Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 124112 dokumen yang sesuai dengan query
cover
Nuriz Zaman
"Kebutuhan gas bumi di pulau Jawa pada tahun 2015 diperkirakan akan melebihi kemampuan suplai gas bumi di Pulau Jawa. Pembangunan LNG receiving terminal di Jawa Timur dapat membantu menangani masalah ini. LNG receiving terminal merupakan tempat regasifikasi dimana fungsinya adalah menerima gas alam cair dari kapal LNG, menyimpan LNG tersebut ke dalam tangki, menguapkan LNG, dan selanjutnya mengalirkan gas alam ke jaringan perpipaan.
Perancangan ini bertujuan membuat model tiga dimensi LNG receiving terminal khususnya untuk fasilitas regasifikasi LNG (Vaporizer) dan boil-off gas compressor. Selain itu, perkiraan biaya investasi yang dibutuhkan juga diperhitungkan. Dari hasil perancangan ini didapat bahwa lahan yang dibutuhkan untuk dua unit tersebut sebesar 43,042 m2, dan total biaya investasi yang dibutuhkan sebesar $73,477,475.

The demand of natural gas in the year 2015 is predicted to exceed the supply of natural gas in Java Island. The establishment of LNG receiving terminal in East Java can help solve this problem. LNG receiving terminal is a place for regasification which have a function of receiving liquid natural gas from LNG tanker, storage those LNG on a storage tank, vaporize the LNG, and then distribute the natural gas to distribution pipeline.
This design have an objective of designing three-dimensional model of LNG receiving terminal especially for regasification facility (vaporizer) and boil-off gas compressor. On top of that, estimation of capital investment was also carried out. From this design we find that the needed area for those two units is 43,042 m2, and the capital investment is $73,477,475.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51958
UI - Skripsi Open  Universitas Indonesia Library
cover
Rizky Masykuri
"Pemanfaatan gas alam di Indonesia, dari sumber yang berjauhan, akan didistribusikan menggunakan LNG yang akan diterima di terminal regasifikasi. Oleh karena itu Indonesia membutuhkan beberapa terminal, yaitu di Jawa Timur, Jawa Barat, dan Medan. Pada perancangan ini, akan dibangun unit-unit fasilitas penyimpanan LNG dan dermaga di Terminal di Jawa Timur. Studi yang dilakukan menggunakan beberapa tahapan dalam front end engineering design (FEED) yang meliputi perancangan process flow diagram, pembuatan P&ID, dan penggambaran plot plant. Hasil dari perancangan ini, diperoleh model 3D fasilitas penyimpanan dengan luas area 7764.8 m2 dan dermaga dengan luas area 1100 m2, serta perkiraan biaya investasi untuk pembangunan fasilitas-fasilitas tersebut, yakni sebesar $ 314,304,971.

Utilization of natural gas in Indonesia, from the distant sources, will be distributed using the LNG that will be received at regasification terminal. Therefore, Indonesia needs some terminals, mainly in East Java, West Java, and Medan. In this design, the units will be built are LNG storage facilities and the jetty at Terminal in East Java. Studies conducted using several stages of the front end engineering design (FEED) which covers the design of process flow diagram, making P & ID, and description of the plot plant. Results from this design, are 3D model of the storage facility with an area of 7764.8 m2 and jetty with an area of 1100 m2, and estimates of investment costs for the construction of these facilities, which is $ 314,304,971."
