Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 72110 dokumen yang sesuai dengan query
cover
Witta Kartika Restu
"Dimetil eter (DME) diproduksi dengan dua metode: (1) metode tidak langsung yang memiliki dua langkah prosedur, pembentukan metanol dari gas sintesis dilanjutkan dehidrasi metanol dan (2) metode langsung yang memiliki satu langkah prosedur yaitu proses pembentukan dimetil eter secara langsung dari gas sintesis. Sintesis langsung dimetil eter dari gas sintesis secara termodinamika lebih berprospek karena memiliki konversi yang lebih tinggi dan secara ekonomi memiliki biaya operasi yang rendah. Penelitian ini bertujuan membuat katalis bifungsi dengan karakteristik kristalinitas tinggi dan luas permukaan besar dengan aktivitas yang tinggi. Katalis yang digunakan adalah logam Cu-Zn sebagai katalis sintesis metanol dan Zeolit Alam Malang teraktivasi (HZAM). Metode preparasi katalis yang digunakan adalah kopresipitasi-sedimentasi dan sol gel-impregnasi. Dilakukan variasi temperatur kalsinasi pada 350, 500, dan 600°C. Pengujian terhadap zeolit alam teraktivasi yang dihasilkan adalah dengan menggunakan karakterisasi BET untuk mengetahui luas permukaan dan karakterisasi XRF untuk mengetahui rasio Si/Al di dalamnya. Pada katalis bifungsi dilakukan karakterisasi BET, XRD, dan XRF. Katalis bifungsi beroperasi pada kondisi tekanan 20 bar dan temperatur 220_C. Hasil uji aktivitas katalis terbaik yaitu pada katalis dengan metode kopresipitasi sedimentasi, menunjukan konversi CO sebesar 34% (% mol), selektivitas dimetil eter sebesar 55% (% mol), dan yield dimetil eter sebesar 19% (% mol).

Dimethyl ether produced using methods (1) Indirect method, synthesis and dehidration of methanol (2) Direct method, synthesis dimethyl ether from syngas. It has higher conversion thermodynamically and lower operating cost. This research aims to make a bifunctional catalyst with some characteristic such as high crystalinity, high surface area, and high activities. Catalyst consists of Cu-Zn metal as synthesis methanol catalayst and activated natural zeolite as dehydration catalyst. Method using in preparation catalyst is coprecipitation sedimentation and sol gel impregnation. Variation is done in calcinations temperature, 350, 500, and 600°C. Activated natural zeolite characterized by BET to know surface area and XRF to know Si/Al ratio. Bifunctional catalyst characterized by BET surface area, XRD, and XRF. Operation condition of bifunctional catalyst is 20 bar and 220°C. Best catalyst activity, catalyst with coprecipitation sedimentation method show CO conversion 34% (% mole), dimethyl ether selectivity 55% (% mole), and yield dimethyl ether 19% (% mole)."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51826
UI - Skripsi Open  Universitas Indonesia Library
cover
Siti Fauziyah Rahman
"Dimetil eter (DME) diproduksi secara langsung dari sintesis gas dalam reaktor fixed bed. Dalam penelitian ini, katalis Cu-Zn/Y-Al2O3 digunakan sebagai katalis bifungsi sintesis langsung dimetil eter dengan variasi pH dan komposisi serta dilakukan perbandingan antara metode kopresipitasi sedimentasi dengan sol-gel impregnasi. Katalis ini dikarakterisasi luas permukaan, XRF, dan XRD. Katalis ini direaksikan pada kondisi operasi tekanan 20 bar dan temperatur 220ºC.
Hasil uji aktivitas katalis terbaik menunjukan konversi CO sebesar 70%, selektivitas dimetil eter sebesar 80%, dan yield dimetil eter sebesar 54%, yaitu pada katalis dengan metode sol-gel impregnasi.

Dimethyl Ether (DME) was directly synthesized from synthesis gas (syngas) in fixed bed reactor. In this research, Cu-Zn/Y-Al2O3 used as bifunctional catalyst for synthesis of dimethyl ether and these catalysts was varied by pH, composition, and compared method between co-precipitation sedimentation and sol-gel impregnation method. These catalysts characterized by surface area, XRF, and XRD. These catalysts performance was tested at 20 bars, 220ºC.
