Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 43683 dokumen yang sesuai dengan query
cover
Stephen Roy Imantaka
"Dalam beberapa tahun ini, telah banyak penelitian yang berhubungan dengan pengenalan pola dilakukan untuk mengidentifikasi wajah manusia secara otomatis. Skripsi ini membahas sistem pengenal wajah berbasis jaringan syaraf tiruan tunggal dan ensemble. Kamera infra merah digunakan pada penelitian untuk mengatasi masalah pencahayaan yang ditemui pada kamera visible light. Tahapan sistem terdiri dari pra-pemrosesan, ekstraksi fitur oleh PCA, pelatihan, dan pengujian.
Pada percobaan dengan jaringan syaraf tunggal, algoritma backpropagation diterapkan dan sejumlah parameter divariasikan untuk mencapai performa yang optimal. Pada percobaan dengan jaringan syaraf ensemble, sejumlah skema digunakan antara lain: algoritma backpropagation, algoritma NCL, dan parsialisasi data dengan kedua algoritma tersebut.
Hasil yang ditinjau dari recognition rate menunjukkan jaringan syaraf ensemble, yang terdiri dari sejumlah jaringan syaraf, memberikan performa yang lebih baik dibandingkan sebuah jaringan syaraf tunggal. Bila dioptimalkan, jaringan syaraf ensemble dapat menghasilkan recognition rate sebesar 99.9%.

People in pattern recognition have been working on automatic recognition of human faces for years. The focus of this thesis is a face recognition system based on both individual and ensemble neural network. An infrared camera is utilized to overcome the illumination matter encountered by visible light cameras. The procedure of the system consists of pre-processing, feature extraction by PCA, training and testing.
In the experiment of individual neural network, back-propagation algorithm is applied and some parameters are varied to obtain the optimum performance. In the experiment of ensemble neural network, some schemes such as back-propagation algorithm, NCL algorithm and partition of data using both algorithms are particularly examined.
According to the recognition rate, the results show that ensemble neural network, which is made up of several neural networks, have better performance than a single neural network does. An optimized ensemble neural network may reach up to 99.9% of recognition rate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51241
UI - Skripsi Open  Universitas Indonesia Library
cover
I Gusti Agung Agastya Tarumawijaya
"

Berbagai metode pengembangan rekognisi citra wajah telah banyak dilakukan, berbagai metode seperti Deep Learning, Multilayer Perceptron sudah dilakukan. Metode Convolutional Neural Network juga sudah banyak dikembangkan untuk melakukan klasifikasi citra seperti rekognisi jenis bunga, hewan, hingga pendeteksian kecacatan sel. Convolutional Neural Network diharapkan mampu melakukan rekognisi citra wajah secara tiga dimensi. Operasi konvolusi sebagai bagian ekstraksi fitur pada Convolutional Neural Network, diharapkan dapat membantu bagian klasifikasi untuk melakukan tugasnya dengan lebih baik. Rekognisi citra wajah secara tiga dimensi ini sangat dibutuhkan, karena ketika kita ingin mendeteksi seseorang tanpa diketahui orang tersebut, maka dengan berbagai macam sudut hadap wajahnya sistem harus dapat mengidentifikasi orang tersebut. Untuk penelitian kali ini saya akan menggunakan dataset gambar wajah tiga dimensi yang akan digunakan sebagai klasifikasi parameter biometrik seseorang. Pada penelitian ini akan menganalisa tiap-tiap lapisan pada Convolutional Neural Network, serta melakukan perbandingan dengan Backpropagation Neural Network. Dan juga akan melakukan analisa dengan menggunakan citra wajah berderau.


Various methods of developing facial image recognition have been carried out, various methods such as Deep Learning and Radial Basis Function Neural Network have been carried out. Convolutional Neural Network methods have also been developed to carry out image classifications such as recognition of types of flowers, animals, and detection of cell defects. Convolutional Neural Network is expected to be able to recognize facial images in three dimensions. Convolution operations as a feature extraction part of the Convolutional Neural Network are expected to help the classification section to do their job better. Three-dimensional face image recognition is needed, because when we want to detect someone without knowing by the person, then with a variety of face angles, the system must be able to identify that person. For this research I will use a three-dimensional face image dataset that will be used as a classification of a persons biometric parameters. In this study, we will analyze each layer in the Convolutional Neural Network, do a comparison with Backpropagation Neural Network. And also will do the analysis by using a noisy face image.