Fakultas Teknik Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Yudho Hartanto
"Untuk mendapatkan skema terbaik dalam manajemen BOG dan pemanfaatan potensi eksergi LNG di fasilitas terminal regasifikasi Arun sebagai pembangkit energi listrik, maka dilakukan penelitian untuk membandingkan secara teknis dan komersial skema terbaik  pemanfaatan potensi exergi LNG dari proses regasifikasi.  Manajemen pemanfaatan BOG dengan laju  9.8 ton/jam dan pemanfaatan potensi exergi LNG dengan laju 150 ton/jam dengan teknologi Rankine Cycle (RC), Direct Expansion (DE)  atau kombinasi RC+DE untuk  pembangkit listrik diteliti dalam tesis ini.  Energi listrik yang dihasilkan dijual kepada PLN dengan skema jual beli listrik dengan harga maksimal 90% dari BPP sebesar Rp 1,673/kWh untuk Aceh dan Sumatera Utara. Data dari hasil penelitian dan simulasi sistem, didapatkan bahwa pemanfaatan potensi exergi LNG skema DE menghasilkan daya bersih listrik sebesar 2,703 kW, skema RC menghasilkan 3,916 kW, dan  skema DE+ RC menghasilkan 5,849 kW. Pendapatan dari penjualan daya listrik yang dihasilkan akan meningkatkan pendapatan operasional perusahaan.

To get the best scheme in BOG management and utilization of LNG exergy potential in the Arun LNG regasification facility to generate electricity, this research is conducted to compare the best technical and commercial schemes for utilization of LNG potential exergy from the regasification process. The management system is required to manage  BOG  flow rate 9.8 ton / hour and LNG cold energy utilization with flowrate 150 ton/hour during  regasification process to generate electricity using Direct Expansion (DE), Rankine Cycle (RC) or combined Direct Expansion + Rankine Cycle (DE+RC)  technologies are studied in this thesis. The electricity produced is sold to PLN under a power purchase scheme at a maximum price  90% from the BPP tariff Rp 1,673/kWh for Aceh dan Sumatera Utara.  Data from the results of research and system simulations, it is found that the utilization of the LNG exergy  in the DE scheme produces a net electric power of 2,703 kW, the RC scheme produces 3,916 kW, and the DE + RC scheme produces 5,849 kW.  The income from the sale of the electric power generated will increase Company's income."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Muflih Ramadhon
"Transesterifikasi adalah reaksi kimia yang digunakan untuk mengubah minyak hewani menjadi biodiesel yang dapat digunakan. Pada penelitian ini, bahan bakar biodiesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO yang disintesis dari cangkang telur bebek. Katalis CaO berbasis limbah disintesis dari cangkang telur bebek melalui proses kalsinasi pada suhu 900 OC selama 2 jam. Transesterifikasi dilakukan pada suhu 55 OC pada 6 sampel dengan variasi penggunaan jumlah katalis (1.5 wt%, 6.5 wt%, dan 10 wt%) serta variasi katalis CaO komersial dan limbah. Katalis yang disintesis dari cangkang telur itik menghasilkan kadar Kalsium Oksida (CaO) sebesar 93.2%. Hasil pengujian sampel terbaik diperoleh untuk biodiesel dengan katalis 6.5% berbahan dasar limbah dan 10% katalis komersial. Untuk biodiesel dengan katalis berbasis limbah 6.5%, rendemen 90.75%, densitas 855.1 kg/m3, viskositas 5.73 mm2/cst, keasaman 1.69 mg-KOH/g, dan bilangan yodium 30.87 g-I2/100g. Untuk biodiesel dengan katalis berbasis limbah 10%, rendemen 90.81%, densitas 860.5 kg/m3, viskositas 6.52 mm2/cst, keasaman 2.03 mg-KOH/g, dan bilangan yodium 27.51 g-I2/100g. Angka keasaman standar tidak tercapai dimana maksimumnya adalah 0.5 mg-KOH/g.