Activity result from the best catalyst in this research shown 70% conversion of CO, 80% selectivity and 54% yield of dimethyl ether, at catalyst with sol-gel impregnation method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52182
UI - Skripsi Open  Universitas Indonesia Library
cover
Siregar, Piero Collins
"Tujuan dari penelitian ini adalah untuk mendapatkan model reaktor unggun diam 2D yang valid untuk sintesis dimetil eter melalui dehidrasi metanol, mendapatkan parameter kinetika melalui studi kinetik, serta mendapatkan pengaruh parameter proses dan geometri terhadap kinerja reaktor melalui studi sensitivitas. Metode penelitian ini terdiri dari penentuan geometri, penentuan model matematis, simulasi, dan analisis dan pembahasan Model matematis dikembangkan melalui persamaan neraca massa (celah unggun dan katalis), neraca momentum, dan neraca energi. Pada studi kinetik, reaktor dimodelkan berbentuk silinder dengan diameter 24 mm dan tinggi 600 mm. Hasil dari studi kinetik menghasilkan nilai energi aktivasi reaksi dehidrasi metanol sebesar 50,4 kJ/mol, nilai faktor eksponensial sebesar 1782 mol.m.s/kg2, nilai panas adsorpsi air sebesar -31,17 kJ/mol dan panas adsorpsi metanol sebesar -1,73 kJ/mol. Pada studi sensitivitas, reaktor memiliki dimensi 5 cm dan tinggi 3 m. Hasil dari studi sensitivitas penelitian ini menunjukan bahwa konversi metanol dan yield DME terbaik yang dihasilkan berada saat temperatur umpan 563 K, tekanan umpan 7,5 bar, laju alir gas 24 ml/h, panjang reaktor 5 m, dan diameter reaktor 5 cm.

This study aimed to obtain a valid 2D stationary bed reactor model for the synthesis of dimethyl ether through methanol dehydration, obtain kinetic parameters through kinetic studies, and obtain the effect of process and geometry parameters on reactor performance through sensitivity studies. This research method consists of the determination of geometry, the determination of mathematical models, simulations, and analysis and discussion. Mathematical models are developed through mass balance equations (bed gap and catalyst), momentum balance, and energy balance. In the kinetic study, the reactor is modeled as a cylinder with a diameter of 24 mm and a height of 600 mm. The results of the kinetic study resulted in the activation energy value of the methanol dehydration reaction of 50.4 kJ/mol, the value of the exponential factor of 1782 mol.ms/kg2, the heat value of water adsorption of -31.17 kJ/mol and the heat of adsorption of methanol of -1, 73 kJ/mol. In the sensitivity study, the reactor has dimensions of 5 cm and a height of 3 m. The results of the sensitivity study of this study showed that the best methanol conversion and DME yields were at a feed temperature of 563 K, a feed pressure of 7.5 bar, a gas flow rate of 24 ml/h, a reactor length of 5 m, and a reactor diameter of 5 cm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Agung Wicaksono
"Dimetil eter adalah senyawa organik dengan rumus kimia CH3OCH3 yang dapat dijadikan bahan bakar alternatif LPG. Tujuan dari penelitian ini adalah mendapatkan model reaktor unggun diam heterogen yang valid untuk sintesis DME dari CO2 pada katalis Cu-Fe-Zr/HZSM-5 sehingga diperoleh parameter kinetika yang dipakai untuk merancang reaktor unggun diam skala komersial. Model yang telah dikembangkan disimulasikan menggunakan software COMSOL Multiphysics 5.5. Validasi model dilakukan pada kondisi isotermal sehingga tidak ada neraca energi. Validasi model dilakukan dengan menyamakan konsentrasi luaran reaktor simulasi dan eksperimen dengan mengubah-ubah parameter kinetika. Faktor pra-eksponensial yang diperoleh untuk hidrogenasi CO2, hidrogenasi CO, RWGS, dan dehidrasi metanol masing-masing sebesar 6,3376 x 103 mol/kg.s, 5,12 x 10-2 mol/kg.s, 1,20863 x 105 mol/kg.s, dan 6 x 1029 mol/kg.s serta energi aktivasi masing-masing sebesar 1,8919 x 104 J/mol, 0 J/mol, 7,629 x 103 J/mol, dan 1 x 105 J/mol dengan range AARD (average absolute relative deviation) antara 6,3111-13,4582%. Parameter kinetika tersebut dipakai untuk merancang reaktor unggun diam skala komersial untuk target produksi DME sebesar 150.000 ton per tahun dengan memvariasikan suhu, tekanan, GHSV (gas hour space velocity), rasio H2/CO2, diameter katalis, dan geometri reaktor sehingga diperoleh volume reaktor terendah. Variasi suhu sebesar 240-280 oC, variasi tekanan sebesar 1-5 MPa, variasi GHSV sebesar 500-2500 mL/g.h, variasi rasio H2/CO2 sebesar 1:1-7:1, variasi diameter katalis sebesar 1-5 mm, variasi diameter unggun sebesar 5-20 cm, dan variasi panjang unggun sebesar 8-16 m. Hasil yang optimal diperoleh pada suhu 260 oC, tekanan 3 MPa, GHSV 2000 mL/g.h, rasio H2/CO2 4:1, diameter katalis 2 mm, diameter unggun 10 cm, dan panjang unggun 12 m dengan konsentrasi DME 12,1 mol/m3, laju alir massa DME 107,3 kg/d, dan jatuh tekan 0,20384 bar dengan jumlah tube sebanyak 3995 di dalam satu reaktor.

