Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 22231 dokumen yang sesuai dengan query
cover
Himawan Sidharta
"Tugas akhir ini ialah perancangan dan pembuatan perangkat lunak untuk sistem auto-tracking (arti: sistem pengontrol pergerakkan antena untuk menjejak satelit) satelit pada antena mobil. Sistem ini menggunakan microcontroller sebagai pengontrolnya, dengan GPS sebagai input lokasi dari antena, digital compass sebagai input arah pointing awal antenna, rotari enkoder sebagai sensor pergerakkan azimuth dan elevasi, serta modem untuk melihat besar Eb/No sinyal. Inputan ini menggunakan komunikasi serial untuk berhubungan dengan mikrokontroller. Sehingga pemrograman harus difokuskan dalam komunikasi serial UART dan software UART, yang digunakan untuk pengadaan komunikasi serial pada port I/O. Kontroller ini menggunakan 2 tahapan dalam proses tracking satelit.
Tahapan awal ialah metode Elevasi-Azimuth, dimana pada tahapan ini dengan menggunakan inputan dari GPS, digital compass, serta posisi satelit (baik koordinat, maupun ketinggiannya) yang tersimpan dalam mikrokontroller. Kontroller akan menghitung besar sudut azimuth dan elevasi antena terhadap satelit, kemudian mengerakkan antena sesuai dengan sudut azimuth dan elevasinya. Tahapan selanjutnya ialah koreksi modem, dimana pada tahapan ini hanya inputan modem yang digunakkan (keempat inputan lain diabaikan), dan pergerakkan antena diatur hingga didapat nilai Eb/No sinyal yang terbesar.

This final task is the design and creation software for auto-tracking system satellite antenna on the car. This system uses a microcontroller as the controller, with the GPS as the indicator location of the antenna, digital compass as the beginning of antenna pointing direction, rotary encoder as sensor azimuth and elevation, and modem to see Eb/No signal. The microcontroller use serial communication to read the input. Thus the programming should be focused on in the UART and serial communication software UART. This controller use 2 phase in the process of tracking satellites.
Early stages is the method Elevation-Azimuth, where at this stage with input from GPS, Digital Compass, and the position of satellites (both coordinates, and height) that are stored in microcontroller. Controller will calculate the elevation and azimuth angle, then move the antenna according to the antenna azimuth and elevation angle. Next stages is correction modem, where in this stage controller only use modem as the input, and antenna movement is set up to obtain the largest value of Eb / No signal.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51394
UI - Skripsi Open  Universitas Indonesia Library
cover
Djamhari Sirat
"Keakuratan pointing merupakan hal penting dalam komunikasi satelit. Akibat jarak satelit dengan permukaan bumi yang sedemikian jauh, maka selisih pointing 1 derajat dapat menyebabkan antena tidak dapat mengirimkan data ke satelit. Untuk mengatasi hal ini dibuatlah kontroler auto-tracking satelit. Sistem ini menggunakan mikrokontroler sebagai pengontrol, GPS sebagai input lokasi dari antena, digital compass sebagai input arah pointing awal antena, rotari encoder sebagai sensor pergerakkan azimut dan elevasi, serta modem untuk melihat besar Eb/No sinyal. Kontroler ini menggunakan dua tahapan dalam proses tracking satelit. Tahapan awal ialah metode Elevasi-Azimut dengan menggunakan masukkan dari GPS, digital compass, serta posisi satelit (baik koordinat, maupun ketinggiannya) yang tersimpan dalam mikrokontroler. Kontroler menghitung besar sudut azimut dan elevasi antena terhadap satelit, kemudian mengerakkan antena sesuai dengan sudut azimut dan elevasinya. Tahapan selanjutnya ialah koreksi modem dimana pada tahapan ini hanya masukan modem yang digunakan (keempat masukan lain diabaikan), dan pergerakkan antena diatur hingga didapat nilai Eb/No sinyal yang terbesar. Berdasarkan hasil pengoperasian kontroler, terjadi perubahan nilai pada input level dari semula -81,7 dB menjadi -30,2 dB dengan nilai Eb/No akhir sebesar 5,7 dB.

