Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 184681 dokumen yang sesuai dengan query
cover
Hepy Abdiwansah
Depok: Fakultas Teknik Universitas Indonesia, 2003
S41307
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muntu, Kristina Fransiska
"Dewasa ini kebutuhan industri akan pemurnian gas terns meningkat. Proses pemumian gas tersebut umumnya berlangsung da1am kondisi temperatur tinggi dan lingkungan yang korosif. Oleh karena itu, membran keramik dikembangkan untuk memisahkan gas tertentu dari gas lainya karena sifat ketahanan dan stabi1itas yang baik terhadap temperatur tinggi dan lingkungan yang korosif. Beberapa metode telah dikembangkan untuk menghasilkan porositas yang rendah pada membran lremmik. Salah satu metode tersebut adalah metode sol-gel silika dengan pelapisan putar. Substrat membran keramik terbuat dari material dengan komposisi 70% silika 30% kaolin dengan panambahan PV A sebagai zat pengikat. Metode proses pembuatan yang digunakan adalah teknologi serbuk melalui proses kompaksi dengan baban sebesar 10 ton dan pembakamn pada temperatur 1250'C selama 330 menit. Pembuatan larutan sol-gel dilakukan dengan mencampur dan mengaduk 25 ml TEOS dan 50 ml ethanol selama 10 menit. Kemudian 20 ml HCI 0,1 M ditambahkan secara perlahan ke dalam larutan pertama sambil tetap diaduk. Campuran larutan tersebut direftux pada temperatur 80'C selama 1 jam, lalu dievaperasi untuk membentuk sol-gel. Larutan yang terbentuk kemudian dideposisikan di atas substrat yang telah terpasang di atas mesin pemutar kemudian menghjdupkan mesin tersebut dengan putaran 1000 tpm selama beberapa waktu (15, 30, 45, 60 detik)."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S41349
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christy Sicilia
"Dewasa ini, penggunaan membran keramik sebagai proses separasi di dalam dunia industri terus dikembangkan dengan alasan karena membran keramik memihki ketahanan temperature tinggi yang baik, serta kestabilan kimia dan thermal yang tinggi. Seiring dengan berkembangnya kebutuhan manusia, proses separasi juga mengalami perkembangan, yaitu pemisahan sampai dengan tingkat fasa gas. Hal ini tentunya hanya dapat dicapai oleh membran keramik dengan porositas sangat rendah. Usaha untuk memperkecil porositas ini adalah dengan cara memberikan lapisan film silika pada permukaan keramik.
Membran keramik yang digunakan memiliki komposisi 70% Silika - 30% Kaolin dengan penambahan PVA sebagai pengikat. Serbuk yang digunakan berukuran 200 mesh. Setelah dicampur serbuk tersebut dibentuk menjadi koin dengan beban kompaksi sebesar 10 ton, kemudian disinter pada temperature 1200°C selama 2 jam.
Pembuatan lapisan film silica dengan cara melarutkan variaber jumlah TEOS (10 ml, 1 5 ml, 20 ml, 25 ml) kedalam 50 ml etanol pada temperatur mendekati 0°C. Kemudian campuran tersebut ditetesi campur an air + katalis HCI dengan total volume 20 ml sambil diaduk perlahan. Setelah itu larutan tersebut direfluks selama 30 menit, lalu dievaporasi hingga volumenya menjadi 25% dari volume asal. Hasilnya adalah sol-gel Silika pekat yang siap untuk coating membran keramik. Coatin dilakukan dengan metode dip coating dengan lama pencelupan 30 detik dengan kecepatan penarikan 100 mm/menit selama 5 kali pencelupan.
Setelah terbentuk lapisan, dilakukan pengujian kekerasan mikro antara lapisan sebelum dan sesudah densifikasi dengan beban 500 gram, hasil yang didapatkan sebelum densifikasi untuk sampel 10 ml sampai dengan 25 ml TEOS, kekerasannya cenderung turun dari 256 VHN hingga 87,33 VHN. Setelah densifikasi gel, kekerasan masing-masing sampel cenderung konstan pada nilai 410 VHN.