"
Depok: Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Alwi Sukra
"Teknologi deep learning dapat menyelesaikan banyak masalah yang sulit dipecahkan oleh rumus matematis biasa. Salah satu masalah yang bisa diatasi adalah bahaya akibat rasa kantuk yang dialami pengemudi saat berkendara. Pada penelitian ini dibuat aplikasi android sistem deteksi kantuk yang memanfaatkan kamera smartphone. Kamera digunakan untuk mendapatkan informasi fitur citra wajah yaitu aspek rasio mata kanan, aspek rasio mata kiri, aspek rasio mulut, percentage of eye closure (PERCLOS), tingkat kejadian microsleep, dan tingkat kejadian menguap. Fitur-fitur tersebut didapat dari proses transformasi titik-titik landmark wajah. Pada penelitian ini, ditemukan bahwa metode terbaik untuk mendapatkan titik landmark wajah adalah dengan pelacakan Lucas-Kanade optical flow dengan 5 jumlah frame yang dilacak. Fitur-fitur yang dikumpulkan dapat digunakan untuk mendeteksi tingkat kantuk dengan memanfaatkan model deep learning yang telah dilatih dengan data yang dikumpulkan dari 10 orang. Pada penelitian ini, ada 2 jenis model deep learning yang dilatih untuk mendeteksi tingkat kantuk yaitu model deep neural network (DNN) dan long short-term memory (LSTM). DNN memiliki keseluruhan performa yang lebih baik dibandingkan LSTM. DNN memiliki accuracy sebesar 0.902538 dan f1 sebesar 0.899563. Sedangkan LSTM memiliki dari accuracy sebesar 0.891857 dan f1 sebesar 0.892689. Aplikasi android sistem deteksi kantuk yang dibuat menggunakan model deep learning DNN dan memiliki performa yang bagus dengan accuracy sebesar 0.844 dan f1 sebesar 0.865052. Aplikasi Android memiliki mekanisme pemberitahuan berupa suara yang dimainkan ketika pengemudi mengantuk. Selain itu, pada aplikasi Android juga terdapat 2 fungsi tambahan yaitu deteksi tidur dan deteksi gangguan konsentrasi pengemudi. Kedua fungsi tersebut akan mengeluarkan suara ketika terdeteksi untuk memberitahukan kepada pengguna. Dengan adanya aplikasi sistem deteksi kantuk yang dibuat pada penelitian ini, diharapkan dapat mendeteksi tingkat kantuk pengemudi sehingga mengurangi risiko kecelakaan akibat mengantuk.

Deep learning technology can solve many problems that are difficult to solve by ordinary mathematical formulas. One of the problems that can be overcome is the danger due to drowsiness experienced by the driver while driving. In this study, a drowsiness detection system on Android application that uses a smartphone camera is made. The camera is used to obtain facial image feature informations which is right eye aspect ratio, left eye aspect ratio, mouth aspect ratio, percentage of eye closure (PERCLOS), microsleep rate, and yawning rate. These features are obtained by transforming and processing facial landmark points. In this study, it was found that the best method for obtaining facial landmarks points is from Lucas-Kanade optical flow tracking with 5 frames tracked. The features collected can be used to detect drowsiness by utilzing a deep learning model that has been trained with data collected from 10 volunteers. In this study, there are 2 types of deep learning models that are trained to detect drowsiness that are deep neural network (DNN) and long short-term memory (LSTM). DNN has better overall performance than LSTM. DNN has an accuracy of 0.902538 and f1 of 0.899563. Whereas LSTM has an accuracy of 0.891857 and f1 of 0.892689. The drowsiness detection system Android application is created using the DNN model and has a good performance with an accuracy of 0.844 and f1 of 0.865052. The Android application has a notification mechanism in the form of sound that played when the driver is detected to be drowsy. In addition, the Android application also has an additional function that are sleeping detection and driver distraction detection. Both functions will make a sound when detected to notify the user. With the application of drowsiness detection system made in this study, it is expected to detect the level of drowsiness of the driver thereby reducing the risk of accidents due to drowsiness.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ignatia Chintya Defisaptari
"Dalam beberapa tahun ini, telah banyak penelitian mengenai pengenalan pola yang dilakukan dengan jarigan syaraf tiruan. Skripsi ini membahas sistem pengenalan pola berbasis Jaringan Saraf Tunggal (JST). Penelitian ini membahas metode pembelajaran Levenberg Marquardt dalam melakukan pengenalan pola. Terdapat 9 dataset pola, 8 dataset dari "UCI Repository of Machine Learning Database" dan satu set dari data uranium dioxide pellet. Prosedur kerja sistem terdiri dari tahap pra-pemrosesan, pelatihan, dan pengujian.
Hasil pengujian yang ditinjau dari computational cost dan recognition rate menunjukkan JSE berbasis metode Levenberg Marquardt memberikan performa yang lebih baik dibandingkan JST berbasis metode Levenberg Marquardt atau Backpropagation.

