Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 86517 dokumen yang sesuai dengan query
cover
Ahmad Zazali
"ABSTRAK
Komposit karbon adalah material komposit yang matriks dan penguatnya adalah karbon. Material ini biasanya digunakan pada berbagai aplikasi tertentu yang membutuhkan sifat mekanis yang baik dan mampu stabil pada suhu tinggi. Komposit karbon ini dibuat dengan material penyusun coal tar pitch, batubara(BB) dan arang batok kelapa(ABK). Dalam pembuatan komposit karbon ini akan divariasikan jumlah dari bahan penguat BB:ABK yaitu 60:40, 70:30, 80:20. Proses pembuatan spesimen uji dilakukan dengan metode kompaksi serbuk panas dengan tekanan 78 Mpa, temperatur 1000C, waktu tahan 30 menit dan kemudian dikarbonisasi. Pengujian densitas dan porositas dilakukan untuk mengetahui kepadatan spesimen uji yang dihasilkan sedangkan pengujian kekerasan dan keausan bertujuan untuk mengetahui sifat mekanis spesimen uji. Nilai densitas tertinggi dan persentase porositas terendah didapat pada saat komposisi BB:ABK 80:20 yaitu 1.53 gr/cm3 dan 32.14 %. Nilai kekerasan tertinggi dan laju keausan terendah terdapat pada saat komposisi BB:ABK 60:40 yaitu 38.54 BHN dan 0.05838 mm3/Nm.

ABSTRACT
Carbon composite is kind of composite that using carbon as the matrix and reinforcement. This material is commonly used for applications which requires excellent mechanical properties and dimensional stability at high temperatures. Carbon composite consisting of coal tar pitch, coal, and coconut shell charcoal. Ratio between coal:coconut shell charcoal as reinforcement in the process of making this composite carbon is 60:40, 70:30, and 80:20. Composite carbon are prepared by hot compaction method at pressure of 78 MPa, temperature of 1000C for half hour and then perform carbonization. Porosity and density testing performed to determine the density of sample. Hardness and wear testing also performed to determine mechanical properties of specimens. Maximum density obtain was 1.53 gr/cm3 (ratio 80:20). Lower density value was 32.14 %(ratio 80:20). Maximum hardness was 38.54 BHN (ratio 60:40) which also have lowest wear rate value (0.05838 mm3/Nm)."
Fakultas Teknik Universitas Indonesia, 2011
S833
UI - Skripsi Open  Universitas Indonesia Library
cover
Ardianto
"ABSTRAK
Pada penelitian ini komposit karbon dibuat dengan menggunakan coal tar pitch sebagai prekursor matriks dan serbuk arang batok kelapa (ABK) serta batubara (BB) berukuran 250 mesh sebagai partikel penguat. Jumlah coal tar pitch yang digunakan adalah 30% dari massa total komposit. Untuk mengetahui pengaruh perbandingan massa BB:ABK terhadap densitas, porositas, kekerasan dan keausan, sampel komposit karbon dibuat dengan tiga perbandingan massa BB:ABK yaitu 60:40, 70:30, dan 80:20. Pencetakan dilakukan dengan mesin press hidrolik menggunakan beban 11 U.S. ton pada temperature 100 oC dengan waktu tahan 30 menit. Bakalan hasil kompaksi selanjutnya dikarbonisasi dalam sebuah dapur vakum sederhana pada temperatur 500 oC dengan waktu tahan 15 menit. Hasil pengujian menunjukkan bahwa sifat-sifat komposit karbon seperti densitas, porositas, kekerasan dan keausan terutama dipengaruhi oleh karakteristik partikel penguat yang digunakan. Densitas meningkat dengan peningkatan kandungan batubara, sedangkan porositas mengalami penurunan. Densitas tertinggi diperoleh pada komposit dengan perbandingan massa BB:ABK 80:20, yaitu 1,55 gr/cm3. Porositas terendah diperoleh pada komposit dengan perbandingan massa BB:ABK 80:20, yaitu 31,33%. Kekerasan tertinggi tertinggi dan laju keausan terendah diperoleh pada komposit dengan perbandingan massa BB:ABk 60:40, secara berurutan yaitu 56.44 BHN dan 0.06 mm3/Nm.