Dimethyl ether is an organic compound with the chemical formula CH3OCH3 which can be used as an alternative fuel for LPG. The objective of this study is to obtain a valid heterogeneous fixed bed reactor model for DME synthesis from CO2 on a Cu-Fe-Zr/HZSM-5 catalyst to obtain the kinetic parameters and used to design a commercial scale fixed bed reactor. The developed model was simulated using COMSOL Multiphysics 5.5 software. Model validation was carried out under isothermal conditions so there is no energy balance. Model validation was carried out by fitting the simulation and experimental concentration reactor output by varying the kinetic parameters. The pre-exponential factors obtained for CO2 hydrogenation, CO hydrogenation, RWGS, and methanol dehydration were 6.3376 x 103 mol/kg.s, 5.12 x 10-2 mol/kg.s, 1.20863 x 105 mol/kg.s, and 6 x 1029 mol/kg.s and the activation energies were 1.8919 x 104 J/mol, 0 J/mol, 7.629 x 103 J/mol, dan 1 x 105 J/mol with the AARD range (average absolute relative deviation) between 6,3111-13,4582%.These kinetic parameters are used to design a commercial scale fixed bed reactor for a DME production target of 150,000 ton per year by varying temperature, pressure, GHSV (gas hourly space velocity), H2/CO2 ratio, catalyst diameter, and reactor geometry to obtain the lowest reactor volume. Temperature variation of 240-280 oC, pressure variation of 1-5 MPa, GHSV variation of 500-2500 mL/g.h, H2/CO2 ratio variation of 1:1-7:1, catalyst diameter variation of 1-5 mm, reactor diameter variation of 5-20 cm, and reactor length variation of 8-16 m is used. Optimal results were obtained at 260 oC, pressure 3 MPa, GHSV 2000 mL/g.h, H2/CO2 ratio 4:1, catalyst diameter 2 mm, reactor diameter 10 cm, and reactor length 12 m with DME concentration of 12.1 mol/m3, mass flow rate of 107.3 kg/d, and pressure drop of 0.20384 bar with 3995 tubes in one reactor."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fandy Label Honggono
"Pencarian alternatif bahan bakar cair dari sumber selain minyak bumi menjadi salah satu fokus penelitian dalam beberapa tahun terakhir. Dari seluruh alternatif, dimetil eter (DME) menunjukkan potensi sebagai bahan bakar diesel dengan angka setana 55-60 dan tidak menghasilkan polutan seperti gas CO, NOx, dan partikulat. Sintesis DME dari gas sintetik dapat dilakukan melalui sintesis satu tahap maupun dua tahap. Simulasi sintesis DME dari gas sintetik sebelumnya telah dilakukan untuk reaktor pipe-shell, slurry bed, kolom bubble tiga fasa, unggun tetap, dan reaktor mikro.
Dalam penelitian ini, dibuat model pseudo-homogen reaktor microchannel yang diharapkan dapat menggambarkan kondisi sebenarnya dalam reaktor. Simulasi dibuat dengan program COMSOL Multiphysics. Dari hasil simulasi ditentukan kondisi operasi optimal adalah Tfeed=Twall=540 K, P=50 bar, ufeed=2.5 mm/s, dan rasio H2:CO pada gas umpan=1:1. Pada kondisi ini, didapatkan konsentrasi produk DME pada keluaran reaktor sebesar 11,6 mol/m3, dan konversi CO sebesar 0,693% dan konversi H2 sebesar 2,97%.