Pointing accuracy is an important thing in satellite communication. Because the satellite?s distance to the surface of the earth's satellite is so huge, thus 1 degree of pointing error will make the antenna can not send data to satellites. To overcome this, the auto-tracking satellite controller is made. This system uses a microcontroller as the controller, with the GPS as the indicator location of the antenna, digital compass as the beginning of antenna pointing direction, rotary encoder as sensor azimuth and elevation, and modem to see Eb/No signal. The microcontroller use serial communication to read the input. Thus the programming should be focused on in the UART and serial communication software UART. This controller use 2 phase in the process of tracking satellites. Early stages is the method Elevation-Azimuth, where at this stage with input from GPS, Digital Compass, and the position of satellites (both coordinates, and height) that are stored in microcontroller. Controller will calculate the elevation and azimuth angle, then move the antenna according to the antenna azimuth and elevation angle. Next stages is correction modem, where in this stage controller only use modem as the input, and antenna movement is set up to obtain the largest value of Eb/No signal. From the results of the controller operation, there is a change in the value of the original input level from -81.7 dB to -30.2 dB with end of Eb/No value, reaching 5.7 dB."
Depok: Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, 2010
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Cakra Megasakti
"Skripsi ini membahas bagaimana membuat antena penerima dengan posisi yang berubah-ubah untuk diaplikasikan pada kapal laut agar dapat selalu pointing ke satelit yang digunakan(satelit cakrawarta-2). Agar antena dapat bergerak mengikuti arah azimuth satelit dibentuklah suatu rancang bangun dengan komponen-komponen didalamnya seperti GPS untuk menentukan posisi antenna penerima, motor penggerak yaitu digunakan motor DC, digital compass untuk mengetahui arah azimuth antenna penerima, satfinder untuk mencari sinyal satelit yang dimaksud dan mikrokontroler untuk mengendalikan pergerakan antena tersebut.

This essay explores how to make the receiving antenna with an arbitrary position mounted on a ship in order to always be pointing to a satellite that is used (satellite cakrawarta-2). So that the antenna can move to follow the satellite azimuth direction formed a design with the components therein such as a GPS receiver to determine the antenna position, the motor of the DC motor is used, a digital compass to determine direction of receiver antenna azimuth, satfinder to search for satellite signals and the microcontroller is to control the movement of the antenna."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51355
UI - Skripsi Open  Universitas Indonesia Library
cover
Filbert Hilman Juwono
"Sekarang televisi berlangganan via satelit telah menjadi salah satu tren gaya hidup masyarakat perkotaan. Tetapi permasalahan yang muncul adalah ketika antena penerima berubah-ubah posisinya terhadap satelit seperti ketika antena dipasang pada kapal laut. Pembuatan sistem penjejakan pada antena penerima adalah solusi untuk permasalahan di atas, dimana antena dapat bergerak mengikuti arah kuat sinyal sehingga dapat terjadi sinkronisasi antara antena penerima dan satelit. Namun satelit Cakrawarta-1 yang digunakan tidak mempunyai sinyal penjejak, sehingga dilakukan percobaan menggunakan sinyal siaran satelit tersebut sebagai sinyal penjejak. Komponen-komponen yang akan digunakan adalah suatu sensor kuat sinyal yaitu satfinder, motor penggerak yaitu digunakan motor stepper, penggerak motor stepper, dan mikrokontroler untuk mengendalikan pergerakan antena tersebut.

Nowadays, satellite TV service has become a lifestyle trend for urban societies. A problem exists when the position of the dish changes to the satellite, for example when the satellite TV is operated for the ship?s cruise service. The design of the azimuth tracking system is the solution for the problem. The antenna is able to follow the signal strength thus synchronize the receiver antenna and the satellite. But, satellite Cakrawarta-1 does not have the tracking signal. Thus, it is carried out an experiment using the broadcasting signal instead of the tracking signal. Components used are signal strength meter, stepper motor, stepper motor driver, and microcontroller as the controller of antenna?s movement."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40379
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ihsan Ibrahim
"Nelayan-nelayan kecil yang berada di tengah laut memiliki risiko besar karena tidak adanya saluran komunikasi yang dapat digunakan untuk mendapatkan informasi mengenai cuaca yang ada di lokasinya dan anomali cuaca yang dapat berubah secara tiba-tiba serta ekstrem. Salah satu solusi masalah tersebut adalah dengan sebuah sistem yang dapat memantau cuaca secara otomatis. Penelitian ini berfokus pada pembuatan perangkat lunak untuk sistem tersebut yang berbasis citra dari satelit NOAA dan menggunakan library OpenCV.