Hasil pengamatan SEM dari sampel 10 ml TEOS hingga 25 ml TEOS menunjukkan peningkatan ketebalan lapisan film dari 8 μm, seiring dengan ketebalan ini, nilai kekrasannya semakin menurun dengan bertambahnya ketebalan lapisan film yang terbentuk.

Since beginning of the 20th centuries, the used of ceramic membranes as separator in Industrial zone have been developing because its good resistance to high temperature, and stable to chemical reaction. As result from increased people needed, separation process have been developing too, even separation gas phase.
This moment only achieved by the ceramic membranes which have very low porosity. The way to reduce its porosity is by giving Silica thin film to ceramics surface.
Ceramics membranes which used, have 70% Silica - 30% kaolin composition with PVA added as hinder. Mixed powder (Silica and Kuolin) 200 mesh used and formed to the coin by compaction 10 Ton. Then the coin burned at 1200°C (this process known as sinter) for 2 Hours.
The making process of thin film Silica is by soluting fixed amount of TEOS (10ml, 15ml, 20ml, 25ml) to 50 ml. Ethanol in 0°c temperature conditions. Then, this solutions mixed is dropped by the solutions water and HCI with total volume 20 ml while stirred slowly. The next rocess is refling this solutions for 30 minutes and then evaporated. The direction from evaporation process is reducing water and ethanol by the aporizalien, so the end process volume is half from the origin. The product is thick Silica sol-gel which already to coaling ceramic membranes. The dip coating chosen for this process with immersed for 30 seconds and 100 m/minutes withdrawal. This process doing in repeat 5 times.
After thin film formed, and then doing several test. First in Microhardness test, the direction is comparing thin film before and after desification. With 500 gram punch, the result shows that before densification for the 10 ml untul 25 ml TEOS sampel, the hardness decrease from 256 VHN to 87,33 VHN. After densification sampel shows that the hardness each sample almost constant at 410 VHN.
The result from SEM characterization shows that from 10 ml to 25 ml TEOS sample have increase in thickness from range 8 μm to 87 μm, as the increasing thickness layer, the surface roughness so much descrease.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S41294
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Andhika
"kerak silika merupakan masalah utama yang dominan terjadi pada lapangan panasbumi yang didominasi oleh brine (liquid dominated). Kerak silika tidak dapat dihilangkan baik dengan cara kimia, fisika maupun mekanik sehingga biasanya yang dilakukan adalah upaya menghambat. Untuk itulah maka dilakukan pengujian inhibitor antiscale menggunakan campuran polimer asam poliakrilat (PAA) dan asam borat (BA).
Pengujian dilakukan menggunakan pipa uji dan pipa blank. Pipa uji menmpunyai dua tempat pengambilan sampel (port) yaitu port untuk injeksi di hulu dan port sampling di hilir Sedangkan untuk pipa blank hanya terdapat pipa port sampling di hilir. Pengambilan sampel dilakukan 1 hari setelah injeksi untuk memastikan terjadi homogenisasi antara inhibitor dan brine di pipa uji. Pengambilan sampel dilakukan setiap hari dan dianalisa di lab PT Geodipa Energi Unit Dieng. Campuran inhibitor di variasikan perbandingan konsentrasi 10 ppm:8 ppm, 15 ppm:5 ppm, dan 20 ppm:3 ppm hingga didapat kondisi optimum yang mampu menghambat pencegahan pembentukan kerak silika. Setiap variasi perbandingan konsentrasi dilakukan selama 7 hari dengan pengambilan sampel sebanyak 5 kali selama 5 hari.