Lately the search for alternative fuel other than crude oil source has been a research focus in some countries From all the alternatives dimethyl ether DME showed potential as diesel fuel with cetane number 55 60 and does not produces air pollutant such as CO and NOx gases and particulates when combusted The synthesis of DME from synthetic gas could be done in one step method or two step method Previously simulation for DME synthesis from synthetic gas has been done for pipe shell reactor slurry bed three phase bubble column fixed bed and micro reactor
In this research a pseudo homogen microchannel model was made to simulate the conditions in a real reactor This model was made with COMSOL Multiphysics software From the simulation an optimal operating condition was found at Tfeed Twall 540 K P 50 bar ufeed 2 5 mm s and the ratio of H2 CO in feed mixture 1 1 In this condition DME concentration at the outlet is 11 6 mol m3 and the value of CO conversion 0 693 and H2 conversion 2 97.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46934
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail
"Reaktor unggun tetap merupakan salah satu reaktor yang paling sering digunakan untuk reaksi katalitik. Dalam rangka merealisasikan suatu reaktor komersial, diperlukan informasi pengaruh kondisi operasi terhadap kinerja reaktor. Penelitian ini bertujuan untuk mendapatkan informasi mengenai pengaruh kondisi operasi terhadap kinerja reaktor unggun tetap untuk reaksi hidrogenasi karbon dioksida menjadi dimetil eter melalui pemodelan dan simulasi. Simulasi dibantu dengan program Comsol Multiphysics. Model yang digunakan adalah model heterogen non-isotermal satu dimensi. Dalam penelitian ini divariasikan tekanan umpan, laju alir umpan, temperatur umpan, komposisi umpan, radius katalis dan juga panjang reaktor untuk melihat pengaruh variabel-variabel tersebut terhadap kinerja reaktor. Kenaikan tekanan umpan menaikkan konversi karbon dioksida dari 26% pada tekanan 2 MPa menjadi 37% pada tekanan 6 MPa dan menaikkan yield DME dari 15% menjadi 33%. Suhu umpan optimal dengan konversi karbon dioksida dan yield dimetil eter tertinggi adalah 500K. Kenaikan laju alir akan memperkecil konversi karbon dioksida dari 27,5% pada laju alir 0,3 mm/s menjadi 24% pada laju alir 1.1mm/s dan menurunkan yield DME dari 19% ke 15%. Kenaikan laju rasio H2/CO2 akan menaikkan konversi karbon dioksida dari 5% pada perbandingan 1 menjadi 31% pada rasio 5 dan dan yield DME dari 4% menjadi 22%. Penambahan panjang reaktor lebih dari 0.4m tidak menaikkan konversi karbon dioksida secara signifikan. Penurunan radius katalis akan menaikkan konversi karbon dioksida dari 17% pada radius katalis 7 mm menjadi 27% pada radius katalis 0,7 mm.

Fixed bed reactor is one of the most frequently used reactors for catalytic reactions. In order to realize a commercial reactor, it is necessary to know the influence of operating conditions on reactor performance. This study aimed to obtain information about the influence of operating conditions on the performance of fixed bed reactor for carbon dioxide hydrogenation reactions to dimethyl ether through modeling and simulation. Comsol Multiphysics program is used to simulate the reactor. The model used is non-isothermal heterogeneous onedimensional model. In this study variables of feed pressure, feed flow rate, feed temperature, feed composition, catalyst diameter and also the length of the reactor are varied to see the influences of the variables on reactor performance. Increasing feed pressure increase the carbon dioxide conversion from 26% at a pressure of 2MPa to 37% at a pressure of 6 MPa and DME yield increase from 15% to 33%. Optimum feed temperature for the conversion of carbon dioxide and the yield of dimethyl ether is 500K. Increasing flow rate decreases the conversion of carbon dioxide from 27.5% at a flow rate of 0.3mm / s to 24% at a flow rate of 1.1mm / s and lowers the DME yield from 19% to 15%. Increasing the H2/CO2 ratio increases carbon dioxide conversion from 5% at ratio 1 to 31% at 5 and of DME yield from 4% to 22%. The addition of the reactor length beyond 0.4 m does not increase the carbon dioxide conversion significantly. Decreasing radius of catalyst will increase the carbon dioxide conversion from 17% at a radius of 7mm to 27% at a radius of 0.7 mm."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51957
UI - Skripsi Open  Universitas Indonesia Library
cover
Lisa Marie Zulkarnain
"Di tengah fenomena pemanasan global, simulasi proses sintesis dimetil eter dapat dikembangkan sebagai acuan dalam aplikasi kehidupan nyata. Parameter operasi yang menghasilkan paling DME yang meliputi tekanan inlet reaktor dari 18 atm, reaktor suhu inlet 533 K, tekanan distilasi 8 atm, kecepatan arus masuk 0,408 m / s, dan panjang reaktor 4 meter. Di bawah parameter tersebut, 10,7 mol / s dari dimetil eter diproduksi, dengan hasil total 47% dan konversi metanol 90%. Penambahan aliran recycle meningkatkan hasil sebesar 2%. simulasi ini kemudian bervariasi berdasarkan tekanan, suhu, kecepatan arus masuk, dan panjang reaktor, dimana suhu mempengaruhi konversi sebesar 76% maksimal.