Transesterification is a chemical reaction used to convert animal oils into usable biodiesel. In this study, biodiesel fuel was synthesized from beef tallow in a reactor using a CaO catalyst which also synthesized from duck eggshells. Waste-based CaO catalyst synthesized from duck eggshells through a calcination process at 900 OC for 2 hours. Transesterification carried out at a temperature of 55 OC on 6 samples with variations in the use of the amount of catalyst (1.5 wt%, 6.5 wt%, and 10 wt%) as well as variations of commercial and waste based CaO catalysts. The catalyst synthesized from duck eggshells obtained a yield of 93.2% amount of Calcium Oxide (CaO). The synthesized biodiesel also tested for its chemical and physical properties to fulfill the Indonesian National Standard (SNI). The best sample test results were obtained for biodiesel with 6.5% catalyst from waste-based and 10% catalyst from commercial. For biodiesel with 6.5% waste-based catalyst, 90.75% yield, 855.1 kg/m3 density, 5.73 mm2/cst viscosity, 1.69 mg-KOH/g acidity, and 30.87 g-I2/100g iodine number. For biodiesel with 10% waste-based catalyst, 90.81% yield, 860.5 kg/m3 density, 6.52 mm2/cst viscosity, 2.03 mg-KOH/g acidity, and 27.51 g-I2/100g iodine number. The standard acidity number is not reached where the maximum is 0.5 mg-KOH/g."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adinda Yuanita
"Tesis ini membahas tentang kajian analisis risiko berdasarkan NFPA59A-2009 dan kerangka kerja ISO 31000 pada fasilitas LNG Plant Arun untuk menentukan fasilitas mana saja yang dapat digunakan sebagai fasilitas Receiving Terminal dan Regasifikasi LNG serta mitigasi risikountuk mengurangi level risiko yang teridentifikasi dengan menggunakan safeguard. Fasilitas yang dikaji mulai dari proses unloading LNG ship yang berasal dari PT Tangguh, proses penyimpanan LNG, proses regasifikasi dan distibusi ke industri pupuk yang berada di Provinsi Aceh, yaitu PT Pupuk Iskandar Muda dan PT ASEAN Aceh Fertilizer.
Dalam kajian analisis risiko pada fasilitas regasifikasi LNG Arun ini, menggunakan standar keselamatan NFPA59A-2009 dan kerangka kerja ISO 31000 dengan kriteria kajian risiko dibagi menjadi dua, yaitu nilai probabilitas dan nilai konsekuensi. Faktor probabilitas mengacu pada pedoman ConocoPhillips OPR-OM-PR-00048 Onshore RBI Methodology, meliputi beberapa hal yaitu, korosi, kondisi operasi, gangguan pihak lain (third party) dan catatan historis kecelakaan. Sedangkan nilai konsekuensi meliputi konsekuensi terhadap safety (keselamatan), environment (lingkungan), financial dan reputation dari perusahaan.
Identifikasi, penilaian dan pengendalian risiko merupakan serangkaian proses yang akan diterapkan pada pengkajian tingkat risiko ini. Selain itu juga digunakan risk management tool berupa simulasi monte carlo dan perangkat lunak Random Number Generation Simulator beserta Risk Matrix. Kedua alat tersebut mampu menggambarkan tingkat level risiko dari semua risiko yang telah diidentifikasi.

The focus of this study is the risk analysis based on NPFA59A-2009 and ISO 31000 framework at Arun LNG Plant to determine which facility can be utilize as the receiving terminal and regasification facility, and the risk mitigation used to reduce the identified risk level using safeguard. The study covers from the LNG ship unloading process from PT Tangguh, LNG storage process, regasification process to distribution to the fertilizer industry in Aceh, which is PT Pupuk Iskandar Muda and PT ASEAN Aceh Fertilizer.
This risk analysis study on Arun LNG regasification facility uses NFPA 59A-2009 as safety standard and ISO 31000 framework, and the risk study criteria divided by two, probability and consequence value. Probability factors refer to ConocoPhillips OPR-OM-PR-00048 Onshore RBI Methodology, which covers such as corrosion, operating condition, third party interference, and accident historical records, while the consequence value covers consequence to safety, environment, financial, and reputation of the company.