ABSTRACT
Carbon composites were prepared with coal tar pitch as matrix precursor and two granular carbons namely coal waste powder (BB) and coconut shell charcoal powder (ABK) size 250 mesh as reinforcements. The amount of coal tar pitch used was 30 wt. % based on the total mass of the composites. Composites were prepared with three mass ratio BB:ABK , 60:40, 70:30, and 80:20, in order to obtained the influence of mass ratio of BB:ABK to the properties of the carbon composites such as density, porosity, hardness, and wear. The moulding of the mixture was performed in a uniaxial press using 11 U.S ton load at 100 oC for 30 minutes. The green compacts obtained from moulding process were carbonized at 500 o C in a vacuum furnace for 15 minutes. Testing results showed that the properties of the carbon composites mainly governed by the characteristics of the granular carbons that used as reinforcement. Density of the carbon composites increase with the increasing of coal powder content, while the porosity decrease. The highest density was obtained for composites with a mass ratio of 80:20, with density value 1,55 gr/cm3. The lowest porosity was also obtained for composites with a mass ratio of 80:20, with porosity value 31,33 %. The highest hardness value and the lowest wear rate were obtained from composites with a mass ratio 60:40, with hardness and wear rate value 56,44 BHN and 0,06 mm3/Nm, respectively."
Fakultas Teknik Universitas Indonesia, 2011
S862
UI - Skripsi Open  Universitas Indonesia Library
cover
Al Basri Amin
"Komposit karbon dibuat dengan bahan baku serbuk limbah batubara, arang batok kelapa, dan coal tar pitch. Serbuk batubara dan arang batok kelapa berperan sebagai penguat partikulat, dan coal tar pitch berperan sebagai prekursor matriks pengikat. Persentase coal tar pitch yang digunakan adalah 30% berat dan persentase BB dan ABK 70% berat. Ukuran partikel batubara dan arang batok kelapa yang dipakai adalah 200 mesh. Pembuatan komposit ini dilakukan dengan proses kompaksi panas dengan tekanan 11 U.S ton/78 Mpa, T=1000C, selama 30 menit, kemudian dikarbonisasi pada suhu 500-5500C, P = ± 600 torr. Variabel dalam penelitian ini adalah persentase BB:ABK yaitu 60:40, 70:30, 80:20. Pada spesimen uji komposit karbon ini akan diamati nilai densitas, persentase porositas, nilai kekerasan, ketahanan aus dan morfologi ikatan antar bahan penyusun.
Semakin tinggi kandungan BB(semakin rendah kandungan ABK) akan dihasilkan nilai densitas yang semakin tinggi dan porositas semakin rendah. Nilai densitas tertinggi terdapat pada rasio komposisi BB:ABK 70:30, yaitu 1,53 gr/cm3 dan persentase porositas terendah terdapat pada 70:30, yaitu 32 %. Kemudian, semakin tinggi kandungan ABK (atau semakin rendah kandungan BB) akan dihasilkan nilai kekerasan yang semakin tinggi dan laju keausan akan semakin rendah/semakin tahan aus. Nilai kekerasan tertinggi terdapat pada BB:ABK 60:40, yaitu 49,73 BHN dan laju keausan terendah terdapat pada BB:ABK 60:40, yaitu 0.05499 mm3/Nm. Ketidaksesuaian densitas, porositas, serta laju keausan pada rasio komposisi BB:ABK 80:20 disebabkan karena banyaknya coal tar pitch yang meluber saat kompaksi.