In the midst of the global warming phenomenon, a simulation of dimethyl ether synthesis process can be developed as a reference in real-life application. The operating parameters that produces the most DME include the reactor inlet pressure of 18 atm, reactor inlet temperature of 533 K, distillation pressure of 8 atm, inflow velocity of 0.408 m/s, and reactor length of 4 meters. Under these parameters, 10.7 mol/s of dimethyl ether is produced, with total yield of 47% and methanol conversion of 90%. The addition of recycle stream increases the yield by 2%. The simulation is then varied based on pressure, temperature, inflow velocity, and reactor length, wherein temperature affect the conversion by 76% at maximum."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64808
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricky Kristanda Suwignjo
"Pada penelitian ini akan dilakukan pemodelan kinetika untuk sintesis Fischer Tropsch dengan tekanan operasi mencapai 20 bar dengan variasi rasio H2/CO 1,0 hingga 2,1 serta penambahan logam rhenium sebagai promotor. Mekanisme adsorpsi isotermis Langmuir digunakan untuk menyusun model kinetika. Pemodelan kinetika sintesis Fischer Tropsch dengan katalis kobalt berpenyangga alumina yang sudah ada saat ini sesuai untuk tekanan kurang dari 10 bar.
Hasil penelitian ini menunjukkan bahwa mekanisme reaksi yang sesuai adalah mekanisme insersi CO dengan reaksi hidrogenasi komponen COs oleh Hs sebagai tahap penentu laju. Persamaan model yang sesuai untuk mekanisme tersebut mengandung 3 konstanta, yaitu konstanta kesetimbangan tahap adsorpsi asosiatif reaktan CO (K1), konstanta kesetimbangan tahap adsorpsi disosiatif reaktan H2 (K2), dan konstanta laju tahap hidrogenasi COs oleh Hs (k3). Kenaikan rasio H2/CO menyebabkan rata-rata penurunan nilai K1 dan K2 masing-masing sebesar 53-94% dan 13-82% serta kenaikan k3 sebesar 73-421% pada model kinetika tersebut. Kenaikan rasio H2/CO menyebabkan peningkatan konversi reaktan dan selektivitas komponen produk CH4. Sementara, penambahan logam rhenium tidak menyebabkan perubahan nilai konstanta pada model kinetika tersebut (%selisih nilai konstanta lebih kecil dari 10%). Penambahan logam rhenium (0,05%Re-12%Co/Al2O3) memberikan pengaruh sebagai promotor struktural, yaitu hanya meningkatkan jumlah active site melalui peningkatan dispersi katalis kobalt sehingga konversi meningkat namun selektivitas produk tetap. Variasi rasio umpan H2/CO dan penambahan logam rhenium (0,05%Re-12%Co/Al2O3) tidak menyebabkan perubahan mekanisme reaksi.

This research will build-up a kinetic model for Fischer Tropsch synthesis using alumina supported cobalt catalyst operated in 20 bar with variation of H2/CO syngas ratio from 1.0 to 2.1 and also addition of rhenium metal as promoter in cobalt catalyst. Langmuir isothermic adsorption mechanism is a common method to build-up a kinetic model. Existing kinetic model of Fischer-Tropsch synthesis using alumina supported cobalt catalyst is valid for operating pressure less than 10 bar.