Perangkat lunak yang telah dibuat dapat memberikan informasi keadaan cuaca di lokasi dan sekitar pengguna berada. Pada pengujian didapatkan hasil bahwa akurasi yang dimiliki adalah sebesar 91,25%. Dari segi waktu, lamanya waktu eksekusi rata-rata dari perangkat lunak ini adalah sebesar 0,211 detik. Pada pengujian ketahanan terhadap noise dengan menggunakan Gaussian noise μ = 0 dan σ yang divariasikan antara 26, 64, dan 128 didapatkan akurasi secara berturut-turut sebesar 82,5%, 60%, dan 52,5%. Uji fungsional serta tampilan antarmuka, mendapatkan nilai rata-rata sebesar 75%.

Traditional fishermen who are in the middle of the sea have great risk because of the absence of communication channels that can be used to obtain information about weather in the location and weather anomalies that may change suddenly and extreme. One solution to the problem is with a system that can monitor the weather automatically. This research will focus on the software development for the system based on imagery from NOAA satellites and it uses OpenCV library.
The software has been created to provide information about the weather conditions on the user’s location and around of its location. On testing, it showed that the accuracy is at 91.25%. In terms of time, the length of the average execution time of this software is at 0.211 seconds. In the resistance to noise testing by using a Gaussian noise μ = 0 and σ which varied between 26, 64, and 128 obtained accuracy in a row amounted to 82.5%, 60%, and 52.5%. Functional testing and interface, obtain an average value of 75%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S61276
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tri Purwanto
"Kebutuhan masyarakat akan informasi dan entertainment menanjak tajam seiring dengan perkembangan jaman dan kesibukan setiap orang, yang memungkinkan untuk dapat memperoleh berita yang aktual, tajam dan terpercaya serta kebutuhan entertainment dalam bentuk film, musik ataupun olahraga secara langsung. Indovision merupakan salah satu sarana yang mampu memenuhi kebutuhan tersebut. Jangkauan yang luas dan antena penerima yang berukuran relatif kecil menyebabkan produk ini bisa diterima di seluruh wilayah Republik Indonesia dengan peralatan penerima yang mudah dipindah-pindahkan. Penerimaan siaran indovision sejauh ini terbatas pada satu tempat yang tetap, dan tidak bisa diaplikasikan penerimaan sinyal siaran pada sebuah sistem yang bergerak. Dalam tugas akhir ini akan dilakukan perancangan tahap awal peralatan sistem kendali auto-track antena penerima indovision pada suatu benda bergerak dan menganalisa basil simulasi terhadap respon yang akan terjadi pada sistem kendali auto-track antena yang dirancang akibat perubahan posisi yang terjadi pada objek yang bergerak tersebut, dimana sistem yang dirancang disimulasikan dengan menggunakan program MATLAB."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anshari Akbar
"Pengembangan satelit saat ini mengarah pada pengembangan satelit kecil. Jumlah misi luar angkasa yang menggunakan satelit kecil dengan ukuran berbeda terus mengalami peningkatan dari tahun ke tahun. Saat ini LAPAN mengembangkan satelit mikro LAPAN-A4 dengan misi pengamatan bumi sumber daya alam, pemantauan maritim dan misi riset. Kapasitas data yang besar memerlukan sistem transmisi kecepatan tinggi untuk mengirimkan data hasil observasi ke stasiun bumi. Salah satu cara yg dapat dilakukan yaitu dengan peningkatan bandwidth. Dalam penelitian tesis ini antena didesain pada frekuensi 2220 MHz dengan metode DGS (defected ground structure). Metode ini mampu meningkatkan bandwidth antena dan memiliki efek miniaturisasi sehingga cocok untuk desain untuk aplikasi satelit. Antena dirancang dengan polarisasi melingkar untuk mengatasi loss polarisasi yang besar dalam mentransmisikan data payload satelit ke stasiun bumi.