Setelah dilakukan pengujian maka untuk campuran asam poliakrilat dan asam borat dengan perbandingan 10 ppm dan 8 ppm memiliki efektifitas sebesar 67,22%. Sedangkan untuk perbandingan 15 ppm dan 5 ppm memiliki efektifitas 44,54%. Untuk perbandingan konsentrasi 20 ppm dan 3 ppm memiliki efektifitas 54,94%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
T21380
UI - Tesis Open  Universitas Indonesia Library
cover
Abrar Ridwan
"Dengan semakin menipisnya cadangan energi dunia, dan rusaknya lingkungan hidup yang mengakibatkan pemanasan global, sudah semestinya untuk mencari alternatif pembuatan alat mesin pendingin yang hemat energi dan ramah lingkungan. Alat tersebut adalah mesin pendingin adsorpsi. Mesin pendingin adsorpsi memerlukan pasangan adsorbat dengan adsorben yang ideal. Proses adsorpsi dan desorpsi adalah salah satu cara atau metode yang efektif untuk membuat siklus pendingin. Adsorpsi adalah fenomena fisik yang terjadi antara molekul-molekul gas atau cair dikontakkan dengan suatu permukaan padatan, untuk itu perlu penelitian karakteristik lebih lanjut adsorbat uap-air dengan silika gel sebagai adsorben pasangannya. Karakteristik adsorpsi merupakan salah satu parameter yang menentukan kemampuan adsorben menyerap adsorbat.
Di dalam penelitian ini silika gel merek Merck KGaA digunakan sebagai adsorben dan uap-air menjadi adsorbatnya. Pengujian kapasitas penyerapan uap-air terhadap silika gel sebagai adsorben pasangannya dilakukan dengan alat uji adsorpsi kinetik untuk mengetahui karakteristik adsorpsi. Alat uji adsorpsi kinetik dirancang dan dibuat dengan metode volumetrik dapat digunakan mengukur tekanan dan temperatur per detik. Perhitungan data unjuk kerja alat uji adsorpsi kinetik mengunakan persamaan gas ideal untuk menghitung kapasitas dan laju penyerapan. Dari hasil uji dengan alat adsorpsi kinetik, kapasitas penyerapan uap-air terhadap silika gel (SiO2) 0,197 mg/gadsorben pada tekanan 39,083 mbar dengan temperatur 30°C dan 0,296 mg/gadsorben pada tekanan 38,925 mbar dengan temperatur 32°C sedangkan pada kondisi isotermal temperatur 35°C memiliki kapasitas penyerapan 0,9 mg/gadsorben.

By distinction of the world resource energi, and environmentally break down could be impact to global warming and. It need to look for the alternative one to make the environmentally ? friendly of refrigeration machine and power saver, that called adsorption refrigeration. The adsorption refrigeration need the ideal adsorbent and adsorbate pair. The adsorption and de-sorption process is one of the effective method to generate the refrigeration cycle. The adsorption is physical phenomena that occurs between gas molecules or liquid that contact over the surface, hence it is important to study the characteristic of water vapor towards silika gel and its adsorbate. The adsorption characteristic is the parameter to determine the capable of adsorbent to adsorb adsorbate.
In this study the silika gel Merck KGaA type used as adsorbent and water vapor as its adsorbate. The experimental of water vapor capacity adsorption over the silika gel carried out by adsorption kinetic apparatus. The adsorption kinetic apparatus designed by volumetrik method, that could be used to measure pressure and temperatur persecond. The calculation data performance of this adsorption kinetic using the gas ideal equation. From the experimental data found the capacity of adsorption is 0,197 mg/gradsorben for 30°C and 0,296 mg/gradsorben for isotermal of 32°C and the biggest capacity is 0,9 mg/gradsorben at isotermal 35°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41229
UI - Tesis Open  Universitas Indonesia Library
cover
Pattiata, Buang C.
"Struktur interior pesawat terbang pada umumnya terbuat dari komposit fenolik dengan penguat serat galas (Fibreglass Reinforced Phenolic Composite - FRPC). Material komposit fenolik dipillih karena resin ini memenuhi persyaratan Fire dan Toxicity Requirement untuk material interior pesawat terbang. Material ini diperoleh dari industri material komposit dalam bentuk preimpregnated. Material preimpregnated ini memiliki kekurangan dalam hal penyimpanan dan umur material.