Identification, assesment, and control of risk are series of processes applied on this risk level study. The study also used risk management tool like Monte Carlo simulation and Random Number Generation Simulator software and risk matrix. Those tools can describe the risk level from all of the identified risk.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32946
UI - Tesis Membership  Universitas Indonesia Library
cover
Reza Sukarahardja
"Terminal penerima LNG atau terminal regasifikasi LNG dapat meng-akomodir peningkatan kebutuhan gas bumi di wilayah padat konsumen gas bumi, baik yang telah memiliki jalur pipa transmisi/distribusi gas maupun daerah remote. Dalam kajian ini regasifikasi LNG pada terminal penerima dirancang untuk dipadukan dengan industri lainnya, yaitu dingin yang terkandung dalam LNG tersebut (-160°C) untuk di-integrasikan kepada unit condenser yang men-support sistem pendinginan pada instalasi pembangkit listrik (dalam kajian ini PLTG).
Penanganan sistem pendinginan Turbin penggerak pembangkit listrik sirkulasi pendingin (coolant) membutuhkan energi untuk melepaskan panas (+ 5000K) ke udara terbuka, yang mana hal tersebut bisa diefisiensikan dengan cara memadukan/meng-integrasikan sistem pendinginan Turbin dengan sistem regasifikasi LNG yang membutuhkan panas, sehingga terminal penerima LNG dengan PLTG dapat menjadi suatu simbiosis yang saling membutuhkan.
Langkah-langkah yang dilakukan dalam kajian ini antara lain menganalisa abilitas panas buang yang dihasilkan PLTG (+ 3,000 MMBTU/h) terhadap sistem regasifikasi LNG, kapasitas dan kemampuan suplai gas dari terminal (18,250 m3/d) serta analisa ke-ekonomian-nya. Adapun kajian secara ekonomi pembangunan terminal penerima LNG dengan sistem terpadu bisa membutuhkan biaya sebesar 436 juta US$ dan dengan Equity CAPEX 30%, Discount Rate 7.52% dan dengan asumsi harga LNG FOB sebesar 7.53 US$/MMBTU maka diperoleh IRROE sebesar 13.82% untuk payback periode selama 10 tahun dan IRROI sebesar 8.25%.

LNG'S receiver terminal or terminal regasification LNG that accommodation can requirement step-up gas to earth at consumer?s solid region gas to earth, well has already had transmission pipe band / gas distribution and also remote region. In this study regasification LNG on terminal receiver is designed to been fused by another industry, which is cold which consists in LNG that (-160°C ) for at integrates to condenser's unit that men - support refrigeration system on power station installation (in this study PLTG).
Actuating Turbine refrigeration system handle circulate power station coolant needing energy for undone heat (+ 500 0 K) to fresh air, which is that thing that efficient can integrates Turbine refrigeration system with regasification LNG's system that needs heat, so LNG'S receiver terminal with PLTG cans be a mutually symbiosis needs.
Steps that is done in this study for example analyses ability heat discards that resulting PLTG(+ 3,000 MMBTU/h) to regasification LNG's system, capacity and supply ability gases of terminal (18,250 m3 /d) and morphological to economics. There is study even developments economic ala terminal LNG'S receiver with coherent system can need cost as big as 436 million US$ and with Equity CAPEX 30%, discount is Rate 7.52% and with price assumption FOB of LNG as big as 7.53 US$/ MMBTU therefore acquired IRROE as big as 12.52% for payback period up to 10 years and IRROI as big as 8.25%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26748
UI - Tesis Open  Universitas Indonesia Library
cover
Muhammad Arif Fadhillah
"Penelitian ini mengkaji kelayakan pemanfaatan energi dingin LNG pada terminal penerima dan regasifikasi LNG di Pulau Bangka yang dapat dimanfaatkan untuk sektor perikanan sebagai cold storage. Energi dingin dengan suhu sekitar -161˚C (-260˚F) yang terkandung dalam LNG tersebut sebelum digasifikasikan ke unit vaporizer terlebih terlebih dahulu diintegrasikan kepada unit heat exchanger yang dilakukan untuk memanfaatkan energi dingin LNG untuk mencairkan karbon dioksida yang menjadi refrigerant pada sistem pendingin ikan tersebut.