Untuk meningkatkan bandwidth antena, digunakan metode DGS dengan pola dual slot yang berbentuk huruf X. Dimensi DGS seperti panjang slot (Ls), Lebar slot (Ws), dan jarak antar slot (d) DGS dioptimasi untuk mendapatkan bandwidth yang lebih lebar dengan melakukan simulasi pada software CST. Antena didesain pada dua jenis bahan yang berbeda yaitu bahan Roger 5880 dan Roger 4350 untuk mendapatkan efek miniaturisasi dan peningkatan beamwidth. Antena dipabrikasi menggunakan mesin CNC (computer numeric control).
Dari hasil pengukuran pada bahan Roger 4350 dengan permittifitas (r=3.4) diperoleh bandwidth antena sebesar 97 MHz atau sebesar 4.3% dengan rentang frekuensi antena diperoleh dari 2157 – 2254 MHz. Gain antena sebesar 3.63 dB pada frekuensi 2220 MHz dan beamwidth sebesar 90 derajat. Sementara hasil pengukuran menggunakan radom diperoleh bandwidth 107 MHz dari 2146 – 2253 MHz, dengan gain sebesar 3.28, dan beamwidth sebesar 80 derajat. Hasil pengukuran antena dengan bahan Roger 5880 dengan permitifitas (r=2.2) diperoleh bandwidth sebesar 92 MHz atau sebesar 4.1%. Rentang frekuensi dari 2171-2262 MHz. Gain antena diperoleh sebesar 5.85 dB pada frekuensi 2220 MHz dan beamwidth sebesar 85 derajat. Sedangkan pada antena menggunakan radom diperoleh bandwidth 105 MHz, dari 2160-2265 MHz, gain sebesar 4.94 dB dan beamwidth sebesar 75 derajat. Antena dengan bahan Roger 4350 memiliki efek miniaturisasi 35.3% terhadap bahan Roger 5880. Sedangkan dengan penggunaan DGS pada bahan Roger 4350 efek reduksi yang dihasilkan 4.8% dan bahan Roger 5880 efek reduksi sebesar 1.84%. Hasil yang diperoleh menunjukkan bahwa dengan metode DGS dengan pola dual slot berbentuk huruf X mampu meningkatkan bandwidth antena. Sedangkan efek miniaturisasi yang dihasilkan masih relatif kecil.

Currently satellite development has led to the development of small satellites. Number of space missions using small satellites of different sizes continues increase every year. Currently LAPAN is developing the LAPAN-A4 micro satellite with missions of earth observation of natural resources, maritime monitoring and research missions. Large data capacities require high speed transmission systems to transmit observational data to earth stations. One way that can be done is by increasing bandwidth. In this study, the antenna is designed at a frequency of 2220 MHz using the DGS method. This method is able to increase the antenna bandwidth and has a miniaturization effect making it suitable for the design of satellite applications. The antenna is designed with circular polarization to overcome polarization losses in transmitting satellite payload data to earth stations.
To increase the antenna bandwidth, the DGS (defected ground structure) method is used with X shape dual slot. DGS dimensions such as slot length (Ls), slot width (Ws), and distance between slots (d) DGS are optimized to obtain wider bandwidth by simulating in CST software. The antenna is designed on two different types of materials, namely Roger 5880 and Roger 4350 to obtain a miniaturization effect and an increase in beamwidth. The antenna is manufactured using a CNC (computer numeric control) machine.