Carbon-carbon composite is made by coal,coconut shell coal, and coal tar pitch. Coal and coconut shell coal acted as reinforced particle and coal tar pitch as matrix precursor. The percentage of coal tar pitch which used is 30% (weight fraction) and reinforced particle(coal and coconut shell coal) is 70%. The mesh of particle size of coal and coconut shell coal is 200. The processed used is hot compaction/pressing. The pressed was 11 U.Ston/78 Mpa, T=1000C, for 30 minute, Then carbonized at 500-5500C, P = ± 600 torr. The variable in this research is the presentage of coal compared with coconut shell coal,individually 60:40, 70:30,and 80:20.The carbon-carbon composite then characterized enclose density, the percentage of porosity, hardness, wear rate, and microstructure by Scanning Electron Microscope (SEM).
With increasing of coal content(decrease of coconut shell coal content),produced the increasing in density and decreasing in porosity. The highest density is shown in composition ratio of coal compared with coconut shell coal 70:30, that was 1,53 gr/cm3 and the lowest percentage of porosity is produced in 70:30, that was 32 %. Then, increasing of coconut shell coal content (decrease of coal content) produced higher proportion in hardness and lower proportion in wear rate/ more wear resistant. The highest proportion in hardness is produced in composition ratio of coal compared with coconut shell coal 60:40, that was 49,73 BHN and the lowest wear rate is shown in composition ratio of coal compared with coconut shell coal 60:40, that was 0.05499 mm3/Nm. The nonconformity in density, porosity, and wear rate in composition ratio of coal compared with coconut shell coal caused by the amount of coal tar pitch reduced (caused overflow from the dies) when hot pressing carried out.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S926
UI - Skripsi Open  Universitas Indonesia Library
cover
Siti Chodijah
"ABSTRAK
Material karbon aktif berukuran mikro (mikro-karbon aktif) dikembangkan untuk
memperoleh material penyimpan hidrogen. Penelitian ini bertujuan untuk
mempelajari efektivitas penggunaan penggilingan bola planetari dengan
parameter, ratio sampel terhadap bola 1:5 selama 30 jam, kecepatan 200
putaran/menit dalam kondisi penggilingan non-inert. Karbon aktifasi hasil
pemilingan kemudian dibentuk pelet dengan penambahan gula cair sebagai
pengikat dan KOH sebagai larutan aktifasi. Material karbon aktif berukuran 36,41
mikron meningkat setelah penggilingan bola sebanyak 13,6 % untuk batok kelapa
dan 0,74 % untuk batubara. Pelet karbon aktif (batok kelapa) memiliki nilai
penyerapan yang lebih tinggi jika dibandingkan serbuk karbon aktif. Kapasitas
penyerapan pelet karbon aktif meningkat hingga ± 75,87% pada temperatur
rendah -5oC dan ± 78 % pada temperatur ruang 25oC.

ABSTRACT
Micro-activated carbons have been developed for hydrogen storage materials. The
research was conducted to observe the effect of planetary ball milling with the
ratio sample to ball 1:5 for 30 hours, 200 rev / min in non-inert conditions. Ball
milled activated carbon material were then formed as pellet with addition of liquid
sugar as binder and KOH as activated reagents. The pellet was reactivated at 550o
C for 1 hour. Fraction of activated carbon material with the size of less than 36.41
microns increased after ball milled as mucs as 13.6% for coconut shell and 0.74
for coal. Pellet activated carbon has higher adsorption capacity than powdered
activated carbon. Adsorption capacity of pellet activated carbon up to ± 75.87% in
low temperature -5oC and 78% in room temperatur 25oC."