Untuk mengetahui kelayakan proyek ini, dilakukan kajian tekno-ekonomi proyek dengan jangka waktu operasi selama 20 tahun yang meliputi kajian desain peralatan fasilitas regasifikasi untuk mensupport kebutuhan pembangkit listrik 100 MW load follower dan juga fasilitas cold storage, kajian biaya Capex dan Opex, kajian keekonomian, kajian sensitivitas dengan menggunakan software crystal ball serta kajian penghematan yang diperoleh dengan pemanfaatan gas hasil regasifikasi LNG ini dengan perbandingan terhadap jenis bahan bakar lain yakni HSD.
Hasil kajian keekonomian mennjukkan bahwa proyek ini layak untuk dijalankan dengan kapasitas regasifikasi LNG sebesar 11.07 MMSCFD, diperlukan biaya investasi sebesar USD 48 Juta dengan biaya operasi dan pemeliharaaan tahunan sebesar USD 9.1 Juta. Parameter yang menunjukkan kelayakan proyek ini adalah IRR sebesar 14%, NPV sebesar USD 79 Juta dan Payback Period selama 7.7 tahun.

This study examines the feasibility of LNG cold energy utilization at the receiving terminal and regasification of LNG in Bangka Island which can be utilized for the fisheries sector as a cold storage. Cold energy with temperatures around -161˚C (- 260˚F) contained in the LNG before to be gasified to vaporizer unit, firstly LNG can utilized to the heat exchanger to utilize LNG cold energy to liquefy the carbon dioxide that can used as a refrigerant in the cooling system the cold storage system.
To determine the feasibility of this project, carried out the study of techno-economic of the project with the duration of the operation for 20 years which includes the study design equipment regasification facility to support the needs of the power plant of 100 MW load follower and cold storage facilities, study costs Capex and Opex, the study of economics, sensitivity studies using software crystal ball and assessments savings gained with the use of gas LNG regasification results with comparisons against other fuel types like High Speed Diesel (HSD).
The results of the economic study shows that the project is feasible to run with LNG regasification capacity of 11:07 MMSCFD, required an investment cost of USD 48 million with an annual operating cost and maintainability of USD 9.1 million. Parameters that indicate the feasibility of this project is an IRR of 14%, NPV of USD 79 Million and Payback Period for 7.7 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T46767
UI - Tesis Membership  Universitas Indonesia Library
cover
Arina Kartika Rizqi
"ABSTRAK
Proses regasifikasi di Arun LNG Receiving-Hub and Regasification Terminal
merupakan proses untuk merubah fase LNG dari liquid menjadi gas. Dalam
proses tersebut terjadi absorpsi energi panas oleh LNG sehingga terjadi perubahan
fasa dari liquid ke gas. Saat ini di Arun, dingin (cold) yang terkandung dalam
LNG langsung dibuang dan tidak dimanfaatkan. Padahal dingin dari LNG dapat
dimanfaatkan untuk beberapa hal seperti cryogenic air separation and
liquefaction, CO2 solidification and liquefaction, cryogenic power generation dan
thermal storage and food processing. Namun, setelah dilakukan analisa
pendahuluan, pemanfaatan dingin dari LNG untuk Air Separation Unit (ASU)
paling memungkinkan untuk dikaji lebih detail dengan tujuan untuk menambah
manfaat dan nilai tambah secara ekonomi pada Terminal Regasifikasi dan
Penerimaan-Hub LNG Arun.
Kajian detail pemanfaatan dingin LNG Air Separation Unit (ASU) di Terminal
Regasifikasi dan Penerimaan-Hub LNG Arun dilakukan melalui beberapa tahapan
dimulai dari tahapan pengumpulan data, kemudian dilanjutkan ke tahapan
perancangan skema proses Air Separation Unit dan yang terakhir tahapan
perhitungan keekonomian rancangan atau desain proses Air Separation Unit.
