 MHz and 923 MHz. The filters are made in the form of microstrip hairpin model and used five resonators. Via ground holes are added to the designed filters so that the overall dimension of the filters will be smaller and the bandwidth will be narrower.
Measurement result of the fabricated filters show the first filter is working on 430,5 - 434,5 MHz with fractional bandwidth 0,86 % and the second filter is working on 920,3-927,8 MHz with the fractional bandwidth 0,81 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S929
UI - Skripsi Open  Universitas Indonesia Library
cover
Suwarto
"Penelitian ini mengajukan rancang bangun antena slot microstrip multiband pada frekuensi 924 MHz, 1800 MHz, 2450 MHz dan 5800 MHz untuk Aplikasi RFID dan komunikasi pita lebar. Antena dirancang menggunakan perangkat lunak berbasis Finite Integration Technique (FIT), dengan teknik pencatuan saluran mikrostrip 50 Ω. Antena dibuat pada substrate FR4 dengan ukuran 95 x 85 x 1.6 mm3. Pada perancangan ini antena dibentuk dari slot persegi panjang dikombinasikan dengan strip bentuk U dan L pada sebuah patch persegi panjang agar dapat menghasilkan empat pita frekuensi. Prototipe antena ini telah difabrikasi untuk dilakukan validasi melalui pengukuran.
Hasil pengukuran menunjukkan karakteristik multiband pada pita frekuensi 924 MHz, 1800 MHz, 2450 MHz dan 5800 MHz. Pada standar bandwidth di S11 = -10 dB, antena menghasilkan bandwidth antara 923 s.d. 925 MHz pada frekuensi resonansi 924 MHz, antara 1700 s.d. 1900 MHz pada frekuensi resonansi 1800 MHz, antara 2400 s.d 2485 MHz pada frekuensi resonansi 2450 Mhz dan antara 5725 s.d 5875 MHz pada frekuensi resonansi 5800 Mhz. Hasil pengukuran antena menunjukkan karakteristik pola radiasi menyerupai hasil simulasi pada empat pita frekuensi yang diajukan pada perancangan antena ini.

This research proposes design of multiband microstrip slot antenna at the frequency of 924 MHz, 1800 MHz, 2450 MHz and 5800 MHz aiming at RFID applications and broadband communications. The antenna is designed by using a commercial software based on the Finite Integration Tecnique (FIT), with 50 Ω microstrip line feeding technique. The antenna is designed on FR4 substrate with the size of 95 x 85 x 1.6 mm3. In this design, the slot antenna is formed by rectangular slots combined with U and L shape strip combination on a rectangular patch in order to obtain four frequency bands. The prototype antenna has been fabricated for basic validation by conducting measurement.
The measurement results show that the multiband characteristics occur at the frequency bands 924 MHz, 1800 MHz, 2450 MHz and 5800 MHz. As for the standard -10 dB impedance bandwidth, the antenna provides bandwidth between 923 to 925 MHz at 924 MHz resonant frequency, between 1700 to 1900 MHz at 1800 MHz resonant frequency, between 2400 to 2485 MHz at 2450 MHz resonant frequency and between 5725 up to 5875 MHz at 5800 MHz resonant frequency. The measurement results show that the antenna radiation patterns agree with the simulation results at each frequency band as it has been proposed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44357
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>