2011
T30032
UI - Tesis Open  Universitas Indonesia Library
cover
Agus Edy Pramono
"ABSTRAK
Rekayasa material komposit karbon-karbon dapat dibuat dari serbuk karbon limbah organik cangkang kelapa dan serbuk karbon limbah batubara, dengan matriks coal tar pitch sebagai bahan perekat yang adalah limbah residu dari proses gasifikasi batubara. Komposit karbon-karbon berbahan limbah belum banyak dikembangkan di Indonesia. Limbah organik tersedia sangat melimpah, oleh karena itu penelitian ini difokuskan untuk meningkatkan nilai tambah limbah organik dari bahan tidak bernilai menjadi bahan yang berguna secara teknologi dan bernilai tinggi. Secara umum, penelitian ini bertujuan untuk menentukan ?karakteristik mekanik: ketahanan aus dan konduktivitas elektrik komposit karbon-karbon berbasis limbah organik karena pengaruh rasio komposisi, ukuran serbuk karbon dan temperatur tekan panas?. Proses fabrikasi dalam penelitian ini dimulai dengan karbonisasi cangkang kelapa dan penggilingan menjadi serbuk karbon, pencampuran dengan serbuk karbon batubara dalam rasio komposisi: karbon batubara 60%, 70% dan 80% berat, dicampur karbon cangkang kelapa 40%, 30% dan 20% berat, dengan ukuran serbuk mesh 100, 150, 200, dan 250. Berat campuran serbuk sebagai penguat komposit dicampur dengan matriks coal tar pitch dalam rasio berat 70%:30%. Campuran serbuk karbon dan coal tar pitch dipadatkan dan dipanaskan dalam cetakan dengan tekanan 778,75 bar dan temperatur 100°C. Sampel pra bentuk tersebut diproses curing pirolisis pada temperatur 500°C. Hasil pengujian karakteristik laju aus, kekuatan impak dan konduktivitas elektrik menunjukkan bahwa persentase berat kandungan karbon cangkang kelapa meningkat, laju aus turun, komposit makin keras. Ukuran serbuk semakin kecil, laju aus cenderung turun. Nilai laju aus terbaik (paling rendah) adalah 0,056 mm3/Nm, hal ini dihasilkan oleh komposit karbon-karbon dengan rasio komposisi karbon batubara 60% dan karbon cangkang kelapa 40%, pada ukuran serbuk mesh 200. Persentase berat kandungan serbuk karbon cangkang kelapa meningkat, kekuatan impak Charpy meningkat, komposit semakin tangguh. Ukuran serbuk karbon semakin kecil, kekuatan impak Charpy meningkat. Nilai kekuatan impak Charpy tertinggi adalah 0,95 kJ/m2, ini dihasilkan oleh komposit karbon-karbon dengan rasio komposisi karbon batubara 60% dan karbon cangkang kelapa 40%, pada ukuran serbuk mesh 200. Konduktivitas elektrik tertinggi adalah 3,4 S/m, ini dihasilkan oleh komposit dengan rasio komposisi serbuk karbon batubara 80% dan serbuk karbon cangkang kelapa 20%, pada ukuran serbuk karbon mesh 150. Persentase berat kandungan serbuk karbon batubara meningkat, konduktivitas elektrik cenderung meningkat.

ABSTRACT
The engineering of carbon-carbon composite material can be made of carbon powder of coconut shell waste and carbon powder of coal waste, with coal tar pitch as an adhesive matrix material which is the residue waste from the coal gasification process. Carbon-carbon composites made of waste has not been developed in Indonesia. Organic wastes are very abundant, therefore, this research will focus to increase the added value of organic waste, from worthless materials into useful materials in technology and high value. In general, this study aims to determine "the mechanical characteristics: wear resistance and electrical conductivity of carbon-carbon composites based on organic waste due to the influence of composition ratio, the size of the carbon powder and the temperature of hot press". Fabrication process in this study was started with the carbonization of coconut shell carbon and grinding into powder, mixing it with coal carbon powder in the ratio of the composition of: coal carbon 60%, 70% and 80% by weight, mixed with coconut shell carbon 40%, 30% and 20% by weight, with a size of 100, 150, 200, and 250 mesh powder. Weight of the mixture as composite powder was mixed with a matrix of the coal tar pitch in a weight ratio 70%: 30%. The Mixture of carbon powder and coal tar pitch were compressed and heated in a mold with a pressure of 778.75 bars and a temperature of 100°C. Samples were processed in the curing temperature pyrolysis at 500°C. Test results of the characteristics of wear rate, impact strength and electrical conductivity showed that the percentage by weight of coconut shell carbon content increased, the rate of wear decreased, the harder the composite. The smaller the powder size, the wear rate tends to decreased. Value of wear rate of the best (lowest) was 0.056 mm3/Nm, it was produced by carbon-carbon composites with carbon composition ratio of 60% coal and coconut shell carbon 40%, on a 200 mesh size powder. The weight percentage content of coconut shell carbon powder increased, the Charpy impact strength increased, the composites were increasingly tough. The smaller the size of the carbon powder, Charpy impact strength increased. Charpy impact strength of the highest value was 0.95 kJ/m2, it was produced by carbon-carbon composites with carbon composition ratio of 60% coal and coconut shell carbon 40%, on a 200 mesh size powder. The highest electrical conductivity was 3.4 S/m, it was produced by the composite with the composition ratio of 80% coal carbon powder and coconut shell carbon powder 20%, the size of 150 mesh carbon powder. Weight percentage of carbon content of coal increased, the electrical conductivity tends to increased."