Perancangan pemanfaatan dingin untuk Air Separation Unit mengacu pada skema
proses Air Separation Unit eksisting milik pabrik A. Dari desain diperoleh produk
berupa Nitrogen cair sejumlah 278,4 Nm3/jam, Oksigen cair sejumlah
13,71 Nm3/jam dengan kebutuhan energi sebesar 700.816 kCal/Jam atau setara
dengan 814,34 kW. Dari segi kelayakan ekonomi diketahui bahwa ASU memiliki
IRR = 21,89%, NPV = Rp 8.550.335.957,03, PBP = 9,92 tahun, dan PI = 1,64

ABSTRACT
Regasification process at the Arun LNG Receiving and Regasification Terminal-
Hub is a process for the phase change from liquid to gas LNG. In the process
occurs in the absorption of heat energy by LNG, causing a phase change from
liquid to gas. Currently in Arun, (cold) is contained in the LNG immediately
discarded and not used. Though the cold of LNG can be used for several things
such as cryogenic air separation and liquefaction, CO2 solidification and
liquefaction, cryogenic thermal power generation and storage and food
processing. However, after a preliminary analysis, the use of LNG cold for Air
Separation Unit (ASU) most likely to be studied more in detail with the aim to
increase the benefits and economic value added in Regasification Terminal and
Acceptance-Hub Arun LNG. Studies detail the use of cold LNG Air Separation
Unit (ASU) in the Regasification Terminal and Acceptance-Hub Arun done
through several stages starting from the stage of data collection, then proceed to
the design stage process scheme Air Separation Unit and the last stage of the
calculation of the economics of design or design process Air Separation Unit. The
design of the cold utilization for Air Separation Unit refers to the process scheme
of the existing Air Separation Unit factory belonging to A. From the design of the
product obtained in the form of a liquid nitrogen 278,4 Nm3/hours, liquid oxygen
amount of 1,71 Nm3/hours with the energy needs of 700 816 kCal /hours,
equivalent to 814,34 kW. In terms of economic feasibility in mind that ASU has
IRR = 21,89%, NPV = Rp 8.550.335.957,03, PBP = 9,92 years, and PI = 1,64"
2016
T45709
UI - Tesis Membership  Universitas Indonesia Library
cover
Tarigan, Efransyah Putra
"Tesis ini bertujuan untuk mengkaji kelayakan secara teknis maupun komersial dari pembangunan mini LNG receiving and regasification terminal di Benoa Bali serta untuk mengetahui angka ketidakpastian/uji sensitivitas dari proyek pembangunan fasilitas terminal LNG tersebut.
Dari hasil analisa teknik untuk kebutuhan pembangkit listrik kapasitas 200 MW dibutuhkan gas sebesar 35 MMSCFD dengan kapasitas penampungan LNG sebesar 24.000 m3. Tipe terminal yang sesuai dengan kondisi lokasi adalah onshore mini terminal dan barge FSRU.
Hasil analisis keekonomian pembangunan mini LNG receiving and regasification terminal menunjukkan bahwa proyek ini layak dijalankan. Untuk tipe onshore NPVsebesar USD 58.748.482, IRR 17,44%, B/C Ratio 1,7 dan PBP selama 9 tahun, 1 Bulan. Sedangkan untuk tipe onshore sebesar USD 9.662.306, IRR sebesar 158%, B/C Ratio 9,9 dan PBP selama 1 tahun, 9 bulan.
Hasil uji sensitivitas keekonomian pembangunan LNG receiving and regasification terminal tipe onshore menunjukkan faktor yang paling berpengaruh terhadap terjadinya perubahan keekonomian adalah ketidakpastian CAPEX sedangkan untuk tipe offshore ialah ketidakpastian volume gas, regasification, dan OPEX.