Penelitian ini bertujuan untuk mendapatkan material pengganti yang dapat mengeliminasi masalah penyimpanan dan umur material. Material itu adalah material paduan antara silika dan fenolik dengan metoda polimerisai in situ. Material paduan antara silika dan fenolik dipilih, karena material ini merupakan material dengan bahan dasar fenolik sehingga memenuhi persayaratan Fire dan Toxicity Requirement.
Metoda polimerisai in situ digunakan, karena dengan metoda ini dihasilkan material dengan karakteristik gabungan kedua material paduannya. Penelitian dibatasi pada preparasi dan karakteristik mekanik material. Material paduan silika-fenolik terbuat dari resin fenolik dan silika precursor tetraetilortosilika (TEOS). Variabel-variabel yang akan diteliti adalah kandungan silika dan temperatur curing. Kandungan silika divariasikan antara 0 dan 15 persen berat. Temperatur curing yang digunakan adalah 100 dan 110 °C. Dalam penelitian ini dilakukan dua jenis uji mekanik yaitu: uji bending tiga tumpuan dan uji kekerasan Rockwell. Di samping itu juga dilakukan analisa struktur mikro.
Material paduan silika-fenolik ini menunjukkan peningkatan dalam kekuatan putus dan regangan putus, tetapi mengalami penurunan modulus elastisitas dan kekerasan. Kekuatan putus tertinggi dicapai pada material dengan kandungan silika 5 persen berat dan temperature curing 110 °C, yaitu sebesar 64,4 MPa. Regangan putusmeningkat dari 1,3% menjadi 2,7%. Variasi temperatur curing dan kandungan silika tidak berpengaruh terhadap peningkatan regangan putus ini. Modulus elastisitas material mengalami penurunan dari 34,0 MPa menjadi 15,5 MPa. Modulus elastisitas terendah ini dimiliki oleh material dengan kandungan silika 15 persen berat, temperatur curing 100°C. Kekerasan Rockwell material menurun dari 45 skala Rockwell menjadi 15 skala Rockwell untuk material dengan kandungan silika 15 persen berat dan temperatur curing 100 °C.

Most of Aircraft Interior Structure use Fiberglass Reinforced Phenolic Composite (FRPC) materials. The phenolic resin is used because it complies the Fire and Toxicity requirement for Aircraft Interior structure material. This material, which is supplied as a pre-impregnated material has disadvantages, mostly, in storing and its lifetime. It is to find a new material to substitute the FRPC, which eliminates the stored and lifetime problems.
The aim of this research is to find a material that can substitute the FRPC. The material is silica-phenolic hybrid material prepared by in situ polymerization. This material is chosen because it is a phenolic base material and the improvement of its mechanical properties.
The research is limited in the preparation and mechanical properties of the silica-phenolic resin hybrid material. The silica-phenolic hybrid material in this research is prepared from phenolic resin and tetraethylorthosilicate (TEOS) silica precursor. Variables to be investigated are silica content and curing temperature. The silica content ranges from 0 to 15 wt%, the curing temperatures are 100 and 110 °C. Two mechanical tests are done. They are three-point bending test and Rockwell hardness test. In addition, a microstructure analysis is also done.
The hybrid material shows improvement both in strength and elongation at break. However, the modulus of elasticity and hardness is decreased. The highest strength is achieved by material with 5 wt% silica content and curing temperature of 110 °C. The highest strength is 64.4 MPa- The strain is also increases, from 1.3% to 2.7%. The variation of curing temperature and silica content do not affect this strain increment. The modulus of elasticity decreases from 34.0 MPa to 15.5 MPa for material with silica content of 15 wt% and curing temperature of 100 °C. The Rockwell hardness also decreases from 45 Rockwell to 15 Rockwell for material with silica content of 15 wt% and curing temperature of 100 °C.