In recent years, many people have been working on pattern recognition using artificial neural network. This bachelor pra-thesis discuss about pattern recognition system based on Single Neural Network (SNN). This research discuss about Levenberg Marquardt learning algorithm in pattern recognition.There are 9 datasheets used in this experiment, which 8 of them are obtained from "UCI Repository of Machine Learning Database" and and one dataset of uranium dioxide pellet. The working procedures of the systems consists of pre-processing, training, and testing stages.
The testing result, which is measured from computational computational cost and recognition rate, shows that ENN based on Levenberg Marquardt learning algorithm has a better performance than SNN based on Levenberg Marquardt or Backpropagation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46396
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harry Bian Pramudia
"Backpropagation (BP) memiliki performa yang baik dalam mengklasifikasi citracitra wajah bertingkat iluminasi seragam. Namun untuk citra wajah yang bertingkat iluminasi beragam seperti pada aplikasi kamera pengintai maka BP akan kesulitan dalam mempelajari dan mengenalinya. Skripsi ini menggunakan metode Probabilistic Neural Network Teroptimasi (OPNN) sebagai Sistem Pengenal Wajah untuk spektrum gabungan infra merah dan cahaya tampak dengan intensitas yang berubah-ubah.
Skripsi ini juga menggunakan metode Normalisasi dan Kompensasi Iluminasi untuk mengurangi dampak variasi iluminasi pada citra. Hasil penelitian menunjukkan bahwa performa OPNN untuk mengenali wajah akan meningkat jika Data Train yang digunakan berisi citra dengan tingkat iluminasi yang beragam, dimana Tingkat Rekognisi rata-rata OPNN 18.36% lebih tinggi dari BP.

Backpropagation (BP) has a good performance in classifying face images with uniform illumination level. But Backpropagation have difficulty in learning and recognizing face images with varied ilumination level such in surveillance camera. This thesis uses Optimized Probabilistic Neural Network (OPNN) method as Face Recognition System for the joint spectrum of infrared and visible light with varying intensity.
This thesis also uses uses Illumination Normalization and Compensation method to reduce the impact of illumination variance on the image. The research shows that OPNN performance to recognize face will increase if Train Data used contains images with varying levels of illumination, which recognition rate of OPNN is 18.36% higher than BP.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1266
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Novian Rahman Hakim
"Kanker payudara adalah salah satu kanker paling umum terjadi di kalangan wanita dan tingkat kelangsungan hidupnya cenderung rendah ketika stadiumnya ditemukan sudah tinggi. Untuk meningkatkan kelangsungan hidup kanker payudara, deteksi dini sangat penting. Ada dua cara untuk mendeteksi kanker payudara: diagnosis dini dan skrining. Untuk membuat diagnosa yang akurat pada stadium awal kanker payudara, munculnya massa dan mikro-kalsifikasi pada citra mamografi merupakan dua indikator penting. Beberapa Computer-Aided Detection (CADe) telah dikembangkan untuk mendukung ahli radiologi karena pendeteksian mikro-kalsifikasi penting dalam menegakkan diagnosis dan perawatan yang direkomendasikan berikutnya. Sebagian besar sistem CADe yang ada saat ini mulai menggunakan Convolutional Neural Network (CNN) untuk mengimplementasikan deteksi mikro-kalsifikasi pada mammogram dan hasil kuantitatifnya sangat memuaskan, rata-rata tingkat akurasinya lebih dari 90%. Penelitian ini melakukan pendekatan otomatis untuk mendeteksi lokasi setiap mikro-kalsifikasi pada citra mammogram yang lengkap dan secara sederhana. Total lebih dari 350 gambar dari dataset INbreast digunakan dalam studi penelitian ini serta implementasi menggunakan data lokal Rumah Sakit (RS) sebanyak 23 citra. Proses ini dapat membantu ahli radiologi untuk melakukan diagnosis dini dan meningkatkan akurasi deteksi wilayah mikro-kalsifikasi. Performa sistem yang diusulkan diukur berdasarkan nilai error Mean Squared Logarithmic Error (MSLE) sebagai teknik untuk mengetahui perbedaan antara nilai yang diprediksi oleh model yang diusulkan dan nilai sebenarnya, didapat nilai loss terbaik yang diperoleh adalah 0,05. Hasil validasi daring mendapatkan nilai sensitivitas sebesar 88.14%, presisi 91.6% dan akurasi sebesar 90.3%. Hasil implementasi pada data lokal RS menunjukkan model CADe dapat mendeteksi mikro-kalsifikasi dengan cukup baik.