Depok: 2012
D1309
UI - Disertasi Open  Universitas Indonesia Library
cover
Maulana Mujahiduzzakka
"Imidazolin merupakan senyawa heterosiklik yang telah banyak dikenal dalam industri perminyakan sebagai inhibitor korosi pada kilang minyak baja di perairan laut. Pada penelitian ini telah dilakukan sintesis senyawa turunan imidazolin menggunakan metode MAOS (Microwave Assisted Organic Synthesis) dengan mereaksikan tetraetilenpentamina (TEPA) dan asam oleat (AO) pada perbandingan ekivalen reaksi 1:1 membentuk imidazolin TEPA-AO dan 1:2 membentuk bis-imidazolin TEPA-AO dengan variasi waktu reaksi 7, 9, 11, dan 13 menit. Persen yield optimum senyawa imidazolin TEPA-AO diperoleh pada waktu sintesis 9 menit (82,62%) dan senyawa bis-imidazolin TEPA-AO pada 11 menit (88,56%). Kedua senyawa hasil sintesis kemudian dimurnikan dengan metode ekstraksi cair-cair dan dianalisis menggunakan kromatografi lapis tipis (KLT). Struktur kedua senyawa hasil sintesis telah dikonfirmasi berdasarkan data spektrum UV-Vis, FTIR, dan 1H-NMR. Penentuan aktivitas kedua senyawa hasil sintesis sebagai inhibitor korosi dilakukan pada baja karbon dalam larutan 1% NaCl dengan variasi konsentrasi (100, 200, 300, 400, dan 500 ppm) menggunakan metode polarisasi Tafel. Persen efisiensi inhibisi (%EI) tertinggi untuk kedua senyawa diperoleh pada penambahan konsentrasi 500 ppm berturut-turut sebesar 86,37% dan 89,70% untuk senyawa imidazolin TEPA-AO dan bis-imidazolin TEPA-AO. Untuk mengetahui mode inhibisi korosi pada baja karbon, ada tidaknya perubahan struktur senyawa setelah uji inhibisi korosi dianalisis menggunakan FTIR. Berdasarkan spektrum FTIR diperoleh bahwa masih terdapat puncak-puncak khas cincin senyawa imidazolin dan juga ditemukan perubahan struktur dari kedua senyawa hasil sintesis setelah dilakukan uji inhibisi korosi, sehingga dapat dikatakan mode inhibisi korosi dari kedua senyawa tersebut terjadi secara adsorpsi fisik dengan sedikit adsorpsi kimia. Dari penelitian ini dapat disimpulkan bahwa senyawa imidazolin TEPA-AO dan bis-imidazolin TEPA-AO dapat digunakan sebagai inhibitor korosi terhadap baja karbon dalam larutan 1% NaCl.