From the antenna measurement results of Roger 4350 material with permittivity (r = 3.4) obtained 97 MHz bandwidth or 4.3% with frequency range from 2157 - 2254 MHz. The antenna gain is 3.63 dB at 2220 MHz frequency and 90 degrees beamwidth. The results of antenna measurements using radom obtained 107 MHz of bandwidth from 2146 to 2253 MHz, with 3.28 dB of gain, and 80 degrees of beamwidth. The result of antenna fabrication with Roger 5880 material and permitivity (r = 2.2) obtained bandwidth of 92 MHz or 4.1%. frequency range from 2171 to 2262 MHz. The antenna gain is 5.85 dB at2220 MHz frequency and 85 degrees of beamwidth. Meanwhile, when antenna using the radom, 105 MHz of bandwidth is obtained, from 2160 to 2265 MHz, gain 4.94 dB and beamwidth 75 degrees. The antenna with the Roger 4350 material has a miniaturization effect of 35.3% against the Roger 5880 material. Whereas with the use of DGS on the Roger 4350 material reduction effect obtained is 4.8% and the Roger 5880 material has 1.84% reduction effect. The results obtained indicate that the DGS method with a dual slot with X shape pattern is able to increase the antenna bandwidth. Meanwhile, the miniaturization effect obtained is relatively small.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Irsan Mulia
"Waktu merupakan hal yang penting khususnya bagi mahasiswa, oleh karena itu dibuatlah aplikasi bikunin untuk memperkirakan waktu datangnya bikun pada setiap halte, sehingga waktu yang digunakan untuk menunggu bikun dapat dimanfaatkan dengan lebih baik. Selain itu, aplikasi bikunin juga memiliki fitur lain seperti pesan dan tracking bikun untuk lebih memudahkan user mengetahui kondisi dan lokasi bikun.
Dari hasil pengujian didapatkan bahwa hasil eksekusi waktu untuk fitur tracking bikun membutuhkan waktu 656,2 milisecound, fitur pengiriman pesan broadcast 1143,5 milisecond, pengiriman pesan personal 798,3 milisecond, estimasi waktu dan jadwal 13971,9 milisecond serta hasil pengujian responden menunjukkan bahwa tingkat kepuasan responden sebesar 83,1% untuk fungsi utama, 77,1% untuk fitur-fitur serta 74,6% untuk tampilan antarmuka.

Time is important, especially for students, therefore we made an bikunin application to estimate the arrival time of bikun (Bis Kuning) at each bikun shelter, so the time spent waiting bikun can be used for better use. The bikunin application also has other features such as messaging and bikun tracking to make it easier for the user to find out the condition and location of the bikun. Bikunin Application using Arduino hardware as "core" of system. Arduino is prototyping platform based on hardware and software which easy to use.
Performance tests show that the average processing time for Arduino initialitation using millis() function is 656.2 milisecond. The subjective user measurement tests point out that satisfactory level is 83.1 percent for main feature function, 77.1 percent for other feature and 74.6 percent for user interface.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65803
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdurrahman Nur Ashri Diasta Fajar Ramadlan
"Pandemi COVID-19 ini telah berlangsung kurang lebih selama 2 tahun lebih yang berasal dari Wuhan, China sejak sekitar bulan November 2019. Selama berlangsungnya pandemi ini, seluruh rakyat dunia menjadi lebih sadar dan peduli terhadap kesehatan masing-masing dan juga lingkungan sekitarnya. Dengan pandemi ini juga berbagai aktivitas normal yang biasanya dilakukan sehari-hari menjadi dibatasi. Dalam upaya untuk mengakhiri pandemi ini, banyak cara yang telah dilakukan oleh seluruh rakyat di dunia. Beberapa diantaranya yaitu dengan cara merekomendasikan, mewajibkan, atau melarang perubahan perilaku tertentu dalam beraktivitas sehari-hari, sementara beberapa negara lain hanya mengandalkan penyediaan informasi terkait pandemi.
Pelacakan kontak COVID-19 merupakan salah satu cara yang dikembangkan pemerintah Indonesia untuk mengatasi pandemi ini. Perangkat lunak pelacakan COVID-19 yang sekarang ini beroperasi menggunakan GPS, kamera telepon genggam dan kode QR. Proses tersebut dapat membuat antrian yang panjang dan memakan waktu yang lebih lama semakin panjang antrian tersebut. Untuk mengatasi antrian panjang dan waktu yang lama, dirancang sebuah cara alternatif untuk melakukan proses check-in menggunakan sistem bluetooth. Dengan bluetooth, pengguna dapat melakukan check-in pada area yang lebih luas pada radius 15 meter dan tidak memerlukan GPS, kamera, ataupun kode QR. Bluetooth ini juga dilengkapi dengan perangkat keras pengisian daya tenaga surya berupa panel surya yang dapat mengisi daya pada baterai selama baterai digunakan oleh bluetooth.