Breast cancer is one of the most common cancer among women and the survival rate tends to be low when its stage found high when treated. To improve breast cancer survival, early detection is critical. There are two ways of detection for breast cancer: early diagnosis and screening. To make an accurate diagnosis in the early stage of breast cancer, the appearance of masses and micro-calcifications on the mammography image are two important indicators. Several Computer-Aided Detection (CADe) have been developed to support radiologists because the automatic detection of micro-calcification is important for diagnosis and the next recommended treatment. Most of the current CADe systems at this time started using Convolutional Neural Network (CNN) to implement the micro-calcification detection in mammograms and their quantitative results are very satisfying, the average level of accuracy is more than 90%. This research conducts an automated approach to detect the location of any micro-calcification in the mammogram images with the complete image and in a simple way. A total more than 350 images from INbreast dataset were used in this research study and for implementation used 23 images from local hospital data. This process can help as an assistant to the radiologist for early diagnosis and increase the detection accuracy of the microcalcification regions. The proposed system performance is measured according to the error values of Mean Squared Logarithmic Error (MSLE) as the technique to find out the difference between the values predicted by the proposed model and the actual values, the best loss value obtained by the training model was achieved in 0.05. The results for data online validation for sensitivity is 88.14%, precision is 91.6% and accuracy is 90.3%. The CADe model can detect micro-calcification quite well using local hospital data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ida Bagus Krishna Yoga Utama
"Convolutional Neural Network (CNN) banyak digunakan untuk menyelesaikan masalah klasifikasi gambar karena kinerjanya yang baik, namun untuk masalah klasifikasi berbasis vektor yang menggunakan jaringan saraf convolutional jarang digunakan. Para peneliti cenderung menggunakan metode lain dari jaringan saraf tiruan, seperti jaringan saraf Backpropagation (BPNN), probabilitas jaringan saraf (PNN), sebagai pengklasifikasi untuk masalah klasifikasi berbasis vektor.
Dalam penelitian ini, digunakan Vector-based CNN untuk mengklasifikasi masalah 6 kelas, 12 kelas, dan 18 kelas dari tiga campuran aroma menggunakan 4, 6, 8, dan 16 buah sensor. Untuk membandingkan kinerja Vector-based CNN, Backpropagation Neural Network juga digunakan untuk mengklasifikasikan masalah klasifikasi aroma yang sama.
Hasil percobaan menunjukkan bahwa Vector-based CNN menghasilkan tingkat pengenalan yang cukup tinggi dibandingkan dengan Backpropagation neural network.