Imidazoline is a heterocyclic compound which has been widely known in the oilfields industry as corrosion inhibitor for oil refineries in sea environment. In this research, imidazoline derivatives was successfully synthesized by reacting tetraethylenepentamine (TEPA) and oleic acid (OA) using MAOS (Microwave Assisted Organic Synthesis) method at equivalent ratio of 1:1 to yield TEPA-OA imidazoline and 1:2 to yield TEPA-OA bis-imidazoline in various reaction times (7, 9, 11, and 13 minuntes). The optimum yield of TEPA-OA imidazoline was obtained at 9 minutes reaction time (82.62%) and TEPA-OA bis-imidazoline at 11 minutes (88.56%). Both of synthesized compounds then was purified by liquid-liquid extraction method and analyzed by thin layer chromatography (TLC). The structure of all synthesized compounds was confirmed based on UV-Vis, FTIR, and 1H-NMR spectral data. Corrosion inhibition activity of all synthesized compounds was determined towards carbon steel in 1% NaCl solution with variation of imidazoline concentration (100, 200, 300, 400, and 500 ppm) using Tafel polarization method. The highest percentage of inhibition efficiency (%IE) was obtained at 500 ppm with 86.37% dan 89.70% for TEPA-OA imidazoline and TEPA-AO bis-imidazoline, respectively. To analyze corrosion inhibition mode towards carbon steel, the structure of synthesized compound after corrosion inhibition test was analyzed using FTIR. Based on FTIR spectra, the structure of both synthesized compounds still had imidazolines ring-peaks characteristics and were slightly altered after corrosion inhibition test, therefore corrosion inhibition mode of synthesized compounds were physic- and slightly chemisorption. From this research, it can be concluded that TEPA-OA imidazoline and TEPA-OA bis-imidazoline compounds can be used as a corrosion inhibitor towards carbon steel in 1% NaCl solution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anisa Maulida
"ABSTRAK
Prekursor dalam proses pembuatan karbon material adalah mesophase pitch, yang dapat dihasilkan dari vacuum residue (VR). Karbon aktif secara luas telah digunakan dalam bidang otomotif, dirgantara, dan komposit. Sebagai produk bawah distilasi minyak bumi, VR masih rendah pemanfaatannya dan berakhir hanya sebagai limbah. VR memiliki potensi sebagai bahan baku karena biayanya yang murah dan mengandung aromatik dan alifatik. Gondorukem yang ditambahkan dapat meningkatkan hasil mesophase pitch karena kandungan ikatan ganda terkonjugasinya. Pembentukan mesophase pitch dilakukan dengan metode ­co-pyrolisis di dalam reaktor berpengaduk pada suhu 450℃ dengan kondisi aliran gas nitrogen sebesar 100 mL/menit dengan laju pemanasan 5oC/menit dan ditahan selama 120 menit. Jumlah gondorukem yang ditambahkan sebesar 5, 10, dan 15 % dari bobot VR. Hasil prekursor didapatkan yield pada VR-G0%, VR-G5%, VR-G10%, VR-G15% secara berurutan sebesar 21,31; 23,61; 27,11; dan 29,60%. Untuk nilai indeks aromatisitas secara berurutan sebesar 0,375; 0,346; 0,344; dan 0,322. Nilai rasio atom C/H secara berurutan sebesar 2,43; 2,37; 2,28; dan 2,01. Prekusor kemudian diaktivasi dan dikarbonisasi. KOH dengan rasio 3:1 digunakan sebagai activating agent untuk prekursor karbon aktif yang selanjutnya dikarbonisasi di dalam reaktor tubular pada suhu 700℃ dengan laju pemanasan 5oC/menit dan ditahan selama 120 menit dan kondisi pada aliran gas nitrogen sebesar 100 mL/menit. Karbon aktif yang dihasilkan memberikan luas permukaan yang meningkat seiring dengan penambahan gondorukem dan nilai rasio C/H yang semakin menurun. Pada karbon aktif AC-G0%, AC-G5%, AC-G10%, dan AC-G15% menghasilkan luas permukaan secara berurutan sebesar 120.806, 194,560; 312,363; dan 462,188 m2/g. Kandungan karbon yang dihasilkan juga sudah cukup baik sekitar 85-89%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arif Hendrawan
"Kilang minyak bumi menghasilkan vacuum residue dari unit distilasi vakum, yang sekarang tidak banyak digunakan. Campuran dari vacuum residue dan senyawa ikatan rangkap terkonjugasi dapat digunakan sebagai bahan baku untuk menghasilkan prekursor karbon aktif karena senyawa tersebut membentuk mesofasa yang stabil pada temperatur tinggi untuk memungkinkan terjadinya polimerisasi aromatik pada vacuum residue. Minyak jarak, yang tersedia di hutan tropis di Indonesia, dapat didehidrasi untuk membentuk senyawa ikatan rangkap terkonjugasi. Polimerisasi membentuk pitch yang mengandung aromatik dengan tingkat polimerisasi yang berbeda-beda sehingga luas permukaan pori yang tinggi dari karbon aktif dapat dicapai. Proses selanjutnya adalah karbonisasi pitch untuk membentuk karbon aktif.