This thesis aims to assess the technical and commercial feasibility of the mini LNG receiving and regasification terminal project in Benoa Bali as well as to determine the numbers of uncertainty/sensitivity testing of the LNG plant facilities project.
From the analysis techniques for the needs of power generation capacity of 200 MW is required by 35 MMSCFD gas with LNG storage capacity of 24,000 m3 . Terminal mode in accordance with the site conditions are mini onshore terminal and barge FSRU.
The results of the economic analysis of the development of mini LNG receiving and regasification terminal indicates that the project is feasible. For the type of onshore NPV is USD 58,748,482, IRR 17.44 %, B/C ratio of 1.7 and PBP for 9 years, 1 month. As for the type of offshore USD 9,662,306, IRR of 158%, B/C ratio of 9.9 and PBP for 1 year, 9 months.
The results of the sensitivity test the economic development of LNG receiving and regasification terminal onshore type indicates the factors that most influence on changes in the economics is the uncertainty CAPEX while for the type of offshore uncertainty is the volume of gas, regasification, and OPEX.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45694
UI - Tesis Membership  Universitas Indonesia Library
cover
Luthfi Kamal Bangkit Setyawan
"Masalah yang dihadapi pada terminal regasifikasi skala kecil ini adalah kondisi operasi yang unsteady. Dikarenakan terdapat 2 kondisi, yaitu pada saat unloading LNG dari kapal LNG dan juga pada saat holding karena operasi on-off dari vaporizer berjenis AAV (Ambient Air Vaporizer) yang disebabkan terjadinya frosting. Dalam penelitian ini, dilakukan simulasi dinamik dari terminal regasifikasi skala kecil dengan pengendalian dalam perangkat lunak UniSim. Jika simulasi dilakukan tanpa pengendalian, menghasilkan laju alir yang menyimpang 14% dari seharusnya, dan setelah 6 jam suhu gas keluaran kurang dari 2,5°C yang artinya output tidak dapat memenuhi requirement pembangkit. Pengendali yang digunakan adalah pengendali tipe digital on-off  untuk unloading dan switch AAV dan PI untuk pengendalian laju alir LNG. Pengendali digital on-off pompa diatur untuk menghentikan unloading saat LNG di carrier bersisa 10%, sementara AAV akan diset untuk melakukan aksi switch AAV saat suhu gas keluaran mencapai 3°C. Untuk pengendali PI didapat parameter pengendali dengan nilai Kc = 0,00638 dan Ti = 0,00043. Waktu maksimal operasi 1 buah AAV adalah 7 jam 30 menit sebelum akhirnya akan dilakukan switch. Setelah pengendalian, spesifikasi gas keluaran terminal mampu untuk memenuhi requirement pembangkit yaitu laju alir molar 6,53 MMSCFD dan suhu gas minimum 2,5°C.

The problem encountered at this regasification terminal is unsteady operating conditions. Because of unloading LNG from a carrier and holding that involve on-off operation from AAV (Ambient Air Vaporizer) caused by frosting. In this study, a dynamic simulation of small-scale regasification terminal with controls UniSim carried out. If the simulation carries without control, it produces a flow rate that deviates 14% from what it should be, and after 6 hours of operation, the output temperature less than 2,5°C, which means cannot meet generator requirements. The controllers used in this case is digital on-off type controller for unloading and switch AAV and PI type controller to control LNG flowrate. For digital on-off controller, the controller is set to stop unloading when remaining LNG in the carrier is 10%, meanwhile AAV will be set to act on the switch when output temperature reach 3°C . For PI controllers, the control parameters with Kc = 0,00638 and Ti = 0,00043. The maximum operating time for 1 AAV is 7 hours 30 minutes before it will be switched. After controlling, the gas specifications from terminal able to meet the generator requirements, molar flow rate 6,53 MMSCFD and minimum gas temperature 2,5°C."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>