"
Depok: Fakultas Teknik Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Maimun Ibnu Masykur
"Material nilon memiliki banyak kegunaan dan aplikasi yang luas di berbagai bidang. nilon terkenal dengan higroskopisitasnya yakni menyerap kelembaban dari lingkungan sekitar dan juga rentan terhadap degradasi dengan adanya uap air pada temperatur tinggi. Penggunaan nilon dalam jangka waktu yang cukup panjang, perlu pertimbangan yang lebih lanjut mengenai kekuatan serta umur pakainya. Pelapis silika merupakan produk lapisan nano yang terdiri atas oksida dan silikon. Dengan dimensi yang kurang dari 100 nm dan disebut sebagai nanopartikel ini menawarkan berbagai keuntungan dalam memproteksi material seperti hidrofobisitas, stabilitas pH, dan konsistensi dimensi. Tujuan dari penelitian ini adalah untuk menganalisis pengaruh pelapis silika pada nilon hasil cetak tiga dimensi (3D) terhadap daya serap air dan uap air pada temperatur tinggi. Penelitian ini dilakukan dengan beberapa tahapan proses, dimulai dari pencetakan sampel dengan pencetakan 3D, pengaplikasian lapisan SiO2, perlakuan penuaan hidrotermal, analisa daya serap air dan desorpsi massa, uji tekuk, dan pengamatan melalui mikroskop elektron. Hasil penelitian menunjukan bahwa terdapat pengaruh pelapis silika yang diaplikasikan pada sampel nilon hasil cetak tiga dimensi (3D) terhadap penuaan hidrotermal, baik sebagai penghalang penyerapan kelembapan, kekuatan mekanis tambahan, dan juga pelindung terhadap pembebanan.

Nylon material has many uses and wide applications in various fields. Nylon is famous for its hygroscopicity, namely absorbing moisture from the surrounding environment and is also susceptible to degradation in the presence of water vapor at high temperatures. When using nylon for a long period of time, further consideration is needed regarding its strength and lifespan. Silica coating is a nano-coating product consisting of oxide and silicon. With dimensions of less than 100 nm and referred to as nanoparticles, they offer various advantages in protecting materials such as hydrophobicity, pH stability and dimensional consistency. The aim of this research is to analyze the effect of silica coating on three-dimensional (3D) printed nylon on the absorption capacity of water and water vapor at high temperatures. This research was carried out in several process stages, starting from printing the sample using 3D printing, applying a silica coating, hydrothermal aging treatment, analyzing water absorption and mass desorption, bending tests, and observing via an electron microscope. The research results show that there is an effect of silica coating applied to three-dimensional (3D) printed nylon samples on hydrothermal aging, both as a barrier to moisture absorption, additional mechanical strength, and also protection against loading."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahdi Manfaluthi
"Silica memiliki beragam sifat dan karakteristik yang unik karena unluk setiap komposisi kimia dan sturktur kerangka yang berbeda pada tiap strulcturnya menghasilkan sifilt dan karakteristik yang berbeda pula, fakta tersebut membuat penelitian akan aplikasi silica tems berkembang sampai saat ini.
Penelitian ini dilakukan dengan tujuan untuk mengeksplorasi dan mencoba untuk menggabungkan kcuntungan silica sebagai mineral porous yung memiliki sifat dan karalderistik yang unik dengan keimrungan mcmakai membran keramik yang tahan temperatur tinggi unmk aplikasi indusrri mcmbmn.
Teknologi yang digunakan dalam proscs pcmbualan support mcmbran keramik ini antara lain pengayakan sebesar 200 mesh unruk mendapatkan ukuran partikcl yang semgam, pengeringan pada lemperatur 200 "C unluk menghilangkan molekul air, kompaksi dengan menggunakan tekanan sebesar 10 ton dan sinteiing pada ternperatur 1350 dan 1400 °C untuk mendapatkan kekuatan dan sifat iisik yang tinggi dari silica sebagai bahan baku dalarn pembuatan membran keramik.