Convolutional Neural Network (CNN) is widely used in image classification problems because of its good performance, however, Vector-based classification using a convolutional neural network is rarely utilized. Researchers tend to use another method of artificial neural networks, such as Backpropagation neural network, probability neural networks, as the classifier for Vector-based classification problems.
In this paper, we would like to use a CNN classifier in the problems of 6,12, and 18 classes of three mixture of odor using 4, 6, 8, and 16 channels of sensors. In order to compare the performance of the Vector-based Convolutional Neural Network, Backpropagation Neural Network is also used to classify the same Vector-based odor classification problems.
The Experiment results show that Vector-based convolutional neural network yields a quite high recognition rate compare with that of Backpropagation neural network.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elizabeth
"Biometrik adalah salah satu teknologi cangih yang banyak dipakai untuk menjadi bagian dari sistem keamanan di berbagai bidang. Teknologi biometrik yang ada di sekitar kita ada berbagai macam seperti sistem identifikasi retina, iris mata, telapak tangan, sidik jari dan wajah. Banyak komputer atau laptop yang dilengkapi oleh kamera digital atau webcam yang terintegrasi dengan sistem yang ada di komputer itu sendiri. Teknologi camera digital semakin hari juga semakin canggih dalam pengambilan gambar yang dapat disesuaikan dengan situasi apapun contohnya seperti didalam ruangan atau diluar ruangan. Hal ini memungkinkan untuk pengaplikasian pngenalan wajah sebagai sistem autentikasi pengganti password selain fingerprint. Penelitian ini difokuskan pada perancangan aplikasi system pengenalan wajah menggabungkan dua metode yakni jaringan saraf tiruan dan metode pencocokan pola. Input dari sistem pengenalan wajah ini diambil dari webcam yang sudah melalui proses pre-processing dan sudah difokuskan ke bagian wajah dengan sistem pendeteksi wajah dengan metode pattern matching. Selain itu hasil dari pre-processing juga digunakan sebagai data training atau pelatihan. Gambar wajah hasil dari preprocessing ini kemudian masuk ke proses pengenalan menggunakan algoritma jaringan saraf tiruan. Hasil dari proses pengenalan wajah adalah berupa nama dari wajah orang yang dikenali. Sistem ini telah diuji pada lebih dari 36 sampel wajah yang diambil dari 12 orang.
Hasil akhir menunjukan bahwa sistem ini berhasil mengidentifikasi sampel-sampel wajah tersebut dengan tingkat keberhasilan mencapai 86%.

Biometric is one of the modern technology features that is used mostly as a part of security system in many types of application. There are so many biometric technology options this day such as retina identification, iris, eye, hand, finger print, and face. Many computers such as laptop are completed with digital camera or webcam which integrated with in the system computer it self. Camera technology is getting more sophisticated in nowadays in capturing image from many situations such as indoor or outdoor environmental. This technology allows the possibility to develop face recognition as an option to authentication system in computer, other than the most popular fingerprint. This final project focuses on the design of face identification application using combination of two methods, neural network method and pattern matching method. The input of the system is taken from face detection algorithm with pattern matching method on webcam images which focused on human face area and already pass preprocessing first. The digital images from preprocessing are also used as a training data. The preprocessed image is then passed into the recognition process using neural network algorithm.
The result of the recognition process is the person?s credential which in this case the name. This system has been tested over 36 samples taken from 12 people. Result show that the system has identified the samples with 86% success rate."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S51031
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Adi Nugroho
"Pengolahan citra telah mengalami banyak perkembangan dan semakin umum diaplikasikan. Salah satu pengaplikasiannya rekognisi wajah tiga dimensi, yang juga melibatkan estimasi pose wajah. Salah satu metode rekognisi citra, yaitu jaringan saraf konvolusi, berpotensi menjadi dasar dari sistem estimasi pose wajah. Operasi konvolusi diharapkan mampu meminimalisir pengaruh distorsi dan disorientasi objek, serta mampu mengefisiensikan parameter yang dibutuhkan. Namun, permasalahan noise atau derau belum secara eksplisit terselesaikan oleh jaringan saraf tiruan konvolusi.
Penelitian ini bertujuan memasukkan fitur sistem fuzzy yang efektif mengelola data samar ke dalam jaringan saraf tiruan konvolusi yang diaplikasikan untuk estimasi pose wajah. Perancangan dimulai dari menjabarkan fungsi masing-masing lapisan jaringan saraf tiruan, menjabarkan operasi-operasi aritmatika pada bilangan fuzzy, dan mencoba menggantikan neuron crisp pada jaringan saraf tiruan konvolusi umum menjadi neuron fuzzy, dan mengaplikasikannya untuk mengestimasi pose wajah. Sistem yang sudah dibangun kemudian diujicoba pada dataset yang dimiliki Departemen Teknik Elektro UI dan dibandingkan dengan CNN-crisp yang memiliki arsitektur serupa dengan parameter pembelajaran yang sama.
Hasil didapat menunjukkan sistem konvolusi fuzzy mencapai nilai kesalahan estimasi pose lebih rendah dari konvolusi crisp pada data berderau tanpa merubah hasil estimasi pada data tidak berderau.