Tujuan dari penelitian ini adalah untuk melihat pengaruh penambahan minyak jarak hasil dehidrasi terhadap luas permukaan pori dan amorphicity ketidakaturan kristal. Amorphicity yang tinggi akan menghasilkan luas permukaan pori yang tinggi. Luas permukaan pori dan amorphicity dibandingkan pada sampel karbon aktif yang berasal dari vacuum residue tanpa dan dengan variasi penambahan 5 , 10 , dan 15 berat minyak jarak. Selama proses pirolisis terjadi polimerisasi aromatik, terbukti dengan peningkatan kandungan Haromatik mencapai 1.65 . Hasil eksperimen menunjukkan bahwa penambahan 15 minyak jarak dapat memperbesar luas permukaan pori sebesar 27 dari 720 m2/g menjadi 1064 m2/g serta meningkatkan amorphicity karbon aktif.

Petroleum refinery produces vacuum residue in a vacuum distillation unit, which is now not much utilized. Mixture of the vacuum residue and a conjugated double bond compound can be used as feedstock to produce activated carbon precursor because the compound forms a stable mesofasa at high temperature to allow polymerization of aromatik compounds in vacuum residue. Castor oil, which is available in tropical forest in Indonesia, can be dehydrated to form conjugated double bond compounds. Polymerization can form a pitch with different extents of polycyclization of aromatiks so that high surface pore area of the activated carbon can be achieved. The subsequent process was carbonization of the pitch to form activated carbon.
The purpose of this study is to examine the effect of the addition of dehydrated castor oil on the pore surface area and the amorphicity of the activated carbon. High amorphicity leads to high pore surface area. During the pyrolysis process, polymerization aromatics occured, as evidence increasing in the content of Haromatic by 1.65. The pore surface areas and amorphicities were compared in activated carbon samples originated from vacuum residue without and with addition of castor oil with variations of 5, 10, 15 by weight of castor oil. The experiment results show that the addition of 15 of castor oil improved pore surface area by 27 from 720 m2 g to 1064 m2 g and increased the amorphicity of the activated carbon particles.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adidjaya Chandra Nugraha
"Perkembangan teknologi telah mendorong adanya kebutuhan material dengan sifat unggul. Untuk itulah dilakukan rekayasa material komposit batubara - coal tar pitch dengan proses metalurgi serbuk. Komposit batubara - coal tar pitch menggunakan batubara sebagai matrik dan coal tar pitch sebagai penguat. Pada penelitian ini dilakukan variasi temperatur sinter 200°C, 300°C, 400°C dan 500°C untuk mengetahui karakteristik material komposit batubara - coal tar pitch. Hasil menunjukkan bahwa peningkatan temperatur sinter akan meningkatkan densitas, kekerasan, kuat tekan serta menurunkan porositas pada kompositbatubara - coal tar pitch.