Hasil penelitian menunjukkan bahwa porositas menunjukkan kecenderungan menumu dengan bertambalmya kandungan kaolin yaitu 14, 17, 20, 23 dan 26%. Niiai porositas pada temperatur 1350 °C yang didapatkan adalah 32,54; 33,56; 30,96; 30,25 dan 27,08%. Sedangkan pada temperatur 1400 °C adalah 27,45; 32,94; 32,79; 34,43 dan 28,84%. Nilai densitas yang dihasilkan menunjukkan kecendenmgan meningkat, yailu 1,776; 1,704; l,440; 1,384 dan I 730 gr/cm3 umxk temperatur 1350 ?C dan 1,4l9; 1,799; l,902; 1,884 dan 1,794 g:'cm3 untuk temperatur 1400°C. Untuk nilai kekerasan, semakin banyak kmdungan kaolin maka nilai kekerasaunya akan semaldn meningkat, untuk Lamperatur 1350 °C nilai kekerasalmya adalah 173,99; l89,22; 206,55; 233,62 dan 249,99 VHN, dan pada temperatur 1400 °C nilai kekerasannya aiialah 249,l8; 258,42; 260,l$; 262,78 dan 263,67 VHN."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S41426
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lengky Angling Kusuma Wardhana
"Katalis berperan penting dalam berbagai industri kimia, katalis terus mengalami pengembangan untuk meningkatkan aktivitas dan selektifitasnya. Salah satunya dengan cara pencangkokan katalis pada pendukung katalis yang memiliki luas permukaan tinggi dan selektifitas tinggi seperti misalnya Silika berpori. Sintesis silika berpori telah dilakukan dengan metode co-MET menggunakan TEOS sebagai sumber silika dan surfaktan. Silika hasil sintesis dari setiap jenis template dan variasi konsentrasinya di karakterisasi dengan menggunakan FTIR, XRD, BET, SEM dan TEM. Semakin tinggi konsentrasi surfaktan yang digunakan, Silika berpori yang dihasilkan semakin baik. Silika berpori yang baik dihasilkan dari template CTAB pada konsentrasi 161 mM karena mempunyai luas permukaan 642,402 m2/gram, volume total 1,253 cc/gram dan diameter pori rata - rata 7,803 nm. Sedangkan dari template SDS pada konsentrasi 160 mM dengan Luas permukaan 216,028 m2/gram, volume total 0,975 cc/gram dan diameter pori rata - rata 18,058 nm. Silika berpori terbaik dari masing ? masing template di aplikasikan sebagai pendukung katalis Nikel melalui cara impregnasi basah dengan berat yang di impregnasikan sebesar 10 dan 20% w/w kemudian di karakterisasi dengan FTIR dan AAS. Reaksi Hidrogenasi benzena dilakukan dalam Atmospheric Fixed Bed Reactor dengan katalis yang telah disiapkan. %konversi Sikloheksana terbesar dihasilkan oleh pendukung katalis silika template CTAB dengan konsentrasi Nikel 20% yaitu sebesar 40,23%.

Catalysts have an important role in chemicals industrial, catalysts run into develop to improve the activity and selectivity. One of them by grafting catalyst in the catalyst support which has a high surface area and high selectivity, that is porous Silica. Synthesis of porous silica was prepared by co-MET using TEOS as a source of silica and surfactant. Silica resulting from the synthesis of each template type and concentration variations will characterization using FTIR, XRD, BET, SEM and TEM. The higher the concentration of surfactant used, the resulting porous silica getting better. Good porous silica contained in a template at a concentration of 161 mM CTAB with a surface area 642,402 m2/gram, total volume 1,253 cc/gram, and avarage of pore diameter 7,803 nm. While the SDS template at a concentration of 160 mM with a surface area 216,028 m2/gram, total volume 0,975 cc/gram, and avarage of pore diameter 18,058 nm. The best of Porous silica from each template is applied as Nickel catalyst supports by wet impregnation with weight in the graft by 10 and 20% w/w later in the characterization by FTIR and AAS. Benzene hydrogenation reaction was did in Atmospheric Fixed Bed Reactor with a catalyst which has been prepared. % Conversion generated by the biggest Siklohekasana catalyst support of silica template with a concentration of CTAB Nickel 20% amounting to 40,23%."