Image processing has undergone many developments and is increasingly commonly applied. From limited two-dimensional recogniton, facial recognition has now being developed to be able to recognise three-dimensional features. This ability involves process of face pose estimation. One method of image recognition, the convolution neural network, has the potential to become the basis of the face pose estimation system. Convolution operation is expected to minimize the effect of distortion and disorientation of the object, and able to efficiently reduce the required parameters. However, the image noise problem has not been explicitly resolved by convolution neural networks.
This study aims to include features of a fuzzy system that effectively manages fuzzy data into convolutional neural networks applied to head pose estimation. The design begins with describing the function of each layer of artificial neural networks, describing arithmetic operations on fuzzy numbers, and attempting to replace crisp neurons in convolution layer of convolutional neural into fuzzy neurons, and applying them to estimate head poses. The estimator system is then tested on a dataset owned by the Department of Electrical Engineering UI and compared with CNN-crisp that has a similar architecture with the same learning parameters.
The results show that the fuzzy convolution system reaches less error of pose estimation value compared to the crisp convolution system, without changing the estimation value of image without noises.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T49040
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Rifan
"BLDC motor telah menjadi motor yang populer karena keunggulanannya. Untuk meningkatkan kinerja BLDC telah banyak Teknik pengendalian yang dikembangkan mulai dari yang konvensional seperti PID sampai dengan yang menggunakan kecerdasan buatan. Namun demikian, sebagian besar peneliti mendesain pengendali untuk BLDC motor dengan memanfaatkan sensor kecepatan. Penelitian ini bertujuan untuk membangun pengendali yang adaptif untuk aplikasi sensorless BLDC motor dengan dua tahapan penelitian yaitu 1 Mengembangkan Adaptif PID Controller untuk BLDC dan 2 Mengembangkan Teknik sensorless BLDC dengan Neural Network Ensemble Kalman Filter. Pada Penelitian ini, telah dikembangkan pengendali Adaptif PID berbasis Model Invers Neural Network dan teknik sensorless BLDC motor menggunakan Neural Network Ensemble Kalman Filter EnKF . Pengendali Adaptif PID berbasis Model Invers Neural Network yang dikembangkan mampu bekerja lebih baik jika dibandingkan dengan pengendali PID, PID Single Neuron, dan Pengendali Single Neuron Fuzzy. Respon waktu sistem menunjukkan rise time meningkat hingga 41,1 , Settling time meningkat hingga 178,9 dan overshoot menurun hingga 825,6 . Sedangkan teknik sensorless Neural Network Ensemble Kalman Filter mampu mengestimasi posisi dan kecepatan motor BLDC hanya dengan mengukur tegangan dan arus setiap phasa baik pada kondisi kerja adanya perubahan referensi kecepatan, adanya perubahan parameter motor BLDC, maupun adanya perubahan beban/gangguan dengan tingkat kesalahan estimasi yang sangat kecil yaitu sebesar 0.7 , serta bekerja baik pada kecepatan rendah dengan jumlah member sebanyak 8.

BLDC motor has become a popular motorcycle because of its advantages. To improve the performance of BLDC has a lot of control techniques developed ranging from conventional ones such as PIDs to those using artificial intelligence. Nevertheless, most researchers design controllers for BLDC motors by utilizing speed sensors. This research aims to build adaptive controller for sensorless BLDC motor applications with two stages of research that is 1 Developing Adaptive PID Controller for BLDC and 2 Developing BLDC Sensorless Technique with Neural Network Ensemble Kalman Filter. In this research, Adaptive PID controller has been developed based on Inverse Neural Network Model and BLDC sensorless motor technique using Neural Network Ensemble Kalman Filter EnKF. The Adaptive PID controller based on the developed Inverse Neural Network model works better than the PID controller, Single Neuron PID, and Single Neuron Fuzzy Controller. The system time response shows rise time rises up to 41.1 , settling time increases up to 178.9 and overshoot decreases to 825.6. While sensural technique Neural Network Ensemble Kalman Filter able to estimate position and speed of BLDC motor only by measuring voltage and current of each phase both at work condition of change of reference of speed, change of motor parameter BLDC, or existence of change of burden / interference with very estimate error rate Small that is equal to 0.7 , and works well at low speed with the number of members as much as 8."
Depok: Universitas Indonesia, 2017
D2516
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>