The result of this research showed that CO insertion mechanism with hydrogenation step of COs by Hs component as the rate-limiting step is valid for this Fischer Tropsch synthesis condition. Kinetic equation for this mechanism consists of 3 constants, equilibrium constant for assosiative adsorption for CO reactant (K1), equilibrium constant for dissociative adsorption for H2 reactant (K2), and rate constant for hydrogenation COs by Hs (k3). Higher H2/CO ratio will averagely decrease K1 and K2 by amount 80% and 40 %, respectively, and increase k3 by amount 168 % in those kinetic equation. Higher reactant conversion and CH4 product selectivity is resulted in higher H2/CO syngas ratio. Addition of rhenium metal (0.05%Re-12%Co/Al2O3) give effect as structural promoter, which only increase active site amount through the increase of cobalt catalyst dispersion. Rhenium promoter in cobalt catalyst only increase reactant conversion but not change the product selectivity. Variation of H2/CO syngas feed ratio and addition of rhenium metal (0.05%Re-12%Co/Al2O3) will not change the reaction mechanism occurred.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43231
UI - Tesis Membership  Universitas Indonesia Library
cover
Nafisa Dewi Shafira
"Gamma-valerolakton (GVL) adalah senyawa organik turunan dari asam levulinat yang memiliki banyak manfaat di berbagai sektor. Penelitian ini dilakukan untuk mengetahui pengaruh tekanan dan suhu gas umpan terhadap kinerja reaktor trickle bed untuk produksi GVL dari segi konversi asam levulinat, yield GVL, dan selektivitas GVL. Mekanisme yang terjadi adalah asam levulinat yang sudah dilarutkan dengan air deionisasi akan melalui proses hidrogenasi menghasilkan senyawa intermediet yaitu 4-HPA. Kemudian, terjadi proses esterifikasi intermolekul untuk menghasilkan GVL. Katalis yang digunakan adalah Ru/C dengan muatan Ru sebesar 5 wt%. Eksperimen diawali dengan persiapan bahan baku, lalu dilakukan karakterisasi katalis. Kemudian digunakan reaktor berdiameter 2,01 cm den gan unggun katalis setinggi 24 cm. Reaktan cair (asam levulinat) dan gas hidrogen direaksikan dengan kondisi operasi temperatur 90 °C – 150 °C, dan tekanan 5 dan 10 bar. Penelitian pada tekanan rendah dilakukan untuk mengurangi penggunaan hidrogen berlebih sehingga proses menjadi lebih ekonomis. Setelah reaksi berlangsung, asam levulinat sebagai bahan baku terkonversi menjadi dua senyawa yaitu 4-HPA dan GVL. Produk kemudian dianalisis dengan High-Performance Liquid Chromatography. Setelah berlangsungnya reaksi, asam levulinat sebagai bahan baku terkonversi menjadi dua jenis produk, yaitu senyawa intermediate 4-HPA dan produk utama GVL. Pada penelitian ini, kondisi terbaik untuk memproduksi GVL adalah pada tekanan 10 bar dan suhu 150 °C dengan yield GVL 72%, selektivitas GVL 73%, dan konversi asam levulinat 97%. Berdasarkan tren yang diamati, semakin meningkatnya tekanan dan suhu yang digunakan, maka hasil yang diperoleh semakin optimal.