Depok: Universitas Indonesia, 2016
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zafella Kathya Galstaun
"Asam HCl pekat teknis mengandung sejumlah Fe sebagai anion [FeCl4]- yang seringkali tidak dikehendaki untuk aplikasi di industri. Pada penelitian ini, kadar Fe yang sangat tinggi dalam limbah asam HCl pekat teknis akan dikurangi dengan metode adsorpsi dan penukaran ion menggunakan silika gel macro-sphere. Silika gel macro-sphere berpori disintesis dengan metode sol-gel dengan katalis asam dimana dilakukan variasi waktu perendaman etanol (8, 12, dan 18 jam), variasi lama kalsinasi (4, 5, 6, 7, dan 8 jam), juga impregnasi dengan Na2S. Water-glass Na2SiO3 digunakan sebagai prekusor silika, surfaktan Alkil Poliglikosida (APG) digunakan sebagai template pori, dan HCl digunakan sebagai katalis asam. Silika gel macro-sphere berpori dikalsinasi pada suhu 350oC. Analisis TGA dilakukan untuk menentukan temperatur kalsinasi, sedangkan karakterisasi dengan FT-IR untuk mengetahui gugus-gugus yang terdapat pada silika gel macro-sphere berpori, dan BET untuk menentukan luas permukaan, diamter pori, dan volume porinya. Analisis XRF untuk mengetahui kandungan unsur-unsur dalam silika gel macro-sphere berpori, dan analisis AAS untuk menentukan kadar besi dalam limbah HCl pekat teknis sebelum dan sesudah proses adsorpsi dan penukaran ion. Pada penelitian ini, dengan metode perendaman dalam limbah HCl pekat teknis, kemampuan penukar anion besi dari silika terimpregnasi Na2S adalah 21,1548 mg/g, dan kemampuan adsorpsi besi dari silika tanpa impregnasi ialah 19,4389 mg/g. Dengan metode kolom, kapasitas penukaran ion dari silika terimregnasi Na2S adalah 16,865 mg/g, dan kapasitas adsorpsi silika tanpa impregnasi ialah 6,32 mg/g.

Used concentrated HCl of techinical grade contains iron as anion [FeCl4]- which is not desired for industrial applications. In this research, high concentration of iron in used concentrated HCl of techinical grade is reduced by adsorption and ion exchange methods using macro-sphere silica gel. Porous macro-sphere silica gel was synthesized by sol-gel method with acid catalyst modified by varying the period of immersion time in ethanol (8, 12, and 18 hours), varying the duration of calcination time (4, 5, 6, 7, and 8 hours). Furthermore, the silica gel was impregnated with Na2S for ion exchange application. Water-glass, Na2SiO3, was used as the precursor of silica, Alkyl Polyglucoside (APG) non-ionic surfactant serves as porous template, and HCl was used as acid catalyst. The synthesis of porous macro-sphere silica gel involves calcination at temperature of 350oC. TGA analysis was used to determine calcination temperature, while FT-IR analysis was used to identify the chemical bond functional groups of porous macro-sphere silica gel. BET analysis was used to determine the surface area, pore size, and pore volume of the silica gel, and XRF analysis was used to obtain the elements contained in it. AAS analysis was used to identify the content concentration of iron in the synthesized macro-sphere silica gel, and in the used concentrated HCl of technical grade, before and after the adsorption and ion exchange processes. In this research, with immersion method in used concentrated HCl of techinical grade, the capacity of silica macro-sphere as an ion exchanger is 21,1548 mg/g, and the capacity of silica macro-sphere as an adsorbent is 19,4389 mg/g. With column method, the capacity of silica macro-sphere as an ion exchanger is 16,865 mg/g, and the capacity of silica macro-sphere as an adsorbent is 6,32 mg/g."
2015
S61476
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>