This COVID-19 pandemic has been going on for more or less 2 years originating from Wuhan, China since around November 2019. During this pandemic, all the people of the world have become more aware and concerned about their respective health and also the surrounding environment. With this pandemic, various normal activities that are usually carried out on a daily basis have been restricted. In an effort to end this pandemic, many efforts have been made by all people in the world. Many countries are trying to slow or stop the spread of COVID-19 by recommending, requiring, or prohibiting certain behavioral changes in daily activities, while some other countries rely solely on providing information related to the pandemic.
COVID-19 contact tracing is one of the ways the Indonesian government has developed to deal with this pandemic. The current COVID-19 tracking software operates using GPS, mobile phone cameras and QR codes. Users can visit public places that have a QR code available at certain places to carry out the check-in process. After completing the activity the user can check-out. This process can create a long queue and take longer time the longer the queue. To overcome long queues and long times, an alternative way is designed to carry out the check-in process using a bluetooth system. With bluetooth, users can check-in in a wider area and don't need a GPS, camera, or QR code. This Bluetooth is also equipped with solar charging hardware in the form of solar panels that can charge the battery as long as the battery is used by bluetooth.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Leon, Deardo Dhy
"Antena mikrostrip memiliki beberapa keuntungan, di antaranya bentuk kompak, dimensi kecil, mudah untuk difabrikasi, mudah dikoneksikan dan diintegrasikan dengan divais elektronik lain. Keuntungan inilah yang dimanfaatkan oleh beberapa aplikasi, seperti : radar, telemetri, biomedik, radio bergerak, penginderaan jauh, dan komunikasi satelit. Salah satu aplikasi antena mikrostrip yang banyak digunakan adalah komunikasi satelit. Untuk aplikasi komunikasi satelit ada beberapa karakteristik parameter antena yang harus dipenuhi, di antaranya : gain yang tinggi, polarisasi melingkar, dan keterarahan pada arah tertentu. Pada skripsi ini dirancang suatu antena mikrostrip patch segitiga linear array 4 elemen untuk aplikasi komunikasi satelit Quasi Zenith. Satelit ini bekerja pada frekuensi 2,605 - 2,3 GHz dan orbit yang dilaluinya melewati wilayah timur Indonesia.
Untuk menghasilkan polarisasi melingkar, antena yang dirancang pada skripsi ini menggunakan teknik slot, sedangkan untuk meningkatkan gain dan mengatur keterarahan antena maka digunakan teknik antena susun (array). Perancangan antena ini menggunakan software AWR Microwave Office 2004 dan pengukuran parameter antena dilakukan dengan menggunakan alat network analyzer dan power meter pada ruang anechoic chamber. Setelah dilakukan pengukuran, hasil yang didapatkan adalah antena bekerja pada frekuensi 2,614 GHz dengan nilai return loss sebesar -42,75 dB, VSWR 1,0156, impedance bandwidth 31 MHz (1,18%), axial ratio bandiwdth 96 MHz (3,69%), gain pada frekuensi kerja sebesar 13,733 dB, dan keterarahan pada sudut 40°.

Microstrip antenna has many advantages, such as compact, low profile, easy to fabricate, easy connected with other electronic device. Many applications like radar, telemetry, biomedic, mobile radio, remote sensing, and satellite take benefits from microstrip antenna. One of many applications using microstrip antenna is satellite communication. To communicate with satellite, antenna must meet some requirements, such as high gain, circular polarization, and directivity. In this paper, 4 element linear array triangular microstrip patch antenna is designed to communicate with Quasi Zenith satellite. This satellite orbits through the east side of Indonesia and works at frequency 2.605 - 2.63 GHz.
The antenna is designed to have circular polarization by adding slot on the patch, to improve gain and to set directivity angle by using array technique. Antenna is designed using AWR Microwave Office 2004. Antenna parameters measurement is done using network analyzer and power meter in anechoic chamber. The results are resonant frequency at 2.614 GHz with return loss is about -42.75 dB, VSWR is 1.0156, impedance bandwidth 31 MHz (1.18%), axial ratio bandwidth 96 MHz (3.69%), gain at resonant frequency is 13.733 dB, and directivity at 40°.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40378
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>