Gamma-valerolactone (GVL) is an organic compound derived from levulinic acid which has many benefits in various sectors. This research was conducted to determine the effect of feed gas pressure and temperature on the performance of trickle bed reactors for GVL production in terms of levulinic acid conversion, GVL yield, and GVL selectivity. The mechanism that occurs is that levulinic acid which has been dissolved in deionized water will go through a hydrogenation process to produce an intermediate compound, namely 4-HPA. Then, an intermolecular esterification process occurs to produce GVL. The catalyst used was Ru/C with a 5 wt% Ru. The experiment started with raw material preparation, and catalyst characterization, then a 2.01 cm diameter reactor with a 24 cm high catalyst bed was used. Liquid reactants (levulinic acid) and hydrogen gas were reacted under operating conditions of temperature 90 °C – 150 °C, and pressures of 5 and 10 bar. Research at low pressure is carried out to reduce the use of excess hydrogen so that the process becomes more economical. After the reaction takes place, levulinic acid as a raw material is converted into several compounds including levulinic acid, 4-HPA, and GVL. Products were analyzed with High-Performance Liquid Chromatography. After the reaction takes place, levulinic acid as a raw material is converted into two types of products, namely the intermediate compound 4-HPA and the main product GVL. In this study, the best conditions for producing GVL were at a pressure of 10 bar and a temperature of 150 °C with a yield of 72% GVL, 73% selectivity of GVL, and 97% conversion of levulinic acid. Based on the observed trend, the higher the pressure and temperature used, the more optimal the results obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yunita Yulianti
"Tingginya kandungan CO2 dalam reservoir gas alam menjadi alasan gas alam belum dapat dieksplorasi tanpa teknologi yang mampu mengkonversi CO2 menjadi senyawa yang lebih memiliki daya guna. Pada penelitian ini dilakukan konversi CO2 menjadi dimetil eter (DME) melalui dua tahap reaksi yaitu elektrolisis dan katalisis. Elektrolisis dilakukan menggunakan katoda yang divariasikan yaitu Zn, kasa Stainless Steel, dan Zn yang diplating pada kasa Stainless Steel. Hasil elektrolisis CO2 yang diharapkan pada larutan NaHCO3 1 M dan buffer fosfat pH 8 adalah syngas yang merupakan campuran gas CO dan H2 dengan ratio 1:2. Syngas dikonversi menjadi dimetil eter melalui reaksi katalisis menggunakan campuran hidrotalsit prekursor dari CuO-ZnO-Al2O3 dan γ-Al2O3 sebagai katalis. Katalis γ-Al2O3 dibuat dari aluminium trihidroksida teknis, sedangkan hidrotalsit prekursor dari katalis CuO-ZnO-Al2O3 dibuat dari larutan garam nitratnya yang diendapkan bersama dengan tiga larutan alkali karbonat berbeda sebagai agen pengendap, yaitu Na2CO3, NaHCO3, dan buffer karbonat pH 8,5 dari Na2CO3/NaHCO3. Endapan hidrotalsit (CZA) setelah dikeringkan pada suhu 110˚C selama β4 jam dicampurkan secara mekanik dengan γ-Al2O3 dengan ratio yang divariasikan yaitu 1:1, 1:2, dan 2:1, kemudian dikalsinasi pada suhu γη0˚C selama 4 jam. Katalis dikarakterisasi menggunakan X-Ray Difraction (XRD), Energy Dispersive X-Ray Spectometry (EDS), dan Isoterm BET. Produk DME yang dihasilkan dianalisis dengan Gas Kromatografi menggunakan detektor FID. Hasil analisis menunjukan bahwa katoda Zn yang diplating pada kasa Stainless Steel dan katalis CZA/γ-Al2O3 (1:1) dengan agen pengendap NaHCO3 menghasilkan persen konversi DME tertinggi yaitu 0,604%.

The high content of CO2 in natural gas reservoir is the reason that natural gas can not be explored without the technology which can convert CO2 into value added products. In this research, CO2 gas was converted into dimetyl ether (DME) by electrolysis and catalysis reaction. The electrolysis reaction were carried out using varied cathodes are Zn, Stainless Steel wire mesh, and Zn- platted Stainless Steel wire mesh. The expected electrolysis product of CO2 on 1 M NaHCO3 solution and phosphate buffer pH 8 were syngas, a mixture of CO and H2 on the ratio of 1:2. The syngas was converted into DME by catalysis reaction using a mixture of hydrotalcite precursor of CuO-ZnO-Al2O3 and γ-Al2O3 as "catalyst. The γ-Al2O3 catalyst was prepared from technical grade of aluminium trihydroxide, meanwhile the hydrotalcite precursor of CuO-ZnO-Al2O3 catalyst was prepared from their metals-nitrate solution coprecipitated by three different alkaline carbonate solution as the precipitating agents, they were Na2CO3, NaHCO3, and carbonate buffer of Na2CO3/NaHCO3 pH 8,5. The hydrotalcite precipitates (CZA) after being dried at 110˚C for β4 h, were mechanically mixed with γ-Al2O3 in the varried ratios of 1:1, 1:2, and 2:1 and then were calcined at "γη0˚C for 4 h. The catalysts were characterized using X-Ray Difraction (XRD), Energy Dispersive X-Ray Spectrometry (EDS), and Isoterm BET. DME products were analyzed using Gas Chromatography (GC) with FID detector. The results showed that Zn-platted stainless steel cathode and CZA/γ-Al2O3 (1:1) catalys with NaHCO3 precipitating agent could produce the highest DME convertion of 0,604%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S58471
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>