The growth of technology has stimulate the needs of materials with superior properties. Therefore, people redesign coal - coal tar pitch composite with powder metallurgy process. This coal - coal tar pitch composite use coal for matrix and coal tar pitch for reinforce. In this research, the variations of 200°C, 300°C, 400°C and 500°C sintering temperature were done to find out the characteristic of coal ' coal tar pitch composite. The result showed that the raising of the sintering temperature increases the density, hardness, and compressive strenght and decreases the porosity of the coal ' coal tar pitch composite."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51653
UI - Skripsi Open  Universitas Indonesia Library
cover
Budi Santoso
"Saat ini beton merupakan salah batu bahan yang sering digunakan dalam dunia konstruksi. Seiring dengan perkembangan zaman, banyak ditemukan berbagai jenis bahan atau zat baru yang bila ditambahkan ke dalam campuran beton maka beton akan memiliki sifat yang baru seperti cepat mengeras, tahan terhadap asam dan sebagainya. Struktur beton bertulang merupakan struktur yang didesain dengan umur rencana tertentu. Akan tetapi banyak diantara struktur beton bertulang yang tidak dapat mencapai umur rencananya. Hal ini disebabkan oleh berbagai factor seperti pembebanan pada struktur yang melewati beban rencana serta akibat pengaruh lingkungan seperti gas karbon monooksida, hujan asam, dan sebagainya.
Pengukuran nilai regangan sebagai salah satu indicator utama kualitas kondisi beton saat ini dapat dilakukan dengan tiga cara, yaitu optis, mekanis dan magnetis, tetapi yang paling sering digunakan adalah dengan menggunakan strain gage. Namun strain gage juga memiliki beberapa kendala seperti mahalnya harga strain gages, sulitnya didapatkan jenis perekat yang dapat bekerja dalam jangka waktu yang lama dan alat pembaca strain gages yang relatif mahal. Untuk mengatasi kendala dalam penggunaan strain gages, maka dicarilah metode lain yang hampir sama namun lebih praktis serta murah. Smart concrete adalah suatu material beton, dimana material tersebut mampu memberikan perubahan sifat jika terjadi perubahan regangan pada struktur tersebut.
Smart concrete merupakan beton dengan self sensing yaitu dengan membuat beton tersebut sensitive terhadap perubahan hambatan yang akhirnya akan didapatkan nilai perubahan regangannya. Hal ini dapat dilakukan dengan cara menambahkan serbuk karbon ke dalam campuran beton. Dengan penambahan serbuk karbon ini maka nilai tahanan listrik beton akan berkurang sehingga beton akan lebih sensitive terhadap tegangan dan regangan.
Metode yang digunakan dalam penelitian ini adalah dengan melakukan uji tekan kubus serta pembebanan dua titik pada sampel balok uji. Hasilnya kemudian dibandingkan dengan beton konvensional. Mutu beton yang digunakan adalah beton dengan K-300. Dimensi balok uji adalah 15x20x120 cm3 (balok C), 15x30x120 cm3 (balok D) dan 15x40x120 cm3 (balok E) sedangkan dimensi kubus adalah 15x15x15 cm3. Prosentase karbon yang digunakan adalah 0%, 5% dan 10%.
Dari hasil pengujian kuat tekan kubus diperoleh hasil bahwa dengan kandungan karbon yang semakin besar maka akan menurunkan kekuatan dari beton. Dari hasil pengujian hambatan awal balok, didapatkan bahwa dengan penambahan karbon maka hambatan awal balok akan berkurang. Sedangkan pada pengaruh variasi luas penampang terlihat bahwa dengan semakin bertambah besar luas penampang balok maka hambatannya akan semakin kecil. Setelah dilakukan pengukuran hambatan awal, kemudian balok tersebut diberikan beban 2 titik berjarak 14 cm yang diletakkan di tengah bentang.
Dari hasil pengujian didapatkan data-data perubahan hambatan, nilai lendutan dan nilai regangan. Dari data-data tersebut kemudian kita cari nilai gage factor dari balok uji. Dari hasil perhitungan, didapatkan bahwa dengan adanya penambahan variasi luas penampang terlihat bahwa gage factornya akan semakin kecil. Hal ini menunjukkan bahwa balok dengan luas penampang yang besar menjadi kurang sensitif. Hasil dari penelitian ini diharapkan dapat memberikan alternatif baru dalam pemilihan metode yang akan digunakan dalam pengukuran regangan. Hal ini didasarkan pada pertimbangan biaya yang lebih murah, kemudahan pengerjaan serta pemonitoran terhadap struktur beton yang dapat dilakukan setiap saat."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S34818
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>